Skip to main content Accessibility help
×
Hostname: page-component-788cddb947-2s2w2 Total loading time: 0 Render date: 2024-10-14T19:28:55.189Z Has data issue: false hasContentIssue false

Chapter 38 - Disorders of Early Midline Patterning

from Neural Tube Defects and Patterning Defects

Published online by Cambridge University Press:  07 August 2021

Mirna Lechpammer
Affiliation:
New York University School of Medicine
Marc Del Bigio
Affiliation:
University of Manitoba, Canada
Rebecca Folkerth
Affiliation:
New York University School of Medicine
Get access

Summary

Among the most dramatic malformations of the body and central nervous system (CNS) are those that involve abnormal lateral separation of the neural tube along its long axis. Often referred to as “monsters” in the old literature, these include the spectra of conjoined (or conjoint) twinning and holoprosencephaly. In the former, the body axis splits inappropriately, conceivably anywhere along the long axis, leading to duplication of body parts. In the latter, the prosencephalon fails to separate normally (Figure 38.1). Close embryologic connections between the brain and face dictate that many of these disorders have abnormalities of the face (Figure 38.2).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

O’Rahilly, RR, Müller, F. The Embryonic Human Brain: An Atlas of Developmental Stages 3rd edition. New York: Wiley; 2006.Google Scholar
Fallet-Bianco, C. Neuropathology of holoprosencephaly. Am J Med Genet C Semin Med Genet. 2018;178(2):214–28.Google Scholar
Sarnat, HB, Yu, W. Maturation and dysgenesis of the human olfactory bulb. Brain Pathol. 2016;26(3):301–18.Google Scholar
Maione, L, Benadjaoud, S, Eloit, C, Sinisi, AA, Colao, A, Chanson, P, et al. Computed tomography of the anterior skull base in Kallmann syndrome reveals specific ethmoid bone abnormalities associated with olfactory bulb defects. J Clin Endocrinol Metab. 2013;98(3):E537–E46.Google Scholar
Yi, L, Liu, Z, Deng, C, Li, X, Wang, K, Deng, K, et al. Epidemiological characteristics of holoprosencephaly in China, 2007–2014: A retrospective study based on the national birth defects surveillance system. PLoS One. 2019;14(6):e0217835.CrossRefGoogle Scholar
Summers, AD, Reefhuis, J, Taliano, J, Rasmussen, SA. Nongenetic risk factors for holoprosencephaly: an updated review of the epidemiologic literature. Am J Med Genet C Semin Med Genet. 2018;178(2):151–64.Google Scholar
Ong, S, Tonks, A, Woodward, ER, Wyldes, MP, Kilby, MD. An epidemiological study of holoprosencephaly from a regional congenital anomaly register: 1995–2004. Prenat Diagn. 2007;27(4):340–7.Google Scholar
Orioli, IM, Castilla, EE. Epidemiology of holoprosencephaly: Prevalence and risk factors. Am J Med Genet C Semin Med Genet. 2010;154 C(1):1321.CrossRefGoogle Scholar
Heinke, D, Nestoridi, E, Hernandez-Diaz, S, Williams, PL, Rich-Edwards, JW, Lin, AE, et al. Risk of stillbirth for fetuses with specific birth defects. Obstet Gynecol. 2020 135(1):133–140 Google Scholar
Abe, Y, Kruszka, P, Martinez, AF, Roessler, E, Shiota, K, Yamada, S, et al. Clinical and demographic evaluation of a holoprosencephaly cohort from the Kyoto Collection of Human Embryos. Anat Rec. 2018;301(6):973–86.CrossRefGoogle ScholarPubMed
Shiota, K, Yamada, S. Early pathogenesis of holoprosencephaly. Am J Med Genet C Semin Med Genet. 2010;154C(1):22–8.Google Scholar
Vaz, SS, Chodirker, B, Prasad, C, Seabrook, JA, Chudley, AE, Prasad, AN. Risk factors for nonsyndromic holoprosencephaly: a Manitoba case-control study. Am J Med Genet A. 2012;158A(4):751–8.Google Scholar
Grinblat, Y, Lipinski, RJ. A forebrain undivided: Unleashing model organisms to solve the mysteries of holoprosencephaly. Dev Dyn. 2019;248(8):626–33.Google Scholar
Kruszka, P, Muenke, M. Syndromes associated with holoprosencephaly. Am J Med Genet C Semin Med Genet. 2018;178C(2):229–37.Google Scholar
Hu, T, Kruszka, P, Martinez, AF, Ming, JE, Shabason, EK, Raam, MS, et al. Cytogenetics and holoprosencephaly: A chromosomal microarray study of 222 individuals with holoprosencephaly. Am J Med Genet C Semin Med Genet. 2018;178C(2):175–86.CrossRefGoogle ScholarPubMed
Roessler, E, Muenke, M. The molecular genetics of holoprosencephaly. Am J Med Genet C Semin Med Genet. 2010;154C(1):5261.Google Scholar
Bendavid, C, Dupe, V, Rochard, L, Gicquel, I, Dubourg, C, David, V. Holoprosencephaly: An update on cytogenetic abnormalities. Am J Med Genet C Semin Med Genet. 2010;154C(1):8692.Google Scholar
Roessler, E, Hu, P, Marino, J, Hong, S, Hart, R, Berger, S, et al. Common genetic causes of holoprosencephaly are limited to a small set of evolutionarily conserved driver genes of midline development coordinated by TGF-beta, hedgehog, and FGF signaling. Hum Mutat. 2018;39(10):1416–27.Google Scholar
Kim, A, Savary, C, Dubourg, C, Carre, W, Mouden, C, Hamdi-Roze, H, et al. Integrated clinical and omics approach to rare diseases: novel genes and oligogenic inheritance in holoprosencephaly. Brain. 2019;142(1):3549.CrossRefGoogle ScholarPubMed
Monuki, ES. The morphogen signaling network in forebrain development and holoprosencephaly. J Neuropathol Exp Neurol. 2007;66(7):566–75.Google Scholar
Chi, L, Fan, B, Feng, D, Chen, Z, Liu, Z, Hui, Y, et al. The dorsoventral patterning of human forebrain follows an activation/transformation model. Cereb Cortex. 2017;27(5):2941–54.Google ScholarPubMed
Gulacsi, A, Anderson, SA. Shh maintains Nkx2.1 in the MGE by a Gli3-independent mechanism. Cereb Cortex. 2006;16 Suppl 1:i89–I95.CrossRefGoogle ScholarPubMed
Radonjic, NV, Memi, F, Ortega, JA, Glidden, N, Zhan, H, Zecevic, N. The role of sonic hedgehog in the specification of human cortical progenitors in vitro. Cereb Cortex. 2016;26(1):131–43.Google Scholar
Volpe, JJ. Normal and abnormal human brain development. Clin Perinatol. 1977;4(1):330.Google Scholar
Calloni, SF, Caschera, L, Triulzi, FM. Disorders of ventral induction / spectrum of holoprosencephaly. Neuroimaging Clin N Am. 2019;29(3):411–21.Google Scholar
Volpe, P, Campobasso, G, De Robertis, V, Rembouskos, G. Disorders of prosencephalic development. Prenat Diagn. 2009;29(4):340–54.Google Scholar
von Boletzky, S. On the lay-out of the midgut rudiment in Loligo pealei (LeSueur). Experientia. 1970;26(8):880–1.Google Scholar
Dale, L, Slack, JM. Regional specification within the mesoderm of early embryos of Xenopus laevis. Development. 1987;100(2):279–95.Google Scholar
Spencer, R. Theoretical and analytical embryology of conjoined twins: part I: embryogenesis. Clin Anat. 2000;13(1):3653.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Spencer, R. Theoretical and analytical embryology of conjoined twins: part II: adjustments to union. Clin Anat. 2000;13(2):97120.Google Scholar
Spitz, L. Conjoined twins. Prenat Diagn. 2005;25(9):814–9.Google Scholar
Weber, MA, Sebire, NJ. Genetics and developmental pathology of twinning. Semin Fetal Neonatal Med. 2010;15(6):313–8.Google Scholar
Boer, LL, Schepens-Franke, AN, Oostra, RJ. Two is a crowd: on the enigmatic etiopathogenesis of conjoined twinning. Clin Anat. 2019;32(5):722–41.Google Scholar
McNamara, HC, Kane, SC, Craig, JM, Short, RV, Umstad, MP. A review of the mechanisms and evidence for typical and atypical twinning. Am J Obstet Gynecol. 2016;214(2):172–91.Google Scholar
Wells, LJ. A case of iliothoracopagus (dicephalus tribea chius tripus) with a consideration of the “budding” and “fission” theories of twinning. Anat Rec. 1945;92(1):121.Google Scholar
Zizic Mitrecic, M, Mitrecic, D, Pochet, R, Kostovic-Knezevic, L, Gajovic, S. The mouse gene Noto is expressed in the tail bud and essential for its morphogenesis. Cells Tissues Organs. 2010;192(2):8592.Google Scholar
Corallo, D, Trapani, V, Bonaldo, P. The notochord: structure and functions. Cell Mol Life Sci. 2015;72(16):29893008.Google Scholar
Barr, M, Jr. Facial duplication: case, review, and embryogenesis. Teratology. 1982;25(2):153–9.Google Scholar
Lee, JD, Anderson, KV. Morphogenesis of the node and notochord: the cellular basis for the establishment and maintenance of left-right asymmetry in the mouse. Dev Dyn. 2008;237(12):3464–76.Google Scholar
de Bree, K, de Bakker, BS, Oostra, RJ. The development of the human notochord. PLoS One. 2018;13(10):e0205752.Google Scholar
Yamanaka, Y, Tamplin, OJ, Beckers, A, Gossler, A, Rossant, J. Live imaging and genetic analysis of mouse notochord formation reveals regional morphogenetic mechanisms. Dev Cell. 2007;13(6):884–96.Google Scholar
Wu, J, Staffenberg, DA, Mulliken, JB, Shanske, AL. Diprosopus: a unique case and review of the literature. Teratology. 2002;66(6):282–7.Google Scholar
Sur, A, Sardar, SK, Paria, A. Caudal duplication syndrome. J Clin Neonatol. 2013;2(2):101–2.Google Scholar
Slavotinek, A, Parisi, M, Heike, C, Hing, A, Huang, E. Craniofacial defects of blastogenesis: duplication of pituitary with cleft palate and orophgaryngeal tumors. Am J Med Genet A. 2005;135(1):1320.Google Scholar
Machin, GA. Conjoined twins: implications for blastogenesis. Birth Defects Orig Artic Ser. 1993;29(1):141–79.Google Scholar
Levin, M, Roberts, DJ, Holmes, LB, Tabin, C. Laterality defects in conjoined twins. Nature. 1996;384(6607):321.Google Scholar
Maruotti, GM, Paladini, D, Napolitano, R, Mazzarelli, LL, Russo, T, Quarantelli, M, et al. Prenatal 2D and 3D ultrasound diagnosis of diprosopus: case report with post-mortem magnetic resonance images (MRI) and review of the literature. Prenat Diagn. 2009;29(10):992–4.Google Scholar
Bidondo, MP, Groisman, B, Tardivo, A, Tomasoni, F, Tejeiro, V, Camacho, I, et al. Diprosopus: Systematic review and report of two cases. Birth Defects Res A Clin Mol Teratol. 2016;106(12):9931007.Google Scholar
Carles, D, Weichhold, W, Alberti, EM, Leger, F, Pigeau, F, Horovitz, J. Diprosopia revisited in light of the recognized role of neural crest cells in facial development. J Craniofac Genet Dev Biol. 1995;15(2):90–7.Google Scholar
Slager, UT, Anderson, VM, Handmaker, SD. Cephalothoracopagus janiceps malformation. A contribution to the pathogenesis of cerebral malformation. Arch Neurol. 1981;38(2):103–8.CrossRefGoogle Scholar
Muller, F, O’Rahilly, R. The development of the human brain, the closure of the caudal neuropore, and the beginning of secondary neurulation at stage 12. Anat Embryol (Berl). 1987;176(4):413–30.Google Scholar
Muller, F, O’Rahilly, R. The development of the human brain from a closed neural tube at stage 13. Anat Embryol (Berl). 1988;177(3):203–24.Google Scholar
Muller, F, O’Rahilly, R. The primitive streak, the caudal eminence and related structures in staged human embryos. Cells Tissues Organs. 2004;177(1):220.Google Scholar
Pang, D, Dias, MS, Ahab-Barmada, M. Split cord malformation: Part I: A unified theory of embryogenesis for double spinal cord malformations. Neurosurgery. 1992;31(3):451–80.Google Scholar
Yang, HJ, Lee, DH, Lee, YJ, Chi, JG, Lee, JY, Phi, JH, et al. Secondary neurulation of human embryos: morphological changes and the expression of neuronal antigens. Childs Nerv Syst. 2014;30(1):7382.Google Scholar
Dias, MS, Pang, D. Split cord malformations. Neurosurg Clin N Am. 1995;6(2):339–58.Google Scholar
Saraga-Babic, M, Stefanovic, V, Wartiovaara, J, Lehtonen, E. Spinal cord-notochord relationship in normal human embryos and in a human embryo with double spinal cord. Acta Neuropathol. 1993;86(5):509–14.Google Scholar
Dominguez, R, Rott, J, Castillo, M, Pittaluga, RR, Corriere, JN, Jr. Caudal duplication syndrome. Am J Dis Child. 1993;147(10):1048–52.Google Scholar
Bajpai, M, Das, K, Gupta, AK. Caudal duplication syndrome: more evidence for theory of caudal twinning. J Pediatr Surg. 2004;39(2):223–5.Google Scholar
Wilder, HH. The morphology of cosmobia; speculations concerning the significance of certain types of monsters. Am J Anat. 1908;8(4):355440.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×