Skip to main content Accessibility help
×
Home
  • Print publication year: 2020
  • Online publication date: July 2020

References

Abu-Absi, N. R., Kenty, B. M., Cuellar, M. E., Borys, M. C., Sakhamuri, S., Strachan, D. J., Hausladen, M. C. & Li, Z. J. (2011), ‘Real time monitoring of multiple parameters in mammalian cell culture bioreactors using an in-line Raman spectroscopy probe’, Biotechnology and Bioengineering 108(5), 12151221.
Ahmed, S. U., Ranganathan, P., Pandey, A. & Sivaraman, S. (2010), ‘Computational fluid dynamics modeling of gas dispersion in multi impeller bioreactor’, Journal of Bioscience and Bioengineering 109(6), 588597.
Al-Rubeai, M. (2015), Animal Cell Culture, Vol. 9, 9th edn, Spinger.
Allison, G., Cain, Y. T., Cooney, C., Garcia, T., Bizjak, T. G., Holte, O., Jagota, N., Komas, B., Korakianiti, E., Kourti, D., Madurawe, R., Morefield, E., Montgomery, F., Nasr, M., Randolph, W., Robert, J. L., Rudd, D. & Zezza, D. (2015), ‘Regulatory and quality considerations for continuous manufacturing May 20–21, 2014 continuous manufacturing symposium’, Journal of Pharmaceutical Sciences 104(3), 803812.
Amanullah, A., McFarlane, C. M., Emery, A. N. & Nienow, A. W. (2001), ‘Scale-down model to simulate spatial pH variations in large-scale bioreactors’, Biotechnology and Bioengineering 73(5), 390399.
Ansorge, S., Esteban, G. & Schmid, G. (2010), ‘On-line monitoring of responses to nutrient feed additions by multi-frequency permittivity measurements in fed-batch cultivations of CHO cells’, Cytotechnology 62(2), 121132.
Antonia, S. J., Larkin, J. & Ascierto, P. A. (2014), ‘Immuno-oncology combinations: A review of clinical experience and future prospects’, Clinical Cancer Research 20(24), 62586268.
Arnold, L., Lee, K., Rucker-Pezzini, J. & Lee, J. H. (2018), ‘Implementation of fully integrated continuous antibody processing: Effects on productivity and COGm’, Biotechnology Journal 14(2), 110.
Arnold, S. A., Crowley, J., Woods, N., Harvey, L. M. & McNeil, B. (2003), ‘In-situ near infrared spectroscopy to monitor key analytes in mammalian cell cultivation’, Biotechnology and Bioengineering 84(1), 1319.
Assirelli, M., Bujalski, W., Eaglesham, A. & Nienow, A. (2005), ‘Intensifying micromixing in a semi-batch reactor using a Rushton turbine’, Chemical Engineering Science 60(8–9), 23332339.
Atkins, P., De Paula, J. & Friedmand, R. (2010), Physical Chemistry, 9th edn.
Bacchin, P., Aimar, P. & Field, R. W. (2006), ‘Critical and sustainable fluxes: Theory, experiments and applications’, Journal of Membrane Science 281(1–2), 4269.
Bailey, J. E. & Ollis, D. F. (1986), ‘Fundamentals of Biochemical engineering’.
Bandyopadhyay, B., Humphrey, A. E. & Taguchi, H. (1967), ‘Dynamic measurement of the volumetric oxygen transfer coefficient in fermentation systems’, Biotechnology and Bioengineering 9(4), 533544.
Baptista, R. P., Fluri, D. A. & Zandstra, P. W. (2013), ‘High density continuous production of murine pluripotent cells in an acoustic perfused bioreactor at different oxygen concentrations.’, Biotechnology and Bioengineering 110(2), 648655.
Barbaroux, M., Gerighausen, S. & Hackel, H. (2014), ‘An approach to quality and security of supply for single-use bioreactors’, Advances in Biochemical Engineering/Biotechnology 138, 239272.
Barberis, M., Klipp, E., Vanoni, M. & Alberghina, L. (2007), ‘Cell size at S phase initiation: An emergent property of the G1/S network’, PLoS Computational Biology 3(4), e64.
Barrett, S., Franklin, J., Stangl, M., Cvetkovic, A. & He, W. (2018), ‘Intensification of a multi-product perfusion platform managing growth characteristics at high cell density for maximized volumetric productivity’, Cell Culture Engineering XVI.
Barrett, T. A., Wu, A., Zhang, H., Levy, M. S. & Lye, G. J. (2010), ‘Microwell engineering characterization for mammalian cell culture process development’, Biotechnology and Bioengineering 105(2), 260275.
Bartholomew, D. J. (2010), ‘Principal components analysis’, in International Encyclopedia of Education, Vol. 2, Elsevier, pp. 374–377.
Bates, R. L., Fondy, P. L. & Fenic, J. G. (1966), ‘Impeller characteristics and power’, in J. Uh L, VW; Gray, ed., Mixing: Theory and Practice 1, Vol. 1, pp. 111178.
Baur, D., Angarita, M., Müller-Späth, T. & Morbidelli, M. (2015), ‘Optimal model-based design of the twin-column CaptureSMB process improves capacity utilization and productivity in protein A affinity capture’, Biotechnology Journal 11(1), 135145.
Baur, D., Angarita, M., Müller-Späth, T., Steinebach, F. & Morbidelli, M. (2016), ‘Comparison of batch and continuous multi-column protein A capture processes by optimal design’, Biotechnology Journal 11(7), 920931.
Bausch, M., Schultheiss, C. & Sieck, J. B. (2018), ‘Recommendations for comparison of productivity between fed-batch and perfusion processes’, Biotechnology Journal 14(2), 14.
Beier, S. P. & Jonsson, G. (2009), ‘Critical flux determination by flux-stepping’, Wiley Inter-Science 56(7), 17391747.
Bendiak, B. & Schachter, H. (1987), ‘Control of glycoprotein synthesis: Kinetic mechanism, substrate specificity, and inhibition characteristics of UDP-N-acetylglucosamine:alpha-D-mannoside beta 1-2 N-acetylglucosaminyltransferase II from rat liver’, Journal of Biological Chemistry 262(12), 57845790.
Benz, G. T. (2011), ‘Bioreactor design for chemical engineers’, American Institute of Chemical Engineers 107, 2126.
Beresford, T. P., Fitzsimons, N. A., Brennan, N. L. & Cogan, T. M. (2001), ‘Recent advances in cheese microbiology’, International Dairy Journal 11, 254274.
Berg, J. M., Tymoczko, J. L. & Stryer, L. (2007), Biochemistry, 6th edn, Sara Tenney.
Berg, P. (1974), ‘Potential biohazards of recombinant DNA molecules’, Science 1114(1973), 19731974.
Berg, P., Baltimore, D., Brenner, S., Roblin, R. & Singer, M. (1975), ‘Summary statement of the Asilomar conference on recombinant DNA molecules’, Proceedings of the National Academy of Sciences of the United States of America 72, 19811984.
Berg, P. & Mertz, J. E. (2010), ‘Personal reflections on the origins and emergence of recombinant DNA technology’, Genetics 184(1), 917.
Berry, B. N., Dobrowsky, T. M., Timson, R. C., Kshirsagar, R., Ryll, T. & Wiltberger, K. (2016), ‘Quick generation of Raman spectroscopy based in-process glucose control to influence biopharmaceutical protein product quality during mammalian cell culture’, Biotechnology Progress 32(1), 224234.
Bertrand, V., Karst, D. J. & Morbidelli, M. (2019), ‘Transcriptome and proteome analysis of steady state in a perfusion CHO cell culture process’, Biotechnology and Bioengineering pp. 1–14.
Bertrand, V., Vogg, S., Villiger, T. K., Stettler, M., Broly, H., Soos, M. & Morbidelli, M. (2018), ‘Proteomic analysis of micro-scale bioreactors as scale-down model for a mAb producing CHO industrial fed-batch platform’, Journal of Biotechnology 279, 2736.
Beyer, B., Schuster, M., Jungbauer, A. & Lingg, N. (2018), ‘Microheterogeneity of recombinant antibodies: Analytics and functional impact’, Biotechnology Journal 13(1), 111.
Bibila, T. A. & Robinson, D. K. (1995), ‘In pursuit of the optimal fed-batch process for monoclonal antibody production’, Biotechnology Progress 11(1), 113.
Bielser, J.-M., Chappuis, L., Xiao, Y., Souquet, J., Broly, H. & Morbidelli, M. (2019a), ‘Perfusion cell culture for the production of conjugated recombinant fusion proteins reduces clipping and quality heterogeneity compared to batch-mode processes’, Journal of Biotechnology 302, 2631.
Bielser, J.-M., Domaradzki, J., Souquet, J., Broly, H. & Morbidelli, M. (2019b), ‘Semi-continuous scale-down models for clone and operating parameter screening in perfusion bioreactors’, Biotechnology Progress 35(3), e2790.
Bielser, J.-M., Wolf, M., Souquet, J., Broly, H. & Morbidelli, M. (2018), ‘Perfusion mammalian cell culture for recombinant protein manufacturing: A critical review’, Biotechnology Advances 36(4), 13281340.
Bödeker, B., Potere, E. & Dove, G. (2013), ‘Production of recombinant factor VIII from perfusion cultures: II. Large-scale purification’, in Spier, R. E., Griffiths, J. B. & Berthold, W., eds, Animal Cell Technology, Butterworth-Heinemann, pp. 584–590.
Böhm, E., Voglauer, R., Steinfellner, W., Kunert, R., Borth, N. & Katinger, H. (2004), ‘Screening for improved cell performance: Selection of subclones with altered production kinetics or improved stability by cell sorting’, Biotechnology and Bioengineering 88(6), 699706.
Bonham-Carter, J. (2018), ‘High productivity harvest – Intensify harvest and displace depth filtration in fed-batch cell culture’, in BioProcess International.
Bonham-Carter, J. & Shevitz, J. (2011), ‘A brief history of perfusion’, BioProcess International 9(9), 2430.
Bosco, B., Paillet, C., Amadeo, I., Mauro, L., Orti, E. & Forno, G. (2017), ‘Alternating flow filtration as an alternative to internal spin filter based perfusion process: Impact on productivity and product quality’, Biotechnology Progress 33(4), 15.
Brányik, T., Vicente, A. A., Dostálek, P. & Teixeira, J. A. (2005), ‘Continuous beer fermentation using immobilized yeast cell bioreactor systems’, Biotechnology Progress 21(3), 653663.
Breinlinger, K. J., Hobbs, E. D., Malleo, D., Nevill, J. T. & White, M. P. (2018), ‘Movement and selection of micro-objects in a microfluidic apparatus’. U.S. Patent 0099282 A1.
Browne, S. M. & Al-Rubeai, M. (2007), ‘Selection methods for high-producing mammalian cell lines’, Trends in Biotechnology 25(9), 425432.
Brühlmann, D., Jordan, M., Hemberger, J., Sauer, M., Stettler, M. & Broly, H. (2015), ‘Tailoring recombinant protein quality by rational media design’, Biotechnology Progress 31(3), 615629.
Brühlmann, D., Muhr, A., Parker, R., Vuillemin, T., Bucsella, B., Kalman, F., Torre, S., La Neve, F., Lembo, A., Haas, T., Sauer, M., Souquet, J., Broly, H., Hemberger, J. & Jordan, M. (2017a), ‘Cell culture media supplemented with raffinose reproducibly enhances high mannose glycan formation’, Journal of Biotechnology 252, 3242.
Brühlmann, D., Sokolov, M., Butté, A., Sauer, M., Hemberger, J., Souquet, J., Broly, H. & Jordan, M. (2017b), ‘Parallel experimental design and multivariate analysis provides efficient screening of cell culture media supplements to improve Biosimilar product quality’, Biotechnology and Bioengineering 114(7), 14481458.
Brunner, M., Doppler, P., Klein, T., Herwig, C. & Fricke, J. (2018), ‘Elevated pCO2 affects the lactate metabolic shift in CHO cell culture processes’, Engineering in Life Sciences 18(3), 204214.
Buckley, K. & Ryder, A. G. (2017), ‘Applications of Raman spectroscopy in biopharmaceutical manufacturing: A short review’, Applied Spectroscopy 71(6), 10851116.
Bujalski, W., Nienow, A., Chatwin, S. & Cooke, M. (1987), ‘The dependency on scale of power numbers of Rushton disc turbines’, Chemical Engineering Science 42(2), 317326.
Bunnak, P., Allmendinger, R., Ramasamy, S. V., Lettieri, P. & Titchener-Hooker, N. J. (2016), ‘Life-cycle and cost of goods assessment of fed-batch and perfusion-based manufacturing processes for mAbs’, Biotechnology Progress 32(5), 13241335.
Cao, D.-S., Xu, Q.-S., Liang, Y.-Z., Chen, X. & Li, H.-D. (2010), ‘Prediction of aqueous solubility of druglike organic compounds using partial least squares, back-propagation network and support vector machine’, Journal of Chemometrics 24, 584595.
Caplice, E. & Fitzgerald, G. F. (1999), ‘Food fermentations: Role of microorganisms in food production and preservation’, International Journal of Food Microbiology 50(1–2), 131149.
Carrondo, M. J., Alves, P. M., Carinhas, N., Glassey, J., Hesse, F., Merten, O. W., Micheletti, M., Noll, T., Oliveira, R., Reichl, U., Staby, A., Teixeira, A. P., Weichert, H. & Mandenius, C. F. (2012), ‘How can measurement, monitoring, modeling and control advance cell culture in industrial biotechnology?’, Biotechnology Journal 7(12), 15221529.
Carvell, J. P. & Dowd, J. E. (2006), ‘On-line measurements and control of viable cell density in cell culture manufacturing processes using radio-frequency impedance’, Cytotechnology 50(1–3), 3548.
Cervera, A. E., Petersen, N., Lantz, A. E., Larsen, A. & Gernaey, K. V. (2009), ‘Application of near-infrared spectroscopy for monitoring and control of cell culture and fermentation’, Biotechnology Progress 25(6), 15611581.
Chakrabarty, A., Buzzard, G. T. & Rundell, A. E. (2013), ‘Model-based design of experiments for cellular processes’, Wiley Interdisciplinary Reviews: Systems Biology and Medicine 5(2), 181203.
Chandrasekharan, K. & Calderbank, P. (1981), ‘Further observations on the scale-up of aerated mixing vessels’, Chemical Engineering Science 36(5), 818823.
Chen, C., Wong, H. E. & Goudar, C. T. (2018), ‘Upstream process intensification and continuous manufacturing’, Current Opinion in Chemical Engineering 22, 191198.
Chen, L., Nguang, S. K., Chen, X. D. & Li, X. M. (2004), ‘Modelling and optimization of fed-batch fermentation processes using dynamic neural networks and genetic algorithms’, Biochemical Engineering Journal 22(1), 5161.
Chen, T.-T. (2013), ‘Immuno-oncology’, Journal for ImmunoTherapy of Cancer 1(18), 19.
Chisti, Y. (2000), ‘Animal-cell damage in sparged bioreactors’, Trends in Biotechnology 18(10), 420432.
Chisti, Y. (2001), ‘Hydrodynamic damage to animal cells’, Critical Reviews in Biotechnology 21(2), 67110.
Chotteau, V. (2017), ‘Process development in screening scale bioreactors and perspectives for very high cell density perfusion’, Integrated Continuous Biomanufacturing III, Suzanne Farid, University College London, United Kingdom Chetan Goudar, Amgen, USA Paula Alves, IBET, Portugal Veena Warikoo, Axcella Health, Inc., USA Eds, ECI Symposium Series. p. 10691.
Chu, L. & Robinson, D. K. (2001), ‘Industrial choices for protein production by large-scale cell culture’, Current Opinion in Biotechnology 12(2), 180187.
Chugh, P. & Roy, V. (2014), ‘Biosimilars: Current scientific and regulatory considerations’, Current Clinical Pharmacology 9(1), 5363.
Chuppa, S., Tsai, Y. S., Yoon, S., Shackleford, S., Rozales, C., Bhat, R., Tsay, G., Matanguihan, C., Konstantinov, K. & Naveh, D. (1997), ‘Fermentor temperature as a tool for control of high-density perfusion cultures of mammalian cells’, Biotechnology and Bioengineering 55(2), 328338.
Clincke, M. F., Mölleryd, C., Samani, P. K., Lindskog, E., Fäldt, E., Walsh, K. & Chotteau, V. (2013b), ‘Very high density of Chinese hamster ovary cells in perfusion by alternating tangential flow or tangential flow filtration in WAVE bioreactor, Part II: Applications for antibody production and cryopreservation’, Biotechnology Progress 29(3), 768777.
Clincke, M. F., Mölleryd, C., Zhang, Y., Lindskog, E., Walsh, K. & Chotteau, V. (2011), ‘Study of a recombinant CHO cell line producing a monoclonal antibody by ATF or TFF external filter perfusion in a WAVE Bioreactor’, BMC Proceedings 5(8), 105.
Clincke, M. F., Mölleryd, C., Zhang, Y., Lindskog, E., Walsh, K. & Chotteau, V. (2013a), ‘Very high density of CHO cells in perfusion by ATF or TFF in WAVE bioreactor, Part I: Effect of the cell density on the process’, Biotechnology Progress 29(3), 754767.
Coffman, J., Lin, H., Wang, S., Godfrey, S., Orozco, R., Yildirim, S., Salm, J., Hiller, G., Gagnon, M., Farner, R., Kottmeier, B. & Sullivan, D. (2017), ‘Balancing continuous, integrated, and batch processing’, in Integrated Continuous Biomanufacturing III.
Cohen, S. N., Chang, A. C. Y. & Hsu, L. (1972), ‘Non-chromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA’, Proceedings of the National Academy of Sciences of the United States of America 69, 21102114.
Cohen, S. N., Chang, A. C. Y., Boyer, H. W. & Helling, R. B. (1973), ‘Construction of biologically functional bacterial plasmids in vitro’, Proceedings of the National Academy of Sciences of the United States of America 70(11), 32403244.
Colosimo, A., Goncz, K., Holmes, A., Kunzelmann, K., Bennet, M. & Gruenert, D. (2000), ‘Transfer and expression of foreign genes in mammalian cells’, BioTechniques 29(2), 314331.
Coronel, J., Klausing, S., Heinrich, C., Noll, T., Figueredo-Cardero, A. & Castilho, L. R. (2016), ‘Valeric acid supplementation combined to mild hypothermia increases productivity in CHO cell cultivations’, Biochemical Engineering Journal 114, 101109.
Croughan, M. S., Konstantinov, K. B. & Cooney, C. (2015), ‘The future of industrial bioprocessing: Batch or continuous?’, Biotechnology and Bioengineering 112(4), 648651.
Davey, C. L., Davey, H. M., Kell, D. B. & Todd, R. W. (1993), ‘Introduction to the dielectric estimation of cellular biomass in real time, with special emphasis on measurements at high volume fractions’, Analytica Chimica Acta 279(1), 155161.
Davis, D., Delia, S., Safc, L., Ross, S., Lyons, D. & Hodzic, I. (2015), ‘Modeling perfusion at small scale using ambr© 15’, in ECI Digital Archives.
De Jesus, M. J., Girard, P., Bourgeois, M., Baumgartner, G., Jacko, B., Amstutz, H. & Wurm, F. M. (2004), ‘TubeSpin satellites: A fast track approach for process development with animal cells using shaking technology’, Biochemical Engineering Journal 17(3), 217223.
Demain, A. L. (2007), ‘The business of biotechnology’, Industrial Biotechnology 3(3), 269283.
Deschênes, J.-S., Desbiens, A., Perrier, M. & Kamen, A. (2006), ‘Use of cell bleed in a high cell density perfusion culture and multivariable control of biomass and metabolite concentrations’, Asia-Pacific Journal of Chemical Engineering 1(1–2), 8291.
Deshpande, N. S. & Barigou, M. (1999), ‘Performance characteristics of novel mechanical foam breakers in a stirred tank reactor’, Journal of Chemical Technology and Biotechnology 987(May), 979987.
Deshpande, R. R. & Heinzle, E. (2004), ‘On-line oxygen uptake rate and culture viability measurement of animal cell culture using microplates with integrated oxygen sensors’, Biotechnology Letters 26(9), 763767.
D’Este, M., Alvarado-Morales, M. & Angelidaki, I. (2017), ‘Amino acids production focusing on fermentation technologies: A review’, Biotechnology Advances 36(1), 1425.
Devi, T. T. & Kumar, B. (2017), ‘Mass transfer and power characteristics of stirred tank with Rushton and curved blade impeller’, Engineering Science and Technology, an International Journal 20(2), 730737.
Dhir, S., Morrow, K. J., Rhinehart, R. R. & Wiesner, T. (2000), ‘Dynamic optimization of hybridoma growth in a fed-batch bioreactor’, Biotechnology and Bioengineering 67(2), 197205.
Dorival-García, N. & Bones, J. (2017), ‘Monitoring leachables from single-use bioreactor bags for mammalian cell culture by dispersive liquid-liquid microextraction followed by ultra high performance liquid chromatography quadrupole time of flight mass spectrometry’, Journal of Chromatography A 1512, 5160.
Dowd, J. E., Jubb, A., Kwok, K. E. & Piret, J. M. (2003), ‘Optimization and control of perfusion cultures using a viable cell probe and cell specific perfusion rates’, Cytotechnology 42(1), 3545.
Dowd, J. E., Weber, I., Rodriguez, B., Piret, J. M. & Kwok, K. E. (1999), ‘Predictive control of hollow-fiber bioreactors for the production of monoclonal antibodies’, Biotechnology and Bioengineering 63(4), 484492.
Du, Z., Treiber, D., Mccarter, J. D., Fomina-Yadlin, D., Saleem, R. A., Mccoy, R. E., Zhang, Y., Tharmalingam, T., Leith, M., Follstad, B. D., Dell, B., Grisim, B., Zupke, C., Heath, C., Morris, A. E. & Reddy, P. (2015), ‘Use of a small molecule cell cycle inhibitor to control cell growth and improve specific productivity and product quality of recombinant proteins in CHO cell cultures’, Biotechnology and Bioengineering 112(1), 141155.
Ducommun, P., Bolzonella, I., Marison, I., von Stockar, U. & Rhiel, M. (2002), ‘Real-time in situ monitoring of freely suspended and immobilized cell cultures based on mid-infrared spectroscopic measurements’, Biotechnology and Bioengineering 77(2), 174185.
Ducommun, P., Bolzonella, I., Rhiel, M., Pugeaud, P., Von Stockar, U. & Marison, I. W. (2001a), ‘On-line determination of animal cell concentration’, Biotechnology and Bioengineering 72(5), 515522.
Duetz, W. A. (2007), ‘Microtiter plates as mini-bioreactors: Miniaturization of fermentation methods’, Trends in Microbiology 15(10), 469475.
Ecker, D. M., Jones, S. D. & Levine, H. L. (2015), ‘The therapeutic monoclonal antibody market’, mAbs 7(1), 914.
Eibl, R., Kaiser, S., Lombriser, R. & Eibl, D. (2010), ‘Disposable bioreactors: The current state-of-the-art and recommended applications in biotechnology’, Applied Microbiology and Biotechnology 86(1), 4149.
Eleftherios, P. (1991), ‘Media additives for protecting freely suspended animal cells against agitation and aeration damage’, Tibtech 9, 316324.
Eon-Duval, A., Gleixner, R., Valax, P., Soos, M., Neunstoecklin, B., Morbidelli, M. & Broly, H. (2013), ‘Quality by design applied to a Fc-fusion protein: A case studys’, in Therapeutic Fc-Fusion Proteins, Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim, pp. 155189.
Eon-Duval, A., Valax, P., Solacroup, T., Broly, H., Gleixner, R., Strat, C. L. & Sutter, J. (2012), ‘Application of the quality by design approach to the drug substance manufacturing process of an Fc fusion protein: Towards a global multi⣳step design space’, Journal of Pharmaceutical Sciences 101(10), 36043618.
Escandar, G. M., Damiani, P. C., Goicoechea, H. C. & Olivieri, A. C. (2006), ‘A review of multivariate calibration methods applied to biomedical analysis’, Microchemical Journal 82(1), 2942.
Esmonde-White, K. A., Cuellar, M., Uerpmann, C., Lenain, B. & Lewis, I. R. (2017), ‘Raman spectroscopy as a process analytical technology for pharmaceutical manufacturing and bioprocessing’, Analytical and Bioanalytical Chemistry 409(3), 637649.
Feidl, F., Vogg, S., Wolf, M., Podobnik, M., Ruggeri, C., Ulmer, N., … & Morbidelli, M. (2020). Process-wide control and automation of an integrated continuous manufacturing platform for antibodies. Biotechnology and Bioengineering.
Feidl, F. (2019), Digitalization Platform and Supervisory Control of a Continuous Integrated, PhD thesis, ETH Zürich.
Feidl, F., Garbellini, S., Vogg, S., Sokolov, M., Souquet, J., Broly, H., Butté, A. & Morbidelli, M. (2019), ‘A new flow cell and chemometric protocol for implementing in⣳line Raman spectroscopy in chromatography’, Biotechnology Progress (March), e2847.
Finn, B., Harvey, L. M., McNeil, B. & McNeil, B. (2006), ‘Near-infrared spectroscopic monitoring of biomass, glucose, ethanol and protein content in a high cell density baker’s yeast fed-batch bioprocess’, Yeast 23(7), 507517.
Fisher, A. C. C., Kamga, M.-H. H., Agarabi, C., Brorson, K., Lee, S. L. L. & Yoon, S. (2018), ‘The current scientific and regulatory landscape in advancing integrated continuous biopharmaceutical manufacturing’, Trends in Biotechnology 37(3), 253267.
Fleischaker, R. J. & Sinskey, A. J. (1981), ‘Oxygen demand and supply in cell culture’, European Journal of Applied Microbiology and Biotechnology 12(4), 193197.
Fleming, A. (1929), ‘On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. 1929’, British Journal of Experimental Pathology 10(3), 226236.
Fogler, H. S. (2008), Elements of Chemical Reaction Engineering, 5th edn, Pearson Education.
Frenzel, A., Hust, M. & Schirrmann, T. (2013), ‘Expression of recombinant antibodies’, Frontiers in Immunology 4(July), 120.
Froment, G. F., Bischoff, K. B. & De Wilde, J. (1990), Chemical Reactor Analysis and Design, Vol. 2, Wiley New York.
Gagnon, M., Hiller, G., Luan, Y. T., Kittredge, A., Defelice, J. & Drapeau, D. (2011), ‘High-end pH-controlled delivery of glucose effectively suppresses lactate accumulation in CHO fed-batch cultures’, Biotechnology and Bioengineering 108(6), 13281337.
García-Muñoz, S. & Polizzi, M. (2012), ‘WSPLS: A new approach towards mixture modeling and accelerated product development’, Chemometrics and Intelligent Laboratory Systems 114, 116121.
Garnier, A., Voyer, R., Tom, R., Perret, S., Jardin, B. & Kamen, A. (1996), ‘Dissolved carbon dioxide accumulation in a large scale and high density production of TGFβ receptor with baculovirus infected Sf-9 cells’, Cytotechnology 22(1), 5363.
Gautam, R., Vanga, S., Ariese, F. & Umapathy, S. (2015), ‘Review of multidimensional data processing approaches for Raman and infrared spectroscopy’, EPJ Techniques and Instrumentation 2(1), 8.
Glassey, J., Gernaey, K. V., Clemens, C., Schulz, T. W., Oliveira, R., Striedner, G. & Mandenius, C.-F. (2011), ‘Process analytical technology (PAT) for biopharmaceuticals.’, Biotechnology Journal 6(4), 369377.
Glassey, J. & von Stosch, M., eds (2018), Hybrid Modeling in Process Industries, CRC Press.
Godawat, R., Konstantinov, K., Rohani, M. & Warikoo, V. (2015), ‘End-to-end integrated fully continuous production of recombinant monoclonal antibodies’, Journal of Biotechnology 213, 1319.
Godoy Silva, R., Berdugo, C. & Chalmers, J. J. (2010), ‘Aeration, mixing, and hydrodynamics, animal cell bioreactors’, in Encyclopedia of Industrial Biotechnology, American Cancer Society, pp. 127.
Goh, P. S., Ismail, A. F. & Ng, B. C. (2017), ‘Raman spectroscopy’, Membrane Characterization 72(12), 3146.
Goletz, S., Stahn, R. & Kreye, S. (2016), Patent WO 2016/193083 A1.
Gomez, N., Ambhaikar, M., Zhang, L., Huang, C.-J. J., Barkhordarian, H., Lull, J. & Gutierrez, C. (2017), ‘Analysis of tubespins as a suitable scale-down model of bioreactors for high cell density CHO cell culture’, Biotechnology Progress 33(2), 490499.
Gorenflo, V. M., Angepat, S., Bowen, B. D. & Piret, J. M. (2003), ‘Optimization of an acoustic cell filter with a novel air-backflush system’, Biotechnology Progress 19(1), 3036.
Goudar, C., Stevens, J., Le, K., Gupta, S., Tan, C. & Munro, T. (2017), ‘Enabling next-generation cell line development using continuous perfusion and nanofluidic technologiese’, in Integrated Continuous Biomanufacturing III.
Goudar, C. T., Matanguihan, R., Long, E., Cruz, C., Zhang, C., Piret, J. M. & Konstantinov, K. B. (2007), ‘Decreased pCO2 accumulation by eliminating bicarbonate addition to high cell-density cultures’, Biotechnology and Bioengineering 96(6), 11071117.
Goudar, C. T., Piret, J. M. & Konstantinov, K. B. (2011), ‘Estimating cell specific oxygen uptake and carbon dioxide production rates for mammalian cells in perfusion culture’, Biotechnology Progress 27(5), 13471357.
Gramer, M. J., Eckblad, J. J., Donahue, R., Brown, J., Shultz, C., Vickerman, K., Priem, P., van den Bremer, E. T., Gerritsen, J. & van Berkel, P. H. (2011), ‘Modulation of antibody galactosylation through feeding of uridine, manganese chloride, and galactose’, Biotechnology and Bioengineering 108(7), 15911602.
Gray, D. R., Chen, S., Howarth, W., Inlow, D. & Maiorella, B. L. (1996), ‘CO2 in large-scale and high-density CHO cell perfusion culture’, Cytotechnology 22(1–3), 6578.
Grillberger, L., Kreil, T. R., Nasr, S. & Reiter, M. (2009), ‘Emerging trends in plasma-free manufacturing of recombinant protein therapeutics expressed in mammalian cells’, Biotechnology Journal 4(2), 186201.
Gunther, J., Conner, J. & Seborg, D. (2007), ‘Fault detection and diagnosis in an industrial fed-batch cell culture process’, Biotechnology Progress 23(4), 851857.
Hammond, M., Marghitoiu, L., Lee, H., Perez, L., Rogers, G., Nashed-Samuel, Y., Nunn, H. & Kline, S. (2014), ‘A cytotoxic leachable compound from single-use bioprocess equipment that causes poor cell growth performance’, Biotechnology Progress 30(2), 332337.
Heidemann, R., Lünse, S., Tran, D. & Zhang, C. (2010), ‘Characterization of cell-banking parameters for the cryopreservation of mammalian cell lines in 100-mL cryobags’, Biotechnology Progress 26(4), 11541163.
Heidemann, R., Mered, M., Wang, D. Q., Gardner, B., Zhang, C., Michaels, J., Henzler, H. J., Abbas, N. & Konstantinov, K. (2002), ‘A new seed-train expansion method for recombinant mammalian cell lines’, Cytotechnology 38(1–3), 99108.
Helenius, A. & Aebi, M. (2001), ‘Intracellular functions of N-linked glycans’, Science 291(5512), 23642369.
Henry, O., Kwok, E. & Piret, J. M. (2008), ‘Simpler non-instrumented batch and semi-continuous cultures provide mammalian cell kinetic data comparable to continuous and perfusion cultures’, Biotechnology Progress 24(4), 921931.
Higel, F., Seidl, A., Sörgel, F. & Friess, W. (2016), ‘N-glycosylation heterogeneity and the influence on structure, function and pharmacokinetics of monoclonal antibodies and Fc fusion proteins’, European Journal of Pharmaceutics and Biopharmaceutics 100, 94100.
Hiller, G. W., Ovalle, A. M., Gagnon, M. P., Curran, M. L. & Wang, W. (2017), ‘Cell-controlled hybrid perfusion fed-batch CHO cell process provides significant productivity improvement over conventional fed-batch cultures’, Biotechnology and Bioengineering 114(7), 14381447.
Hoos, A. (2016), ‘Development of immuno-oncology drugs: From CTLA4 to PD1 to the next generations’, Nature Reviews Drug Discovery 15(4), 235247.
Hossler, P., Khattak, S. F. & Li, Z. J. (2009), ‘Optimal and consistent protein glycosylation in mammalian cell culture’. Glycobiology 19(9), 936949.
Howard, D. H., Bach, P. B., Berndt, E. R. & Rena, M. C. (2015), ‘Pricing in the market for anticancer drugs’, Journal of Economic Perspectives 29(1), 16891699.
Hsie, A. W., Recio, L., Katz, D. S., Lee, C. Q., Wagner, M. & Schenley, R. L. (1986), ‘Evidence for reactive oxygen species inducing mutations in mammalian cells.’, Proceedings of the National Academy of Sciences 83(24), 96169620.
Hu, W.-S. (2012), Cell Culture Bioprocess Engineering. Springer.
Hubert, M. & Engelen, S. (2004), ‘Robust PCA and classification in biosciences’, Bioinformatics 20(11), 17281736.
Hughes, S. S. (2001), ‘Making dollars out of DNA: The first major patent in biotechnology and the commercialization of molecular biology, 1974–1980’, Isis 92(3), 541575.
Hughmark, G. A. (1980), ‘Power requirements and interfacial area in gas–liquid turbine agitated systems’, Industrial and Engineering Chemistry Process Design and Development 19(4), 638641.
Indahl, U. (2005), ‘A twist to partial least squares regression’, Journal of Chemometrics 19(1), 3244.
Ishida, M., Haga, R., Nishimura, N., Matuzaki, H. & Nakano, R. (1990), ‘High cell density suspension culture of mammalian anchorage independent cells: Oxygen transfer by gas sparging and defoaming with a hydrophobic net’, Cytotechnology 4(3), 215225.
Ivarsson, M., Noh, H., Morbidelli, M. & Soos, M. (2015), ‘Insights into pH-induced metabolic switch by flux balance analysis’, Biotechnology Progress 31(2), 347357.
Jackson, D., Symons, R. H. & Berg, P. (1972), ‘Biochemical method for inserting new genetic information into DNA of simian virus 40: Circular DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli’, Proceedings of the National Academy of Sciences of the United States of America 69, 29042909.
Jacquemart, R., Vandersluis, M., Zhao, M., Sukhija, K., Sidhu, N. & Stout, J. (2016), ‘A single-use strategy to enable manufacturing of affordable biologics’, Computational and Structural Biotechnology Journal 14, 309318.
Jagschies, G., Lindskog, E., Lacki, K. & Galliher, P. M. (2018), Biopharmaceutical Processing: Development, Design, and Implementation of Manufacturing Processes, Elsevier Science.
Jang, J. D. & Barford, J. P. (2000), ‘An unstructured kinetic model of macromolecular metabolism in batch and fed-batch cultures of hybridoma cells producing monoclonal antibody’, Biochemical Engineering Journal 4(2), 153168.
Janoschek, S., Schulze, M., Zijlstra, G., Greller, G. & Matuszczyk, J. (2018), ‘A protocol to transfer a fed-batch platform process into semi-perfusion mode: The benefit of automated small scale bioreactors compared to shake flasks as scale-down model’, Biotechnology Progress 35(2), 810.
Jefferis, R. (2005), ‘Glycosylation of recombinant antibody therapeutics’, Biotechnology Progress 21(1), 1116.
Jefferis, R. (2009), ‘Recombinant antibody therapeutics: The impact of glycosylation on mechanisms of action’, Trends in Pharmacological Sciences 30(7), 356362.
Jesus, M. D. & Wurm, F. M. (2011), ‘Manufacturing recombinant proteins in kg-ton quantities using animal cells in bioreactors’, European Journal of Pharmaceutics and Biopharmaceutics 78(2), 184188.
Jiang, M., Severson, K. A., Love, J. C., Madden, H., Swann, P., Zang, L. & Braatz, R. D. (2017), ‘Opportunities and challenges of real-time release testing in biopharmaceutical manufacturing’, Biotechnology and Bioengineering 114(11), 24452456.
Jiang, R., Hoesli, N., Mueller, R., Kretz, T., Chen, H., Xu, S. & Bowers, J. (2018), ‘Probing lactate metabolism variations in large-scale bioreactors’, Biotechnology Progress 34(3), 756766.
Jimenez del Val, I., Nagy, J. M. & Kontoravdi, C. (2011), ‘A dynamic mathematical model for monoclonal antibody N-linked glycosylation and nucleotide sugar donor transport within a maturing Golgi apparatus’, Biotechnology Progress 27(6), 17301743.
Joao De Jesus, M. & Wurm, F. M. (2013), ‘Scale-up and predictability in process development with suspension cultures of mammalian cells for recombinant protein manufacture: comments on a trend reversal’, Pharmaceutical Bioprocessing 1(4), 13.
Joeris, K., Frerichs, J.-G., Konstantinov, K. & Scheper, T. (2002), ‘In-situ microscopy: Online process monitoring of mammalian cell cultures’, Cytotechnology 38(1–3), 129134.
Jolliffe, I. (2005), ‘Principal component analysis’, in Encyclopedia of Statistics in Behavioral Science, John Wiley and Sons.
Jordan, M. & Jenkins, N. (2007), ‘Tools for high-throughput medium and process optimization’, Methods in Biotechnology 24, 193202.
Jordan, M., Kinnon, N. M., Monchois, V., Stettler, M. & Broly, H. (2018), ‘Intensification of large-scale cell culture processes’, Current Opinion in Chemical Engineering 22, 253257.
Jordan, M., Voisard, D., Berthoud, A. & Tercier, L. (2012), ‘Cell culture medium improvement by rigorous shuffling of components using media blending’, Cytotechnology 65(1), 3140.
Karst, D. J., Scibona, E., Serra, E., Bielser, J.-M. M., Souquet, J., Stettler, M., Broly, H., Soos, M., Morbidelli, M. & Villiger, T. K. (2017b), ‘Modulation and modeling of monoclonal antibody N-linked glycosylation in mammalian cell perfusion reactors’, Biotechnology and Bioengineering 114(9), 137.
Karst, D. J., Serra, E., Villiger, T. K., Soos, M. & Morbidelli, M. (2016), ‘Characterization and comparison of ATF and TFF in stirred bioreactors for continuous mammalian cell culture processes’, Biochemical Engineering Journal 110, 1726.
Karst, D. J., Steinebach, F. & Morbidelli, M. (2018), ‘Continuous integrated manufacturing of therapeutic proteins’, Current Opinion in Biotechnology 53, 7684.
Karst, D. J., Steinebach, F., Soos, M. & Morbidelli, M. (2017a), ‘Process performance and product quality in an integrated continuous antibody production process’, Biotechnology and Bioengineering 114(2), 298307.
Karst, D. J., Steinhoff, R. F., Kopp, M. R. G., Serra, E., Soos, M., Zenobi, R. & Morbidelli, M. (2017c), ‘Intracellular CHO cell metabolite profiling reveals steady-state dependent metabolic fingerprints in perfusion culture’, Biotechnology Progress 33(4), 879890.
Karst, D. J., Steinhoff, R. F., Kopp, M. R., Soos, M., Zenobi, R. & Morbidelli, M. (2017d), ‘Isotope labeling to determine the dynamics of metabolic response in CHO cell perfusion bioreactors using MALDI-TOF-MS’, Biotechnology Progress 33(6), 16301639.
Kaufmann, H., Mazur, X., Fussenegger, M. & Bailey, J. E. (1999), ‘Influence of low temperature on productivity, proteome and protein phosphorylation of CHO cells’, Biotechnology and Bioengineering 63(5), 573582.
Kawase, Y., Halard, B. & Moo-Young, M. (1992), ‘Liquid-phase mass transfer coefficients in bioreactors’, Biotechnology and Bioengineering 39(11), 11331140.
Kelly, P. S., McSweeney, S., Coleman, O., Carillo, S., Henry, M., Chandran, D., Kellett, A., Bones, J., Clynes, M., Meleady, P. & Barron, N. (2016), ‘Process-relevant concentrations of the leachable bDtBPP impact negatively on CHO cell production characteristics’, Biotechnology Progress 32(6), 15471558.
Kelly, W. J. (2008), ‘Using computational fluid dynamics to characterize and improve bioreactor performance’, Biotechnology and Applied Biochemistry 49(4), 225.
Kelly, W., Scully, J., Zhang, D., Feng, G., Lavengood, M., Condon, J., Knighton, J. & Bhatia, R. (2014), ‘Understanding and modeling alternating tangential flow filtration for perfusion cell culture’, Biotechnology Progress 30(6), 12911300.
Kettaneh, N., Berglund, A. & Wold, S. (2005), ‘PCA and PLS with very large data sets’, Computational Statistics and Data Analysis 48(1), 6985.
Khawli, L. A., Goswami, S., Hutchinson, R., Kwong, Z. W., Yang, J., Wang, X., Yao, Z., Sreedhara, A., Cano, T., Tesar, D., Nijem, I., Allison, D. E., Wong, P. Y., Kao, Y. H., Quan, C., Joshi, A., Harris, R. J. & Motchnik, P. (2010), ‘Charge variants in IgG1: Isolation, characterization, in vitro binding properties and pharmacokinetics in rats’, mAbs 2(6), 613624.
Kimura, R. & Miller, W. M. (1996), ‘Effects of elevated pCO(2) and/or osmolality on the growth and recombinant tPA production of CHO cells.’, Biotechnology and Bioengineering 52(1), 152160.
Kiparissides, A., Koutinas, M., Kontoravdi, C., Mantalaris, A. & Pistikopoulos, E. N. (2011), ‘Closing the loop’ in biological systems modeling: From the in silico to the in vitro’, Automatica 47(6), 11471155.
Kirdar, A. O., Chen, G., Weidner, J. & Rathore, A. S. (2010), ‘Application of near-infrared (NIR) spectroscopy for screening of raw materials used in the cell culture medium for the production of a recombinant therapeutic protein’, Biotechnology Progress 26(2), 527531.
Kiviharju, K., Salonen, K., Moilanen, U. & Eerikäinen, T. (2008), ‘Biomass measurement online: The performance of in situ measurements and software sensors’, Journal of Industrial Microbiology and Biotechnology 35(7), 657665.
Klutz, S., Holtmann, L., Lobedann, M. & Schembecker, G. (2016), ‘Cost evaluation of antibody production processes in different operation modes’, Chemical Engineering Science 141, 6374.
Klutz, S., Magnus, J., Lobedann, M., Schwan, P., Maiser, B., Niklas, J., Temming, M. & Schembecker, G. (2015), ‘Developing the biofacility of the future based on continuous processing and single-use technology’, Journal of Biotechnology 213, 120130.
Kochanowski, N., Blanchard, F., Cacan, R., Chirat, F., Guedon, E., Marc, A. & Goergen, J. L. (2008), ‘Influence of intracellular nucleotide and nucleotide sugar contents on recombinant interferon-γ glycosylation during batch and fed-batch cultures of CHO cells’, Biotechnology and Bioengineering 100(4), 721733.
Kohrt, H. E., Tumeh, P. C., Benson, D., Bhardwaj, N., Brody, J., Formenti, S., Fox, B. A., Galon, J., June, C. H., Kalos, M., Kirsch, I., Kleen, T., Kroemer, G., Lanier, L., Levy, R., Lyerly, H. K., Maecker, H., Marabelle, A., Melenhorst, J., Miller, J., Melero, I., Odunsi, K., Palucka, K., Peoples, G., Ribas, A., Robins, H., Robinson, W., Serafini, T., Sondel, P., Vivier, E., Weber, J., Wolchok, J., Zitvogel, L., Disis, M. L. & Cheever, M. A. (2016), ‘Immunodynamics: A cancer immunotherapy trials network review of immune monitoring in immuno-oncology clinical trials’, Journal for ImmunoTherapy of Cancer 4(1), 116.
Kolwyck, D., Mcsweeney, M. & Johns, J. (2017), Biomanufacturing Technology Roadmap: Supply Partnership Management, technical report, BioPhorum Operations Group Ltd.
Konstantinov, K. B. & Cooney, C. L. (2015), ‘White paper on continuous bioprocessing May 20–21, 2014 continuous manufacturing symposium’, Journal of Pharmaceutical Sciences 104(3), 813820.
Konstantinov, K. B., Yeong-shou, Tsai, Moles, D. & Matanguihan, R. (1996), ‘Control of long-term perfusion Chinese hamster ovary cell culture by glucose auxostat’, Biotechnology Progress 12(1), 100109.
Konstantinov, K., Chuppa, S., Sajan, E., Tsai, Y., Yoon, S. & Golini, F. (1994), ‘Real-time biomass-concentration monitoring in animal-cell cultures’, Trends in Biotechnology 12(8), 324333.
Konstantinov, K., Goudar, C., Ng, M., Meneses, R., Thrift, J., Chuppa, S., Matanguihan, C., Michaels, J. & Naveh, D. (2006), ‘The “push-to-low” approach for optimization of high-density perfusion cultures of animal cells’, Advances in Biochemical Engineering/Biotechnology 101(July), 7598.
Kontoravdi, C., Pistikopoulos, E. N. & Mantalaris, A. (2010), ‘Systematic development of predictive mathematical models for animal cell cultures’, Computers and Chemical Engineering 34(8), 11921198.
Krambeck, F. J. & Betenbaugh, M. J. (2005), ‘A mathematical model of N-linked glycosylation’, Biotechnology and Bioengineering 92(6), 711728.
Krättli, M., Müller-Späth, T. & Morbidelli, M. (2013), ‘Multifraction separation in countercurrent chromatography (MCSGP).’, Biotechnology and Bioengineering 110(9), 2436– 2444.
Kratzer, R., Dorn, I., Mcnaull, S., Rode, C., Lilly, E., Shea, L. O., Campbell, C. & Diluzio, W. (2017), Biomanufacturing Technology Roadmap: Process Technologies, technical report, BioPhorum Operations Group Ltd.
Kreye, S., Stahn, R., Nawrath, K., Danielczyk, A., Goletz, S. & Gmbh, G. (2015), ‘GlycoExpress: A toolbox for the high yield production of glycooptimized fully human biopharmaceuticals in perfusion bioreactors at different scales’, in ECI Digital Archives.
Kumar, N., Bansal, A., Sarma, G. & Rawal, R. K. (2014), ‘Chemometrics tools used in analytical chemistry: An overview’, Talanta 123, 186199.
Kunkel, J. P., Jan, D. C., Butler, M. & Jamieson, J. C. (2000), ‘Comparisons of the glycosylation of a monoclonal antibody produced under nominally identical cell culture conditions in two different bioreactors’, Biotechnology Progress 16(3), 462470.
Kunkel, J. P., Jan, D. C., Jamieson, J. C. & Butler, M. (1998), ‘Dissolved oxygen concentration in serum-free continuous culture affects N-linked glycosylation of a monoclonal antibody’, Journal of Biotechnology 62, 5571.
Lai, T., Yang, Y. & Ng, S. K. (2013), ‘Advances in mammalian cell line development technologies’, Pharmaceuticals 6, 579603.
Lairson, L., Henrissat, B., Davies, G. & Withers, S. (2008), ‘Glycosyltransferases: Structures, functions, and mechanisms’, Annual Review of Biochemistry 77(1), 521555.
Lameris, R., de Bruin, R. C., Schneiders, F. L., van, Henegouwen, Bergen en, Verheul, P. M., de Gruijl, H. M., van der Vliet, T. D. H. J. (2014), ‘Bispecific antibody platforms for cancer immunotherapy’, Critical Reviews in Oncology/Hematology 92(3), 153165.
Langer, E. S. (2011), ‘Trends in perfusion bioreactors: The next revolution in bioprocessing?’, BioProcess International 9(10), 1822.
Langer, E. S. (2014), ‘Continuous bioprocessing and perfusion: Wider adoption coming as bioprocessing matures’, BioProcessing Journal 13(1), 4349.
Lavery, M. & Nienow, A. W. (1987), ‘Oxygen transfer in animal cell culture medium’, Biotechnology and Bioengineering 30(3), 368373.
Le, K., Tan, C., Gupta, S., Guhan, T., Barkhordarian, H., Lull, J., Stevens, J. & Munro, T. (2018), ‘A novel mammalian cell line development platform utilizing nanofluidics and optoelectro positioning technology’, Biotechnology Progress 34(6), 14381446.
Li, J., Wong, C. L., Vijayasankaran, N., Hudson, T. & Amanullah, A. (2012), ‘Feeding lactate for CHO cell culture processes: Impact on culture metabolism and performance’, Biotechnology and Bioengineering 109(5), 11731186.
Lim, Y., Wong, N. S. C., Lee, Y. Y., Ku, S. C. Y., Wong, D. C. F. & Yap, M. G. S. (2010), ‘Engineering mammalian cells in bioprocessing: Current achievements and future perspectives’, Biotechnology and Applied Biochemistry 55(4),175189.
Lin, H., Leighty, R. W., Godfrey, S. & Wang, S. B. (2017), ‘Principles and approach to developing mammalian cell culture media for high cell density perfusion process leveraging established fed-batch media’, Biotechnology Progress 33(4), 891901.
Ling, W. L. (2015), ‘Development of protein-free medium for therapeutic protein production in mammalian cells: Recent advances and perspectives’, Pharmaceutical Bioprocessing 3, 215226.
Lobban, P. (1972), An Enzymatic Method for End-to-End Joining of DNA Molecules, PhD thesis, Stanford University.
Lobban, P. & Kaiser, A. (1973), ‘Enzymatic end-to-end joining of DNA molecules’, Journal of Molecular Biology 78, 483471.
Löffelholz, C., Kaiser, S. C., Kraume, M., Eibl, R. & Eibl, D. (2014), ‘Dynamic single-use bioreactors used in modern liter- and m3- scale biotechnological processes: Engineering characteristics and scaling up’, Advances in Biochemical Engineering/Biotechnology 138, 144.
Long, Q., Liu, X., Yang, Y., Li, L., Harvey, L., McNeil, B. & Bai, Z. (2014), ‘The development and application of high throughput cultivation technology in bioprocess development’, Journal of Biotechnology 192, 323338.
Losfeld, M.-E., Scibona, E., Lin, C.-W., Villiger, T. K., Gauss, R., Morbidelli, M. & Aebi, M. (2017), ‘Influence of protein/glycan interaction on site-specific glycan heterogeneity’, The FASEB Journal 31(10), 46234635.
Luo, Y. & Chen, G. (2007), ‘Combined approach of NMR and chemometrics for screening peptones used in the cell culture medium for the production of a recombinant therapeutic protein’, Biotechnology and Bioengineering 97(6), 16541659.
Luttmann, R., Borchert, S. O., Mueller, C., Loegering, K., Aupert, F., Weyand, S., Kober, C., Faber, B. & Cornelissen, G. (2015), ‘Sequential/parallel production of potential Malaria vaccines: A direct way from single batch to quasi-continuous integrated production’, Journal of Biotechnology 213, 8396.
Luttmann, R., Bracewell, D. G., Cornelissen, G., Gernaey, K. V., Glassey, J., Hass, V. C., Kaiser, C., Preusse, C., Striedner, G. & Mandenius, C. (2012), ‘Soft sensors in bioprocessing: A status report and recommendations’, Biotechnology Journal 7(8), 10401048.
Ma, N., Mollet, M. & Chalmers, J. J. (2003), ‘Aeration, mixing and hydrodynamics in bioreactors’, in Encyclopedia of Cell Technology, John Wiley and Sons, Inc., Hoboken, pp. 225248.
Manchester, K. L. (2007), ‘Louis Pasteur, fermentation, and a rival’, South African Journal of Science 103(9–10), 377380.
Marks, D. M. (2003), ‘Equipment design considerations for large scale cell culture’, Cytotechnology 42(1), 2133.
Matthews, T. E., Berry, B. N., Smelko, J., Moretto, J., Moore, B. & Wiltberger, K. (2016), ‘Closed loop control of lactate concentration in mammalian cell culture by Raman spectroscopy leads to improved cell density, viability, and biopharmaceutical protein production’, Biotechnology and Bioengineering 113(11), 24162424.
McCoy, R. E., Costa, N. a. & Morris, A. E. (2015), ‘Factors that determine stability of highly concentrated chemically defined production media’, Biotechnology Progress 31(2), 493502.
McCracken, N. A., Kowle, R. & Ouyang, A. (2014), ‘Control of galactosylated glycoforms distribution in cell culture system’, Biotechnology Progress 30(3), 547553.
McGovern, P. E., Glusker, D. L., Exner, L. J. & Voigt, M. M. (1996), ‘Neolithic resinated wine’, Nature 381, 480481.
McGovern, P. E., Zhang, J., Tang, J., Zhang, Z., Hall, G. R., Moreau, R. A., Nunez, A., Butrym, E. D., Richards, M. P., Wang, C.-S., Cheng, G., Zhao, Z. & Wang, C. (2004), ‘Fermented beverages of pre- and proto-historic China’, Proceedings of the National Academy of Sciences 101(51), 1759317598.
Meglen, R. R. (1992), ‘Examining large databases: A chemometric approach using principal component analysis’, Marine Chemistry 39(1–3), 217237.
Mehdizadeh, H., Lauri, D., Karry, K. M., Moshgbar, M., Procopio-Melino, R. & Drapeau, D. (2015), ‘Generic Raman-based calibration models enabling real-time monitoring of cell culture bioreactors’, Biotechnology Progress 31(4), 10041013.
Meier, S. J., Hatton, T. A. & Wang, D. I. (1999), ‘Cell death from bursting bubbles: Role of cell attachment to rising bubbles in sparged reactors’, Biotechnology and Bioengineering 62(4), 468478.
Mercier, S. M., Diepenbroek, B., Wijffels, R. H. & Streefland, M. (2014), ‘Multivariate PAT solutions for biopharmaceutical cultivation: current progress and limitations’, Trends in Biotechnology 32(6), 329336.
Mercier, S. M., Rouel, P. M. & Lebrun, P. (2016), ‘Process analytical technology tools for perfusion cell culture’, Engineering in Life Sciences 16(1), 2535.
Mercille, S., Johnson, M., Lanthier, S., Kamen, A. A. & Messie, B. (2000), ‘Understanding factors that limit the productivity of suspension-based perfusion cultures operated at high medium renewal rates’, Biotechnology and Bioengineering 67(4), 435450.
Mertz, J. E. & Davis, R. (1972), ‘Cleavage of DNA by RI restriction endonuclease generates cohesive ends’, Proceedings of the National Academy of Sciences of the United States of America 69(11), 33703374.
Meuwly, F., Weber, U., Ziegler, T., Gervais, A., Mastrangeli, R., Crisci, C., Rossi, M., Bernard, A., von Stockar, U. & Kadouri, A. (2006), ‘Conversion of a CHO cell culture process from perfusion to fed-batch technology without altering product quality’, Journal of Biotechnology 123(1), 106116.
Miller, W. M., Blanch, H. W. & Wilke, C. R. (1988), ‘A kinetic analysis of hybridoma growth and metabolism in batch and continuous suspension culture: effect of nutrient concentration, dilution rate, and pH’, Biotechnology and Bioengineering 32(8), 947965.
Miller, W. M., Wilke, C. R. & Blanch, H. W. (1987), ‘Effects of dissolved oxygen concentration on hybridoma growth and metabolism in continuous culture’, Journal of Cellular Physiology 132(3), 524530.
Mokuolu, S. (2018), ‘New standards define single-use materials qualification’, Pharmaceutical Technology 42(2), 5253.
Monteil, D. T., Juvet, V., Paz, J., Moniatte, M., Baldi, L., Hacker, D. L. & Wurm, F. M. (2016), ‘A comparison of orbitally-shaken and stirred-tank bioreactors: pH modulation and bioreactor type affect CHO cell growth and protein glycosylation’, Biotechnology
Morari, M. & Zafiriou, E. (1989), Robust Process Control. Prentice Hall.
Morrow, J., Cohen, S. N., Chang, A. C., Boyer, H. W. & Goodman, H. M. (1974), ‘Replication and transcription of eukaryotic DNA in Escherichia coli’, Proceedings of the National Academy of Sciences of the United States of America 71(5), 17431747.
Moussa, A. S., Soos, M., Sefcik, J. & Morbidelli, M. (2007), ‘Effect of solid volume fraction on aggregation and breakage in colloidal suspensions in batch and continuous stirred tanks’, Langmuir 23(4), 16641673.
Moyle, D. (2017), Biomanufacturing Technology Roadmap: Modular and Mobile, Technical report, BioPhorum Operations Group Ltd.
Mulukutla, B. C., Gramer, M. & Hu, W. S. (2012), ‘On metabolic shift to lactate consumption in fed-batch culture of mammalian cells’, Metabolic Engineering 14(2), 138149.
Narayanan, H., Luna, M., von Stoch, M., Cruz Bournazou, M., Polotti, G., Morbidelli, M., Butté, A. & Sokolov, M. (2019a), ‘Bioprocess in the digital age: The role of process models’, Biotechnology Journal 15(1), https://doi.org/10.1002/biot.201900172.
Narayanan, H., Sokolov, M., Butté, A. & Morbidelli, M. (2019b), ‘Decision Tree-PLS (DT-PLS) algorithm for the development of process: Specific local prediction models’, Biotechnology Progress 35(4), e2818.
Narayanan, H., Sokolov, M., Morbidelli, M. & Butté, A. (2019c), ‘A new generation of predictive models: The added value of hybrid models for manufacturing processes of therapeutic proteins’, Biotechnology and Bioengineering 116(10), 25402549.
Nasr, M. M., Krumme, M., Matsuda, Y., Trout, B. L., Badman, C., Mascia, S., Cooney, C. L., Jensen, K. D., Florence, A., Johnston, C., Konstantinov, K. & Lee, S. L. (2017), ‘Regulatory perspectives on continuous pharmaceutical manufacturing: Moving from theory to practice, September 26–27, 2016, International Symposium on the Continuous Manufacturing of Pharmaceuticals’, Journal of Pharmaceutical Sciences 106(11), 31993206.
Neunstoecklin, B., Stettler, M., Solacroup, T., Broly, H., Morbidelli, M. & Soos, M. (2015), ‘Determination of the maximum operating range of hydrodynamic stress in mammalian cell culture’, Journal of Biotechnology 194, 100109.
Neunstoecklin, B., Villiger, T. K., Lucas, E., Stettler, M., Broly, H., Morbidelli, M. & Soos, M. (2016), ‘Pilot-scale verification of maximum tolerable hydrodynamic stress for mammalian cell culture’, Applied Microbiology and Biotechnology 100(8), 34893498.
Nienow, A. W. (1997), ‘On impeller circulation and mixing effectiveness in the turbulent flow regime’, Chemical Engineering Science 52(15), 25572565.
Nienow, A. W. (1998), ‘Hydrodynamics of stirred bioreactors’, Applied Mechanics Reviews 51(1), 332.
Nienow, A. W. (2006), ‘Reactor engineering in large scale animal cell culture’, Cytotechnology 50(1–3), 933.
Nienow, A. W. (2010), ‘Impeller selection for animal cell culture’, in Encyclopedia of Industrial Biotechnology, American Cancer Society, pp. 125.
Nienow, A. W., Rielly, C. D., Brosnan, K., Bargh, N., Lee, K., Coopman, K. & Hewitt, C. J. (2013), ‘The physical characterisation of a microscale parallel bioreactor platform with an industrial CHO cell line expressing an IgG4’, Biochemical Engineering Journal 76, 2536.
Opel, C. F., Li, J. & Amanullah, A. (2010), ‘Quantitative modeling of viable cell density, cell size, intracellular conductivity, and membrane capacitance in batch and fed-batch CHO processes using dielectric spectroscopy’, Biotechnology Progress 26(4), 11871199.
Ozturk, S. S. (1996), ‘Engineering challenges in high density cell culture systems’, Cytotechnology 22, 316.
Ozturk, S. S. (2014), ‘Opportunities and challenges for the implementation of continuous processing in biomanufacturing’, in Subramanian, G., ed., Continuous Processing in Pharmaceutical Manufacturing, Wiley-Blackwell, chapter 18, pp. 457478.
Ozturk, S. S. & Hu, W.-S. (2006), Cell Culture Technology for Pharmaceutical and Cell-Based Therapies, Taylor and Francis.
Ozturk, S. S. & Kompala, D. S. (2006), ‘Optimization of high cell density perfusion bioreactors’, in Cell Culture Technology for Pharmaceutical and Cell-Based Therapies, Taylor and Francis Group, Boca Raton, pp. 387416.
Ozturk, S. S. & Palsson, B. O. (1990), ‘Effects of dissolved oxygen on hybridoma cell growth, metabolism, and antibody production kinetics in continuous culture’, Biotechnology Progress 6(6), 437446.
Ozturk, S. S. & Palsson, B. O. (1991), ‘Growth, metabolic, and antibody production kinetics of hybridoma cell culture: 2. Effects of serum concentration, dissolved oxygen concentration, and mediumpHin a batch reactor’, Biotechnology Progress 7(6), 481494.
Pardee, A. B. (1989), ‘G1 events and regulation of cell proliferation’, Science 246(4930), 603608.
Park, J. H., Noh, S. M., Woo, J. R., Kim, J. W. & Lee, G. M. (2015), ‘Valeric acid induces cell cycle arrest at G1 phase in CHO cell cultures and improves recombinant antibody productivity’, Biotechnology Journal 11(4), 487496.
Pasteur, L. (1885), Mémoire sur la fermentation alcoolique, PhD thesis, Académie des sciences.
Pattison, R., Swamy, J., Mendenhall, B., Hwang, C. & Frohlich, B. (2000), ‘Measurement and control of dissolved carbon dioxide in mammalian cell culture processes using an in situ fiber optic chemical sensor’, Biotechnology Progress 16(5), 769774.
Pfister, D., Nicoud, L. & Morbidelli, M. (2018), Continuous Biopharmaceutical Processes, Cambridge University Press.
Pham, P. L., Kamen, A. & Durocher, Y. (2006), ‘Large-scale transfection of mammalian cells for the fast production of recombinant protein’, Molecular Biotechnology 34(2), 225237.
Pilkington, P. H., Margaritis, A., Mensour, N. A. & Russell, I. (1998), ‘Fundamentals of immobilised yeast cells for continuous beer fermentation: A review’, Journal of the Institute of Brewing 104(1), 1931.
Pohlscheidt, M., Jacobs, M., Wolf, S., Thiele, J., Jockwer, A., Gabelsberger, J., Jenzsch, M., Tebbe, H. & Burg, J. (2013), ‘Optimizing capacity utilization by large scale 3000 L perfusion in seed train bioreactors’, Biotechnology Progress 29(1), 222229.
Politis, S., Colombo, P., Colombo, G. & Rekkas, D. (2017), ‘Design of experiments (DoE) in pharmaceutical development’, Drug Development and Industrial Pharmacy 43(6), 889901.
Pollock, J., Coffman, J., Ho, S. V. & Farid, S. S. (2017), ‘Integrated continuous bioprocessing: Economic, operational, and environmental feasibility for clinical and commercial antibody manufacture’, Biotechnology Progress 33(4), 854866.
Pollock, J., Ho, S. V. & Farid, S. S. (2013), ‘Fed-batch and perfusion culture processes: Economic, environmental, and operational feasibility under uncertainty’, Biotechnology and Bioengineering 110(1), 206219.
Pörtner, R. (2015), ‘Bioreactors for mammalian cells’, in Al-Rubeai, M., ed., Animal Cell Culture, Springer International Publishing, pp. 89–135.
Pörtner, R. & Schäfer, T. (1996), ‘Modelling hybridoma cell growth and metabolism a comparison of selected models and data’, Journal of Biotechnology 49(1–3), 119135.
Radoniqi, F., Zhang, H., Bardliving, C. L., Shamlou, P. & Coffman, J. (2018), ‘Computational fluid dynamic modeling of alternating tangential flow filtration for perfusion cell culture’, Biotechnology and Bioengineering 115(11), 27512759.
Raghunath, B., Bin, W., Pattnaik, P. & Janssens, J. (2013), ‘Best practices for optimization and scale-up of microfiltration TFF processes’, BioProcessing Journal 11(1), 3040.
Ramakrishnan, B., Boeggeman, E., Ramasamy, V. & Qasba, P. K. (2004), ‘Structure and catalytic cycle of β-1,4-galactosyltransferase’, Current Opinion in Structural Biology 14(5), 593600.
Ranganathan, P. & Sivaraman, S. (2011), ‘Investigations on hydrodynamics and mass transfer in gas–liquid stirred reactor using computational fluid dynamics’, Chemical Engineering Science 66(14), 31083124.
Rathore, A. S. (2009), ‘Roadmap for implementation of quality by design (QbD) for biotechnology products’. Trend in Biotechnology, 27(9), 546553, https://doi.org/10.1016/ j.tibtech.2009.06.006.
Rathore, A. S. (2014), ‘QbD/PAT for bioprocessing: Moving from theory to implementation’. Current Opinion in Chemical Engineering, 6, 18, https://doi.org/10.1016/j.coche.2014.05 .006.
Rathore, A. S., Kateja, N. & Kumar, D. (2018), ‘Process integration and control in continuous bioprocessing’, Current Opinion in Chemical Engineering 22, 1825.
Rathore, A. S., Pathak, M. & Godara, A. (2016), ‘Process development in the QbD paradigm: Role of process integration in process optimization for production of biotherapeutics’, Biotechnology Progress 32(2), 355362.
Rathore, A. S. & Winkle, H. (2009), ‘Quality by design for biopharmaceuticals’, Nature 27(1), 2634.
Read, E., Park, J., Shah, R., Riley, B., Brorson, K. & Rathore, A. (2010a), ‘Process analytical technology (PAT) for biopharmaceutical products: Part I. Concepts and applications’, Biotechnology and Bioengineering 105(2), 276284.
Read, E., Shah, R., Riley, B., Park, J., Brorson, K. & Rathore, A. (2010b), ‘Process analytical technology (PAT) for biopharmaceutical products: Part II. Concepts and applications’, Biotechnology and Bioengineering 105(2), 285295.
Reinhart, D., Damjanovic, L., Kaisermayer, C. & Kunert, R. (2015), ‘Benchmarking of commercially available CHO cell culture media for antibody production’, Applied Microbiology and Biotechnology 99(11), 46454657.
Rivinoja, A., Hassinen, A., Kokkonen, N., Kauppila, A. & Kellokumpu, S. (2009), ‘Elevated Golgi pH impairs terminal N-glycosylation by inducing mislocalization of Golgi glycosyltransferases’, Journal of Cellular Physiology 220(1), 144154.
Rodrigues, M. E., Costa, A. R., Henriques, M., Azeredo, J. & Oliveira, R. (2010), ‘Technological progresses in monoclonal antibody production systems’, Biotechnology Progress 26(2), 332351.
Rouiller, Y., Bielser, J.-M., Brühlmann, D., Jordan, M., Broly, H. & Stettler, M. (2016), ‘Screening and assessment of performance and molecule quality attributes of industrial cell lines across different fed-batch systems’, Biotechnology Progress 32(1), 160170.
Rouiller, Y., Périlleux, A., Collet, N., Jordan, M., Stettler, M. & Broly, H. (2013), ‘A high-throughput media design approach for high performance mammalian fed-batch cultures’, mAbs 5(3), 501–511.
Rouiller, Y., Solacroup, T., Deparis, V., Barbafieri, M., Gleixner, R., Broly, H. & Eon-Duval, A. (2012), ‘Application of quality by design to the characterization of the cell culture process of an Fc-fusion protein’, European Journal of Pharmaceutics and Biopharmaceutics 81(2), 426437.
Routledge, S. J. (2012), ‘Beyond de-foaming: The effects of antifoams on bioprocess productivity’, Computational and Structural Biotechnology Journal 3(4), e201210001.
Roy, J. (2009), ‘Glycosylation of antibody therapeutics: Optimisation for purpose’, in Methods in Molecular Biology, Vol. 483, pp. 223238.
Roychoudhury, P., O’Kennedy, R., McNeil, B. & Harvey, L. M. (2007), Analytica Chimica Acta 590(1), 110117.
Running, J. A. & Bansal, K. (2016), ‘Oxygen transfer rates in shaken culture vessels from Fernbach flasks to microtiter plates’, Biotechnology and Bioengineering 113(8), 17291735.
Rutherford, K., Mahmoudi, S. M. S., Lee, K. C. & Yianneskis, M. (1996), ‘The influence of Rushton impeller blade and disk thickness on the mixing characteristics of stirred vessels’, Chemical Engineering Research and Design 74(3), 369378.
Ryan, P. W., Li, B., Shanahan, M., Leister, K. J. & Ryder, A. G. (2010), ‘Prediction of cell culture media performance using fluorescence spectroscopy’, Analytical Chemistry 82(4), 13111317.
Saha, D., Soos, M., Lüthi, B., Holzner, M., Liberzon, A., Babler, M. U. & Kinzelbach, W. (2014), ‘Experimental characterization of breakage rate of colloidal aggregates in axisymmetric extensional flow’, Langmuir 30(48), 1438514395.
Sajjadi, S. & Yianneskis, M. (2003), ‘Semibatch emulsion polymerization of methyl methacrylate with a neat monomer feed’, Polymer Reaction Engineering 11(4), 715736.
Sano, C. (2009), ‘History of glutamate production’, American Journal of Clinical Nutrition 90(3), 728732.
Sawyer, D., Sanderson, K., Lu, R., Daszkowski, T., Clark, E., Mcduff, P., Astrom, J., Heffernan, C., Duffy, L., Poole, S., Ryll, T., Sheehy, P., Strachan, D., Souquet, J., Beattie, D., Pollard, D., Stauch, O., Bezy, P., Sauer, T., Boettcher, L., Simpson, C., Dakin, J., Pitt, S. & Boyle, A. (2017a), Biomanufacturing Technology Roadmap: Overview, Technical report, BioPhorum Operations Group Ltd.
Sawyer, D., Sanderson, K., Lu, R., Daszkowski, T., Clark, E., Mcduff, P., Heffernan, C., Duffy, L., Poole, S., Ryll, T., Sheehy, P., Strachan, D., Beattie, D., Souquet, J., Pollard, D., Stauch, O., Bezy, P., Sauer, T., Boettcher, L., Simpson, C., Dakin, J., Pitt, S. & Boyle, A. (2017b), Biomanufacturing Technology Roadmap: Executive Summary, Technical report, BioPhorum Operations Group Ltd.
Scarff, M., Arnold, S. A., Harvey, L. M. & McNeil, B. (2006), ‘Near infrared spectroscopy for bioprocess monitoring and control: Current status and future trends’, Critical Reviews in Biotechnology 26(1), 1739.
Seth, G., Hamilton, R. W., Stapp, T. R., Zheng, L., Meier, A., Petty, K., Leung, S. & Chary, S. (2013), ‘Development of a new bioprocess scheme using frozen seed train intermediates to initiate CHO cell culture manufacturing campaigns’, Biotechnology and Bioengineering 110(5), 13761385.
Shah, Y. T. (1979), Gas Liquid Solid Reactor Design, Vol. 327, McGraw-Hill International.
Sharma, C., Malhotra, D. & Rathore, A. S. (2011), ‘Review of computational fluid dynamics applications in biotechnology processes’, Biotechnology Progress 27(6), 14971510.
Sherr, C. J. & Roberts, J. M. (1999), ‘CDK inhibitors: Positive and negative regulators of G1-phase progression’, Genes & Development 13(12), 15011512.
Shukla, A. A. & Gottschalk, U. (2013), ‘Single-use disposable technologies for biopharmaceutical manufacturing’, Trends in Biotechnology 31(3), 147154.
Shukla, A. A. & Thömmes, J. (2010), ‘Recent advances in large-scale production of monoclonal antibodies and related proteins’, Trends in Biotechnology 28(5), 253261.
Sidoli, F. R., Asprey, S. P. & Mantalaris, A. (2006), ‘A coupled single cell-population-balance model for mammalian cell cultures’, Industrial and Engineering Chemistry Research 45(16), 58015811.
Sidoli, F. R., Mantalaris, A. & Asprey, S. P. (2004), ‘Modelling of mammalian cells and cell culture processes’, Cytotechnology 44(1–2), 2746.
Sieblist, C., Jenzsch, M. & Pohlscheidt, M. (2013), ‘Influence of pluronic F68 on oxygen mass transfer’, Biotechnology Progress 29(5), 12781288.
Sieblist, C., Jenzsch, M. & Pohlscheidt, M. (2016), ‘Equipment characterization to mitigate risks during transfers of cell culture manufacturing processes’, Cytotechnology 68(4), 13811401.
Sieblist, C., Jenzsch, M., Pohlscheidt, M. & Lübbert, A. (2011), ‘Insights into large-scale cell-culture reactors: I. Liquid mixing and oxygen supply’, Biotechnology Journal 6(12), 15321546.
Sieck, J. B., Budach, W. E., Suemeghy, Z., Leist, C., Villiger, T. K., Morbidelli, M. & Soos, M. (2014), ‘Adaptation for survival: Phenotype and transcriptome response of CHO cells to elevated stress induced by agitation and sparging’, Journal of Biotechnology 189, 94103.
Sieck, J. B., Cordes, T., Budach, W. E., Rhiel, M. H., Suemeghy, Z., Leist, C., Villiger, T. K., Morbidelli, M. & Soos, M. (2013), ‘Development of a scale-down model of hydrodynamic stress to study the performance of an industrial CHO cell line under simulated production scale bioreactor conditions’, Journal of Biotechnology 164(1), 4149.
Siganporia, C. C., Ghosh, S., Daszkowski, T., Papageorgiou, L. G. & Farid, S. S. (2014), ‘Capacity planning for batch and perfusion bioprocesses across multiple biopharmaceutical facilities’, Biotechnology Progress 30, 594606.
Singer, M. & Soll, D. (1973), ‘Guidelines for DNA hybrid molecules’, Science 181, 1114.
Smelko, P. J., Wiltberger, R. K., Hickman, F. E., et al. (2011), ‘Performance of high intensity fed-batch mammalian cell cultures in disposable bioreactor systems’, Biotechnology Progress 27(5), 13581364.
Sokolov, M., Morbidelli, M., Butté, A., Souquet, J. & Broly, H. (2018), ‘Sequential multivariate cell culture modeling at multiple scales supports systematic shaping of a monoclonal antibody toward a quality target’, Biotechnology Journal 13(4), 1700461.
Sokolov, M., Ritscher, J., MacKinnon, N., Bielser, J.-M., Brühlmann, D., Rothenhäusler, D., Thanei, G., Soos, M., Stettler, M., Souquet, J., Broly, H., Morbidelli, M. & Butté, A. (2017a), ‘Robust factor selection in early cell culture process development for the production of a biosimilar monoclonal antibody’, Biotechnology Progress 33(1), 181191.
Sokolov, M., Ritscher, J., MacKinnon, N., Bielser, J.-M. J.-M., Brühlmann, D., Rothenhäusler, D., Thanei, G., Soos, M., Stettler, M., Souquet, J., Broly, H., Morbidelli, M. & Butté, A. (2017b), ‘Robust factor selection in early cell culture process development for the production of a biosimilar monoclonal antibody’, Biotech Progress Journal 33(1), 181.191.
Sokolov, M., Ritscher, J., Mackinnon, N., Souquet, J., Broly, H., Morbidelli, M. & Butté, A. (2017c), ‘Enhanced process understanding and multivariate prediction of the relationship between cell culture process and monoclonal antibody quality’, Biotechnology Progress pp. 1–13.
Sokolov, M., Soos, M., Neunstoecklin, B., Morbidelli, M., Butté, A., Leardi, R., Solacroup, T., Stettler, M. & Broly, H. (2015), ‘Fingerprint detection and process prediction by multivariate analysis of fed-batch monoclonal antibody cell culture data’, Biotechnology Progress 31(6), 16331644.
Soleas, G. J., Diamandis, E. P. & Goldberg, D. M. (1997), ‘Wine as a biological fluid: History, production, and role in disease prevention’, Journal of Clinical Laboratory Analysis 11(5), 287313.
Solomon, B. L. & Garrido-Laguna, I. (2018), ‘TIGIT: A novel immunotherapy target moving from bench to bedside’, Cancer Immunology, Immunotherapy 67(11), 16591667.
Sommeregger, W., Sissolak, B., Kandra, K., von Stosch, M., Mayer, M. & Striedner, G. (2017), ‘Quality by control: Towards model predictive control of mammalian cell culture bioprocesses’, Biotechnology Journal 12(7), 17.
Soos, M., Ehrl, L., Bäbler, M. U. & Morbidelli, M. (2010), ‘Aggregate breakup in a contracting nozzle’, Langmuir 26(1), 1018.
Soos, M., Kaufmann, R., Winteler, R., Kroupa, M. & Lüthi, B. (2013), ‘Determination of maximum turbulent energy dissipation rate generated by a rushton impeller through large eddy simulation’, AIChE Journal 59(10), 36423658.
Sou, S. N., Jedrzejewski, P. M., Lee, K., Sellick, C., Polizzi, K. M. & Kontoravdi, C. (2017), ‘Model-based investigation of intracellular processes determining antibody Fc-glycosylation under mild hypothermia’, Biotechnology and Bioengineering 114(7), 15701582.
Stahmann, K. P., Revuelta, J. L. & Seulberger, H. (2000), ‘Three biotechnical processes using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production’, Applied Microbiology and Biotechnology 53(5), 509516.
Steeno, G. S. (2010), ‘Experimental design for pharmaceutical development’, in David, J., ed., Chemical Engineering in the Pharmaceutical Industry: R&D to Manufacturing, John Wiley and Sons, pp. 597–620.
Steinebach, F., Angarita, M., Karst, D. J., Müller-Späth, T. & Morbidelli, M. (2016a), ‘Model based adaptive control of a continuous capture process for monoclonal antibodies production’, Journal of Chromatography A 1444, 5056.
Steinebach, F., Müller-Späth, T. & Morbidelli, M. (2016b), ‘Continuous counter-current chromatography for capture and polishing steps in biopharmaceutical production’, Biotechnology Journal 11(9), 11261141.
Steinebach, F., Ulmer, N., Wolf, M., Decker, L., Schneider, V., Wälchli, R., Karst, D., Souquet, J. & Morbidelli, M. (2017), ‘Design and operation of a continuous integrated monoclonal antibody production process’, Biotechnology Progress 33(5), 13031313.
Swann, P., Brophy, L., Strachan, D., Lilly, E. & Jeffers, P. (2017), Biomanufacturing Technology Roadmap: In-line monitoring and real-time release, Technical report, BioPhorum Operations Group Ltd.
Tabas, I. & Kornfeld, S. (1979), ‘Purification and characterization of a rat liver Golgi alpha-mannosidase capable of processing asparagine-linked oligosaccharides’, The Journal of Biological Chemistry 254(22), 11655–63.
Takesono, S., Onodera, M., Toda, K., Yoshida, M., Yamagiwa, K. & Ohkawa, A. (2006), ‘Improvement of foam breaking and oxygen-transfer performance in a stirred-tank fermenter’, Bioprocess and Biosystems Engineering 28(4), 235242.
Tanzeglock, T., Soos, M., Stephanopoulos, G. & Morbidelli, M. (2009), ‘Induction of mammalian cell death by simple shear and extensional flows’, Biotechnology and Bioengineering 104(2), 360370.
Tao, Y., Shih, J., Sinacore, M., Ryll, T. & Yusuf-Makagiansar, H. (2011), ‘Development and implementation of a perfusion-based high cell density cell banking process’, Biotechnology Progress 27(3), 824829.
Teixeira, A., Cunha, A., Clemente, J., Moreira, J., Cruz, H., Alves, P., Carrondo, M. & Oliveira, R. (2005), ‘Modelling and optimization of a recombinant BHK-21 cultivation process using hybrid grey-box systems’, Journal of Biotechnology 118(3), 290303.
Thomas, T. N. (2017), ‘Are we prepared to meet the demands of a challenging, but promising future?’, in Integrated Continuous Biomanufacturing III, Suzanne Farid, University College London, United Kingdom Chetan Goudar, Amgen, USA Paula Alves, IBET, Portugal Veena Warikoo, Axcella Health, Inc., USA Eds, ECI Symposium Series’.
Tribe, L. A., Briens, C. L. & Margaritis, A. (1995), ‘Determination of the volumetric mass transfert coefficient (kla) using the dynamic “gas out–gas in” method’, Biotechnology and Bioengineering 46, 388392.
Tsang, V. L., Wang, A. X., Yusuf-Makagiansar, H. & Ryll, T. (2014), ‘Development of a scale down cell culture model using multivariate analysis as a qualification tool’, Biotechnology Progress 30(1), 152160.
Tziampazis, E. & Sambanis, A. (1994), ‘Modeling of cell culture processes’, Cytotechnology 14(3), 191204.
Umaña, P. & Bailey, J. E. (1997), ‘A mathematical model of N-linked glycoform biosynthesis’, Biotechnology and Bioengineering 55(6), 890908.
Undey, C., Low, D., Menezes, J. C. & Koch, M. (2011), PAT Applied in Biopharmaceutical Process Development and Manufacturing: An Enabling Tool for Quality-by-Design, Vol. 33, CRC Press.
Van’t Riet, K. (1979), ‘Review of measuring methods and results in nonviscous gas–liquid mass transfer in stirred vessels’, Industrial and Engineering Chemistry Process Design and Development 18(3), 357364.
Velasco, A. (1993), ‘Cell type-dependent variations in the subcellular distribution of alpha-mannosidase I and II’, The Journal of Cell Biology 122(1), 3951.
Versteeg, H. K. & Malalasekera, W. (1995), An Introduction to Computational Fluid Dynamics, John Wiley and Sons.
Villiger, T. K., Morbidelli, M. & Soos, M. (2015), ‘Experimental determination of maximum effective hydrodynamic stress in multiphase flow using shear sensitive aggregates’, AIChE Journal 61(5), 17351744.
Villiger, T. K., Neunstoecklin, B., Karst, D. J., Lucas, E., Stettler, M., Broly, H., Morbidelli, M. & Soos, M. (2018), ‘Experimental and CFD physical characterization of animal cell bioreactors: From micro- to production scale’, Biochemical Engineering Journal 131, 8494.
Villiger, T. K., Roulet, A., Périlleux, A., Stettler, M., Broly, H., Morbidelli, M., Soos, M., Scibona, E., Stettler, M., Broly, H., Morbidelli, M., Soos, M., Roulet, A., Périlleux, A., Stettler, M., Broly, H., Morbidelli, M. & Soos, M. (2016a), ‘Controlling the time evolution of mAb N-linked glycosylation – Part I: Micro-bioreactor experiments’, Biotechnology Progress 32(5), 11231134.
Villiger, T. K., Scibona, E., Stettler, M., Broly, H., Morbidelli, M. & Soos, M. (2016b), ‘Controlling the time evolution of mAb N-linked glycosylation – Part II: Model-based predictions’, Biotechnology Progress 32(5), 11351148.
Villiger, T. K., Steinhoff, R. F., Ivarsson, M., Solacroup, T., Stettler, M., Broly, H., Krismer, J., Pabst, M., Zenobi, R., Morbidelli, M. & Soos, M. (2016c), ‘High-throughput profiling of nucleotides and nucleotide sugars to evaluate their impact on antibody N-glycosylation’, Journal of Biotechnology 229, 312.
Villiger-Oberbek, A., Yang, Y., Zhou, W. & Yang, J. (2015), ‘Development and application of a high-throughput platform for perfusion-based cell culture processes’, Journal of Biotechnology 212, 2129.
Vogg, S., Müller-Späth, T. & Morbidelli, M. (2018), ‘Current status and future challenges in continuous biochromatography’, Current Opinion in Chemical Engineering 22, 138144.
Voisard, D., Meuwly, F., Ruffieux, P. A., Baer, G. & Kadouri, A. (2003), ‘Potential of cell retention techniques for large-scale high-density perfusion culture of suspended mammalian cells’, Biotechnology and Bioengineering 82(7), 751765.
Vojinović, V., Cabral, J. M. S. & Fonseca, L. P. (2006), ‘Real-time bioprocess monitoring: Part I: In situ sensors’, Sensors and Actuators, B: Chemical 114, 10831091.
Von Stosch, M., Hamelink, J.-M. & Oliveira, R. (2016), ‘Hybrid modeling as a QbD/PAT tool in process development: An industrial E. coli case study’, Bioprocess and Biosystems Engineering 39(5), 773784.
Von Stosch, M. & Willis, M. J. (2017), ‘Intensified design of experiments for upstream bioreactors’, Engineering in Life Sciences 17(11), 11731184.
Vulto, A. G. & Jaquez, O. A. (2017), ‘The process defines the product: What really matters in biosimilar design and production?’, Rheumatology 56(suppl 4), 1429.
Walsh, G. (2010), ‘Post-translational modifications of protein biopharmaceuticals’, Drug Discovery Today 15(17–18), 773780.
Walsh, G. (2014), ‘Biopharmaceutical benchmarks 2014’, Nature Biotechnology 32(7), 9921000.
Walther, J., Godawat, R., Hwang, C., Abe, Y., Sinclair, A. & Konstantinov, K. (2015), ‘The business impact of an integrated continuous biomanufacturing platform for recombinant protein production’, Journal of Biotechnology 213, 312.
Walther, J., Lu, J., Hollenbach, M., Yu, M., Hwang, C., McLarty, J. & Brower, K. (2018), ‘Perfusion cell culture decreases process and product heterogeneity in a head-to-head comparison with fed-batch’, Biotechnology Journal 14(2), 1700733.
Walther, J., McLarty, J. & Johnson, T. (2019), ‘The effects of alternating tangential flow (ATF) residence time, hydrodynamic stress, and filtration flux on high-density perfusion cell culture’, Biotechnology and Bioengineering 116(2), 320332.
Walther, J., Shah, N., Hollenbach, M., Wang, J., Yu, M., Lu, J., Yang, Y., Konstantinov, K. B. & Hwang, C. (2016), ‘Overcoming process intensification challenges to deliver a manufacturable and competitive integrated continuous biomanufacturing platform’, in Cell Culture Engineering XV, Robert Kiss, Genentech Sarah Harcum, Clemson University Jeff Chalmers, Ohio State University Eds, ECI Symposium Series.
Wang, J., Liu, L., Ball, T., Yu, L., Li, Y. & Xing, F. (2016), ‘Revealing a 5,000-y-old beer recipe in China’, Proceedings of the National Academy of Sciences 113(23), 64446448.
Wang, S. B., Lee-Goldman, A., Ravikrishnan, J., Zheng, L. & Lin, H. (2018), ‘Manipulation of the sodium-potassium ratio as a lever for controlling cell growth and improving cell specific productivity in perfusion CHO cell cultures’, Biotechnology and Bioengineering 115(4), 921931.
Wang, S., Godfrey, S., Ravikrishnan, J., Lin, H., Vogel, J. & Coffman, J. (2017), ‘Shear contributions to cell culture performance and product recovery in ATF and TFF perfusion systems’, Journal of Biotechnology 246, 5260.
Wang, Z., Zhuge, J., Fang, H. & Prior, B. A. (2001), ‘Glycerol production by microbial fermentation: A review’, Biotechnology Advances 19(3), 201223.
Warikoo, V., Godawat, R., Brower, K., Jain, S., Cummings, D., Simons, E., Johnson, T., Walther, J., Yu, M., Wright, B., McLarty, J., Karey, K. P., Hwang, C., Zhou, W., Riske, F. & Konstantinov, K. (2012), ‘Integrated continuous production of recombinant therapeutic proteins’, Biotechnology and Bioengineering 109(12), 30183029.
Watanabe, S., Shuttleworth, J. & Al-Rubeai, M. (2002), ‘Regulation of cell cycle and productivity in NS0 cells by the over-expression of p21CIP1’, Biotechnology and Bioengineering 77(1), 17.
Webster, T. A., Hadley, B. C., Hilliard, W., Jaques, C. & Mason, C. (2018), ‘Development of generic raman models for a GS-KOTM CHO platform process’, Biotechnology Progress 34(3), 730737.
Whelan, J., Craven, S. & Glennon, B. (2012), ‘In situ Raman spectroscopy for simultaneous monitoring of multiple process parameters in mammalian cell culture bioreactors’, Biotechnology Progress (5), 13551362.
Whitford, W. G. (2014), ‘Single-use systems support continuous bioprocessing by perfusion culture’, in Continuous Processing in Pharmaceutical Manufacturing, Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim, chapter 9, pp. 183226.
Wold, S., Sjöström, M. & Eriksson, L. (2001), ‘PLS-regression: A basic tool of chemometrics’, Chemometrics and Intelligent Laboratory Systems 58(2), 109130.
Wolf, M. K. F., Closet, A., Bzowska, M., Bielser, J.-M., Souquet, J., Broly, H. & Morbidelli, M. (2019a), ‘Improved performance in mammalian cell perfusion cultures by growth inhibition’, Biotechnology Journal 14(2), 1700722.
Wolf, M. K. F., Lorenz, V., Karst, D. J., Souquet, J., Broly, H. & Morbidelli, M. (2018), ‘Devel-opment of a shake tube-based scale-down model for perfusion cultures’, Biotechnology and Bioengineering 115(11), 27032713.
Wolf, M. K. F., Müller, A., Souquet, J., Broly, H. & Morbidelli, M. (2019b), ‘Process design and development of a mammalian cell perfusion culture in shake-tube and benchtop bioreactors’, Biotechnology and Bioengineering 116(8), 19731985.
Wolf, M. K. F., Pechlaner, A., Lorenz, V., Karst, D. J., Souquet, J., Broly, H., & Morbidelli, M. (2019c). A two-step procedure for the design of perfusion bioreactors. Biochemical Engineering Journal, 151, 107295.
Wolton, A. D. & Rayner, A. (2014), ‘Lessons learned in the ballroom’, Pharmaceutical Engineering 34(4), 15.
Wong, Y. H., Krishnaswamy, P. R. & Teo, W. K. (1992), ‘Advanced control of pH in mammalian cell culture’, in Furusaki, S., Endo, I. & Matsuno, R., eds, Biochemical Engineering for 2001, Springer Japan, pp. 689–691.
Woodcock, J. (2014), ‘Modernizing pharmaceutical manufacturing: Continuous manufacturing as a key enabler, in International Symposium on Continuous Manufacturing of Pharmaceuticals, Cambridge, MA.
Wright, B., Bruninghaus, M., Vrabel, M., Walther, J. & Shah, N. (2015), ‘A novel seed-train process’, BioProcess International 13(3), 1625.
Wurm, F. M. (2004), ‘Production of recombinant protein therapeutics in cultivated mammalian cells’, Nature Biotechnology (11), 13931398.
Xu, P., Clark, C., Ryder, T., Sparks, C., Zhou, J., Wang, M., Russell, R. & Scott, C. (2017a), ‘Characterization of TAP Ambr 250 disposable bioreactors, as a reliable scale-down model for biologics process development’, Biotechnology Progress 33(2), 478489.
Xu, S. & Chen, H. (2016), ‘High-density mammalian cell cultures in stirred-tank bioreactor without external pH control’, Journal of Biotechnology 231, 149159.
Xu, S., Gavin, J., Jiang, R. & Chen, H. (2017b), ‘Bioreactor productivity and media cost comparison for different intensified cell culture processes’, Biotechnology Progress 33(4), 867878.
Xu, S., Jiang, R., Chen, Y., Wang, F. & Chen, H. (2017c), ‘Impact of Pluronic® F68 on hollow fiber filter-based perfusion culture performance’, Bioprocess and Biosystems Engineering 40(9), 13171326.
Yang, W. C., Lu, J., Kwiatkowski, C., Yuan, H., Kshirsagar, R., Ryll, T. & Huang, Y. M. (2014), ‘Perfusion seed cultures improve biopharmaceutical fed-batch production capacity and product quality’, Biotechnology Progress 30(3), 616625.
Yang, W. C., Minkler, D. F., Kshirsagar, R., Ryll, T. & Huang, Y. M. (2016), ‘Concentrated fed-batch cell culture increases manufacturing capacity without additional volumetric capacity’, Journal of Biotechnology 217, 111.
Yao, T. & Asayama, Y. (2017), ‘Animal-cell culture media: History, characteristics, and current issues’, Reproductive Medicine and Biology 16(2), 99117.
Yeung, K. S. Y., Hoare, M., Thornhill, N. F., Williams, T. & Vaghjiani, J. D. (2002), ‘Near⣳infrared spectroscopy for bioprocess monitoring and control’, Biotechnology and Bioengineering 63(6), 684693.
Yoon, S. K., Choi, S. L., Song, J. Y. & Lee, G. M. (2005), ‘Effect of culture pH on erythropoietin production by Chinese hamster ovary cells grown in suspension at 32.5 and 37.0C’, Biotechnology and Bioengineering 89(3), 345356.
Yoon, S. & Konstantinov, K. B. (1994), ‘Continuous, real-time monitoring of the oxygen uptake rate (OUR) in animal cell bioreactors’, Biotechnology and Bioengineering 44, 983990.
Yu, L. X., Baker, J., Berlam, S. C., Boam, A., Brandreth, E. J., Buhse, L., Cosgrove, T., Doleski, D., Ensor, L., Famulare, J., Ganapathy, M., Grampp, G., Hussong, D., Iser, R., Johnston, G., Kesisoglou, F., Khan, M., Kozlowski, S., Lacana, E., Lee, S. L., Miller, S., Miksinski, S. P., Moore, C. M. V., Mullin, T., Raju, G. K., Raw, A., Rosencrance, S., Rosolowsky, M., Stinavage, P., Thomas, H., Wesdyk, R., Windisch, J. & Vaithiyalingam, S. (2015), ‘Advancing product quality: A summary of the inaugural FDA/PQRI Conference’, The AAPS Journal 17(4), 10111018.
Zagari, F., Jordan, M., Stettler, M., Broly, H. & Wurm, F. M. (2013), ‘Lactate metabolism shift in CHO cell culture: The role of mitochondrial oxidative activity’, New Biotechnology 30(2), 238245.
Zalai, D., Tobak, T. & Putics, Á. (2015), ‘Impact of apoptosis on the on-line measured dielectric properties of CHO cells’, Bioprocess and Biosystems Engineering 38(12), 24272437.
Zhang, A., Tsang, V. L., Moore, B., Shen, V., Huang, Y. M., Kshirsagar, R. & Ryll, T. (2015a), ‘Advanced process monitoring and feedback control to enhance cell culture process production and robustness’, Biotechnology and Bioengineering 112(12), 24952504.
Zhang, Y. H. P., Sun, J. & Ma, Y. (2016), ‘Biomanufacturing: History and perspective’, Journal of Industrial Microbiology and Biotechnology 44(4–5), 773784.
Zhang, Y., Stobbe, P., Silvander, C. O. & Chotteau, V. (2015b), ‘Very high cell density perfusion of CHO cells anchored in a non-woven matrix-based bioreactor’, Journal of Biotechnology 213, 2841.
Zhou, W. & Kantardjieff, A. (2014), Mammalian Cell Cultures for Biologics Manufacturing, Springer.
Zhu, L. K., Song, B. Y., Wang, Z. L., Monteil, D. T., Shen, X., Hacker, D. L., De Jesus, M. & Wurm, F. M. (2017), ‘Studies on fluid dynamics of the flow field and gas transfer in orbitally shaken tubes’, Biotechnology Progress 33(1), 192200.
Zhu, M. M., Goyal, A., Rank, D. L., Gupta, S. K., Vanden Boom, T. & Lee, S. S. (2005), ‘Effects of elevated pCO2 and osmolality on growth of CHO cells and production of antibody-fusion protein B1: A case study’, Biotechnology Progress 21(1), 7077.
Zoro, B. & Tait, A. (2017), ‘Development of a novel automated perfusion mini bioreactor ambr 250 perfusion’, in Integrated Continuous Biomanufacturing III, Suzanne Farid, University College London, United Kingdom Chetan Goudar, Amgen, USA Paula Alves, IBET, Portugal Veena Warikoo, Axcella Health, Inc., USA Eds, ECI Symposium Series 2017’, p. 250.