Skip to main content Accessibility help
×
Home
  • Print publication year: 2011
  • Online publication date: August 2012

11 - The dynamic structure factor

Summary

Introduction

We now consider measurements of the dynamic structure factor S(q,t) of substantially monodisperse polymers. The work here represents a sixth application of light scattering spectroscopy, as discussed in Chapter 4, to solution dynamics. Prior Chapters 6, 7, 8, and 9 included light scattering determinations of segmental motion, self- and tracer diffusion, rotational diffusion, and probe diffusion. The immediately prior chapter included light scattering spectra of colloidal systems, in which the underlying forces (hydrodynamic, volume exclusion) are much the same as in polymer solutions.

Monodisperse solutions of flexible coils present new complications not seen in earlier discussions of light scattering spectroscopy. Light scattering measurements of rotational and segmental diffusion are only sensitive to a single “internal” variable, an orientation vector or tensor. Self- and tracer diffusion use dilute scattering chains in the presence of a nonscattering matrix, at small scattering vector q; neither chain internal modes nor interference between scattering from pairs of tracer chains affects the scattering spectrum. Scattering from colloids and optical probes examines center-of-mass motion of rigid particles that have no significant internal modes. Here the scattering polymer coils are flexible and often are nondilute, so light scattering spectra include relaxations arising from single-chain center-of-mass displacements, relative motions of chain segments on a single chain, and correlations between positions and motions of chain segments on pairs of chains.

References
[1] R., Pecora. Doppler shifts in light scattering from pure liquids and polymer solutions. J. Chem. Phys., 40 (1964), 1604–1614.
[2] R., Pecora. Doppler shifts in light scattering. II. Flexible polymer molecules. J. Chem. Phys., 43 (1965), 1562–1564.
[3] R., Pecora. Spectral distribution of light scattered from flexible-coil macromolecules. J. Chem. Phys., 49 (1968), 1032–1035.
[4] R., Silbey and J. M., Deutch. Quasielastic light scattering from large macromolecules. J. Chem. Phys., 57 (1972), 5010–5011.
[5] A., Akcasu and H., Gurol. Quasi-elastic scattering by dilute polymer-solutions. J. Polymer Sci. Polymer Phys. Ed., 14 (1976), 1–10.
[6] H., Yamakawa. Concentration dependence of the friction coefficient of polymers in solution. J. Chem. Phys., 36 (1962), 2995–3001.
[7] C. W., Pyun and M., Fixman. Frictional coefficient of polymer molecules in solution. J. Chem. Phys., 41 (1964), 937–944.
[8] Y., Oono and P., Baldwin. Cooperative diffusion of a semidilute polymer solution: A preliminary study. Phys. Rev. A, 33 (1986), 3391–3398.
[9] J. G., Kirkwood and J., Riseman. The intrinsic viscosities and diffusion constants of flexible macromolecules in solution. J. Chem. Phys., 16 (1948), 565–573.
[10] P., Wiltzius, H. R., Haller, D. S., Cannell, and D. W., Schaefer. Dynamics of longwavelength concentration fluctuations in solutions of linear polymers. Phys. Rev. Lett., 53 (1984), 834–837.
[11] C. C., Han and A. Z., Akcasu. Dynamic light scattering of dilute polymer solutions in the nonasymptotic q region. Macromolecules, 14 (1981), 1080–1084.
[12] M., Benmouna and A. Z., Akcasu. Temperature effects on the dynamic structure factor in dilute polymer solutions. Macromolecules, 11 (1978), 1187–1192.
[13] M., Benmouna and A. Z., Akcasu. The effect of preaveraging the Oseen tensor on the characteristic frequency in good solvents. Macromolecules, 14 (1980), 409–414.
[14] A. R., Ellis, J. K., Schaller, M. L., McKiernan, and J. C., Selser. Evidence for coupling between hydrodynamic interactions and excluded volume effects in polymer coils. J. Chem. Phys., 92 (1990), 5731–5743.
[15] G., Bueldt. Interpretation of quasi-elastic light scattering measurements from moderately concentrated solutions. Eur. Polym. J., 12 (1976), 239–242.
[16] G. H., Vineyard. Scattering of slow neutrons by a liquid. Phys. Rev., 110 (1958), 999–1010.
[17] G. D., Patterson, J.-P., Jarry, and C. P., Lindsey. Photon correlation spectroscopy of polystyrene solutions. Macromolecules, 13 (1980), 668–670.
[18] T., Koch, G., Strobl, and B., Stuehn. Light-scattering study of fluctuations in concentration, density, and local anisotropy in polystyrene-dioxane mixtures. Macromolecules, 25 (1992), 6255–6261.
[19] A., Bennett, P. J., Daivis, R., Shanks, and R., Knott. Concentration dependence for static and hydrodynamic screening lengths for three different polymers in a variety of solvents. Polymer, 45 (2004), 8531–8540.
[20] P. M., Cotts and J. C., Selser. Polymer–polymer interactions in dilute solution. Macromolecules, 23 (1990), 2050–2057.
[21] H., Yamakawa. Modern Theory of Polymer Solutions, (New York: Harper and Rowe, 1971).
[22] P., Wiltzius and D. S., Cannell. Wave-vector dependence of the initial decay rate of fluctuations in polymer solutions. Phys. Rev. Lett., 61 (1986), 61–64.
[23] Y., Tsunashima, N., Nemoto, and M., Kurata. Dynamic light scattering studies of polymer solutions. 1. Histogram analysis of internal motions. Macromolecules, 16 (1983), 584–589.
[24] Y., Tsunashima, N., Nemoto, and M., Kurata. Dynamic light scattering studies of polymer solutions. 2. Translational diffusion and intramolecular motions of polystyrene in dilute solutions at the Θ temperature. Macromolecules, 16 (1983), 1184–1188.
[25] N., Nemoto, Y., Makita, Y., Tsunashima, and M., Kurata. Dynamic light scattering studies of polymer solutions. 3. Translational diffusion and internal motion of high molecular weight polystyrenes in benzene at infinite dilution. Macromolecules, 17 (1984), 425–430.
[26] W., Brown and J., Fundin. Dynamical behavior of high molecular weight polystyrene in the marginal solvent 2-butanone. Macromolecules, 24 (1991), 5171–5178.
[27] J. E., Martin. Configurational diffusion in semidilute solutions. Macromolecules, 19 (1986), 1278–1281.
[28] S., Balloge and M., Tirrell. The QELSS “slow mode” is a sample-dependent phenomenon in poly(methylmethacrylate) solutions. Macromolecules, 18 (1985), 817–819.
[29] W., Brown and P., Stepanek. Viscoelastic relaxation in semidilute and concentrated polymer solutions. Macromolecules, 26 (1993), 6884–6890.
[30] C. H., Wang, Z., Sun, and Q. R., Huang. Quasielastic light scattering of polystyrene in diethyl malonate in semidilute concentration. J. Chem. Phys., 105 (1996), 6052–6059.
[31] M., Polverari and T. G. M. van, Ven. Dilute aqueous poly(ethylene oxide) solutions: Clusters and single molecules in thermodynamic equilibrium. J. Phys. Chem., 100 (1996), 13687–13695.
[32] R., O'Connell, H., Hanson, and G. D. J., Phillies. Neutral polymer slow mode and its rheological correlate. J. Polym. Sci. Polym. Phys., 43 (2004), 323–333.
[33] E. J., Amis, P. A., Janmey, J. D., Ferry, and H., Yu. Quasielastic light scattering measurements of self-diffusion and mutual diffusion in gelatin solutions and gels. Polymer Bull., 6 (1981), 13–19.
[34] E. J., Amis, P. A., Janmey, J. D., Ferry, and H., Yu. Quasi-elastic light scattering of gelatin solutions and gels. Macromolecules, 16 (1983), 441–446.
[35] W., Brown, R. M., Johnsen, and P., Stilbs. Quasielastic light scattering (QELS) in semidilute polymer solutions. A comparison of “slow-mode” diffusion with self-diffusion from FT-pulsed field gradient NMR.Polym. Bull., 9 (1983), 305–312.
[36] Z., Sun and C. H., Wang. Light scattering and viscoelasticity of polymer solutions. Macromolecules, 27 (1994), 5667–5673.
[37] C. H., Wang and X. Q., Zhang. Quasielastic light scattering and viscoelasticity of polystyrene in diethyl phthalate. Macromolecules, 26 (1993), 707–714.
[38] C. H., Wang and X. Q., Zhang. Quasielastic light scattering investigation of concentration fluctuations and coupling to stress relaxation in a polymer solution: Polystyrene in CCl4. Macromolecules, 28 (1995), 2288–2296.
[39] W., Brown and K., Mortensen. Comparison of correlation lengths in semidilute polystyrene solutions in good solvents by quasi-elastic light scattering and small-angle neutron scattering. Macromolecules, 21 (1988), 420–425.
[40] M., Eisele and W., Burchard. Slow-mode diffusion of poly(vinylpyrrolidone) in the semidilute regime. Macromolecules, 17 (1984), 1636–1638.
[41] C., Konak and W., Brown. Coupling of density to concentration fluctuations in concentrated solutions of polystyrene in toluene. J. Chem. Phys., 98 (1993), 9014–9017.
[42] A., Faraone, S., Magazu, G., Maisano, R., Ponterio, and V., Villari. Evidence of slow dynamics in semidilute polymer solutions. Macromolecules, 32 (2001), 1128–1133.
[43] T., Nicolai, W., Brown, R. M., Johnsen, and P., Stepanek. Dynamic behavior of Θ solutions of polystyrene investigated by dynamic light scattering. Macromolecules, 23 (1990), 1165–1174.
[44] W., Brown and S., Stepanek. Dynamic behavior in concentrated polystyrene/cyclohexane solutions close to the Θ-point. Relaxation time distributions as a function of concentration and temperature. Macromolecules, 25 (1992), 4359–4363.
[45] W., Brown. Dynamical properties of high molecular weight polystyrene in the dilute– semidilute transition region in cyclopentane at the Θ temperature. Macromolecules, 19 (1986), 387–393.
[46] W., Brown. Dynamical properties of high molecular weight polystyrene in cyclopentane at the Θ temperature. Macromolecules, 19 (1986), 3006–3008.
[47] W., Brown and S., Stepanek. Dynamic behavior in concentrated polymer solutions. Macromolecules, 24 (1991), 5484–5486.
[48] T., Nicolai, W., Brown, S., Hvidt, and K., Heller. Acomparison of relaxation time distributions obtained from dynamic light scattering and dynamic mechanical measurements for high molecular weight polystyrene in entangled solutions. Macromolecules, 23 (1990), 5088–5096.
[49] M., Adam, L. J., Fetters, W. W., Graessley, and T. A., Witten. Concentration dependence of static and dynamic properties for polymeric stars in a good solvent. Macromolecules, 24 (1991), 2434–2440.
[50] K., Huber, S., Bantle, W., Burchard, and L. J., Fetters. Semidilute solutions of star branched polystyrene: A light and neutron scattering study. Macromolecules, 19 (1986), 1404–1411.
[51] M., Sedlak. Generation of multimacroion domains in polyelectrolyte solutions by change of ionic strength or pH (macroion charge). J. Chem. Phys., 116 (2002), 5256–5262.
[52] M., Sedlak. Mechanical properties and stability of multimacroion domains in polyelectrolyte solutions. J. Chem. Phys., 116 (2002), 5236–5245.
[53] M., Sedlak. Long-time stability of multimacroion domains in polyelectrolyte solutions. J. Chem. Phys., 116 (2002), 5246–5255.
[54] M., Sedlak. Real-time monitoring of the origination of multimacroion domains in a polyelectrolyte solution. J. Chem. Phys., 122 (2005), 151102 1–3.
[55] R., Cong, E., Temyanko, P. S., Russo, N., Erwin, and R. M., Uppu. Dynamics of poly(styrenesulfonate) sodium salt in aqueous solution. Macromolecules, 39 (2006), 731–739.
[56] J. J., Tanahatoe and M. E., Kuil. Light scattering in semidilute polyelectrolyte solutions: Ionic strength and polyelectrolyte concentration dependence. J. Phys. Chem. B, 101 (1997), 10839–10844.
[57] R. D., Mountain and J. M., Deutch. Light scattering from binary solutions. J. Chem.Phys., 50 (1969), 1103–1108.
[58] G. D. J., Phillies and D., Kivelson. Theory of light scattering from density fluctuations in a two-component reacting fluid. Molecular Physics, 38 (1979), 1393–1410.
[59] W., Brown, K., Schillen, R., Johnsen, C., Konak, and L., Dvoranek. Brillouin light scattering from poly(methyl methacrylate)/toluene concentrated solutions. Macromolecules, 25 (1992), 802–805.
[60] W., Brown, R. M., Johnsen, C., Konak, and L., Dvoranek. Dynamic properties of concentrated solutions above the glass transition temperature. J. Chem. Phys., 96 (1992), 6274–6280.
[61] J., Rauch and W., Koehler. Collective and thermal diffusion in dilute, semidilute, and concentrated solutions of polystyrene in toluene. J. Chem. Phys., 119 (2003), 11977–11988.
[62] J., Rauch, M., Hartung, A. F., Privalov, and W., Koehler. Correlation between thermal diffusion and solvent self-diffusion in semidilute and concentrated solutions. J. Chem. Phys., 126 (2007), 214901 1–7.
[63] K. J., Zhang, M. E., Briggs, R. W., Gammon, and J. V., Sengers. Thermal and mass diffusion in a semidilute good solvent-polymer solution. J. Chem. Phys., 111 (1999), 2270–2282.
[64] P., Stepanek, Z., Tuzar, P., Kadlec, and J., Kriz. A dynamic light scattering study of fast relaxations in polymer solutions. Macromolecules, 40 (2007), 2165–2171.
[65] G. D. J., Phillies. Effect of intermacromolecular interactions on diffusion. I. Two- component solutions. J. Chem. Phys., 60 (1974), 976–982.
[66] G. D. J., Phillies. Effect of intermacromolecular interactions on diffusion. II. Threecomponent solutions. J. Chem. Phys., 60 (1974), 983–989.
[67] M., Benmouna, H., Benoit, M., Duval, and Z., Akcasu. Theory of dynamic scattering from ternary mixtures of two homopolymers and a solvent. Macromolecules, 20 (1987), 1107–1112.
[68] M., Benmouna, H., Benoit, R., Borsali, and M., Duval. Theory of dynamic scattering from copolymer solutions using the random phase approximation. Macromolecules, 20 (1987), 2620–2624.
[69] M., Benmouna, M., Duval, and R., Borsali. Dynamic scattering from mixtures of homopolymers and copolymers in solution. Macromolecules, 21 (1987), 520–521.
[70] R., Borsali, M., Duval, H., Benoit, and M., Benmouna. Diffusion of polymers in semidilute ternary solutions. Investigation by dynamic light scattering. Macromolecules, 20 (1987), 1112–1115.
[71] R., Borsali, M., Duval, and M., Benmouna. Quasi-elastic light scattering from ternary mixtures of polystyrene/polymethyl methacrylate/toluene. Polymer, 30 (1989), 610–614.
[72] R., Borsali, M., Duval, and M., Benmouna. Quasielastic light scattering from ternary mixtures of polystyrene/polydimethylsiloxane/solvents. Macromolecules, 22 (1989), 816–821.
[73] J., Corrotto, F., Ortega, M., Vazquez, and J. J., Freire. Dynamic light scattering from mixtures of two polystyrene samples in dilute and semidilute solutions. Macromolecules, 29 (1996), 5948–5954.
[74] J., Desbrieres, R., Borsali, M., Rinaudo, and M., Milas. X f interaction parameter and single-chain diffusion coefficients of dextran/polyvinylpyrrolidone/water dynamic light scattering experiments. Macromolecules, 26 (1993), 2592–2596.
[75] L., Giebel, R., Borsali, E. W., Fischer, and G., Meier. Quasi-elastic light scattering from ternary mixtures of polymethyl methacrylate/ polydimethylsiloxane in tetrahydrofuran. Macromolecules, 23 (1990), 4054–4060.
[76] L., Giebel, R., Borsali, E. W., Fischer, and M., Benmouna. Dynamic light scattering from PDMS/PMMA/solvent: effect of optical properties. Macromolecules, 25 (1992), 4378–4381.
[77] C., Konak, C., Tuzar, and J., Jakes. Quasielastic light scattering from polystyrene/polymethyl methacrylate/toluene solutions. Polymer, 31 (1990), 1866–1870.
[78] Z., Sun and C. H., Wang. Quasielastic light scattering study of semidilute ternary polymer solutions of polystyrene and polymethyl methacrylate in benzene. Macromolecules, 29 (1996), 2011–2018.
[79] Z., Sun and C. H., Wang. Quasielastic light scattering study of ternary polymer solutions of polystyrene and polymethyl methacrylate in dioxane. J. Chem. Phys., 106 (1997), 3775–3781.
[80] Z., Sun and C. H., Wang. Light scattering from mixtures of two polystyrenes in toluene and self-diffusion coefficients. Macromolecules, 30 (1997), 4939–4944.
[81] C., Roberts, T., Cosgrove, R. G., Schmidt, and G. V., Gordon. Diffusion of poly(dimethylsiloxane) mixtures with silicate nanoparticles. Macromolecules, 34 (2001), 538–543.
[82] F., Mezei. Neutron spin echo: A new concept in polarized thermal neutron techniques. Zeitschrift Physik, 255 (1972), 146–160.
[83] N., Ewen and D., Richter. Neutron spin echo investigations on the segmental dynamics of polymers in melts, solutions, and networks. Adv. Polymer Phys., 134 (1997), 1–129.
[84] D., Richter, B., Stuehn, B., Ewen, and D., Nerger. Collective relaxation of star polymers – a neutron spin-echo study. Phys. Rev. Lett., 58 (1987), 2462–2465.
[85] R., Borsali, H., Benoit, J.-F., Legran, et al.Dynamics of copolymer solutions determined by using neutron spin-echo. Macromolecules, 22 (1989), 4119–4121.
[86] T., Csiba, G., Jannink, D., Durand, et al.Diffusion in semi-dilute polymer solutions. A complementary experiment. Journal de Physique II, 1 (1991), 381–396.
[87] G. D. J., Phillies, R., O'Connell, P., Whitford, and K., Streletzky. Mode structure of diffusive transport in hydroxypropylcellulose : water. J. Chem. Phys., 119 (2003), 9903–9912, and references therein.
[88] S. A., Kivelson, X., Zhao, D., Kivelson, T. M., Fischer, and C. M., Knobler. Frustrationlimited clusters in liquids. J. Chem. Phys., 101 (1994), 2391–2397.
[89] D., Kivelson, G., Tarjus, and S. A., Kivelson. A viewpoint, model, and theory for supercooled liquids. Progr. Theor. Physics Suppl., 126 (1997), 289–298.
[90] D., Kivelson and G., Tarjus. The Kauzmann paradox interpreted via the theory of frustration-limited-domains. J. Chem. Phys., 109 (1998), 5481–5486.
[91] P. E., Rouse Jr., Atheory of the linear viscoelastic properties of dilute solutions of coiling polymers. II. A first-order mechanical thermodynamic property. J. Chem. Phys., 108 (1998), 4628–4633.
[92] M., Delsanti, J., Chang, P., Lesieur, and B., Cabane. Dynamic properties of aqueous dispersions of nanometric particles near the fluid–solid transition. J. Chem. Phys., 105 (1996), 7200–7209.