Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-wpx69 Total loading time: 0 Render date: 2024-09-12T04:01:10.918Z Has data issue: false hasContentIssue false

32 - Gastrointestinal motility disorders

from Part IV - Abdomen

Published online by Cambridge University Press:  08 January 2010

Manu R. Sood
Affiliation:
Children's Hospital of Wisconsin, Milwaukee, WI, USA
Paul E. Hyman
Affiliation:
Department of Pediatrics, University of Kansas Hospital, Kansas City, KS, USA
Mark D. Stringer
Affiliation:
University of Otago, New Zealand
Keith T. Oldham
Affiliation:
Children's Hospital of Wisconsin
Pierre D. E. Mouriquand
Affiliation:
Debrousse Hospital, Lyon
Get access

Summary

During the past decade there have been advances in the understanding of gastrointestinal (GI) motility and sensory disorders in children. Newly validated diagnostic techniques can accurately diagnose previously misunderstood patients, and progress is being made in the treatment of enteric neuromuscular disorders. In this chapter pediatric GI motility disorders are discussed according to the anatomy of the GI tract.

Esophageal disorders

The esophagus includes three functional regions: the upper esophageal sphincter (UES), the esophageal body, and the lower esophageal sphincter (LES). The UES consists of striated muscle, which relaxes in response to swallowing. The esophageal body is lined by striated muscle in the proximal third, mixed striated and smooth muscle in the middle third, and smooth muscle in the lower third. Esophageal peristalsis is initiated by swallowing and is independent of intrinsic myoelectrical activity. The coordinated motor pattern of the esophagus is called primary peristalsis. Secondary peristalsis is usually induced by luminal distention or incomplete clearance of luminal contents by primary peristalsis. This is an important mechanism for the clearance of gastric contents during gastroesophageal reflux. The lower esophageal sphincter (LES), a band of smooth muscle located at the junction of the distal esophagus and gastric cardia, is tonically contracted except during swallowing when it relaxes momentarily to allow the food bolus to pass into the stomach. Inappropriate LES relaxation independent of swallowing is the mechanism responsible for the majority of gastroesophageal reflux episodes both in adults and children.

Type
Chapter
Information
Pediatric Surgery and Urology
Long-Term Outcomes
, pp. 416 - 428
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kawahara, H., Dent, J., Davidson, G.Mechanisms responsible for gastroesophageal reflux in children. Gastroenterology 1997; 113:399–408.CrossRefGoogle ScholarPubMed
Mittal, R. K., McCallum, R. W.Characteristics and frequency of transient relaxations of the lower esophageal sphincter in patients with reflux esophagitis. Gastroenterology 1988; 95:593–599.CrossRefGoogle ScholarPubMed
Putnam, P. E., Orenstein, S. R., Pang, D., Pollack, I. F., Proujansky, R., & Kocoshis, S. A.Cricopharyngeal dysfunction associated with Chiari malformations. Pediatrics 1992; 89:871–876Google ScholarPubMed
Boyle, J. T., Cohen, S., & Watkins, J. B.Successful treatment of achalasia in childhood by pneumatic dilation. J. Pediatr. 1981; 99:35–40.CrossRefGoogle Scholar
Glassman, M. S., Medow, M. S., Berezin, S., & Newman, L. J.Spectrum of esophageal disorders in children with chest pain. Dig. Dis. Sci. 1992; 37:663–666.CrossRefGoogle ScholarPubMed
Solzi, G. F. & Di Lorenzo, C.Nutcracker esophagus in a child with insulin-dependent diabetes mellitus. J. Pediatr. Gastroenterol. Nutr. 1999; 29:482–484.CrossRefGoogle Scholar
Rosario, J. A.Medow, M. S., Halata, M. S.et al.Nonspecific esophageal motility disorders in children without gastroesophageal reflux. J. Pediatr. Gastroenterol. Nutr. 1999; 28:480–485.CrossRefGoogle ScholarPubMed
Zangen, T., Ciarla, C., & Zangen, S.Motility and sensory disorders may cause food refusal in medically fragile toddlersJ. Pediatr. Gastroenterol. Nutr. 2003; 37:287–293.CrossRefGoogle Scholar
Rasquin-Weber, A., Hyman, P. E., Cucchiara, S.et al.Childhood functional gastrointestinal disorders. Gut 1999; 45 (suppl II): II60-II68.CrossRefGoogle ScholarPubMed
Chial, H. J., Camilleri, M., Williams, D. E.et al.Rumination syndrome in children and adolescents: diagnosis, treatment, and prognosis. Pediatrics 2003; 111:158–162.CrossRefGoogle Scholar
Oelschlager, B. K., Chan, M. M., Eubanks, T. R.et al.Effective treatment of rumination with Nissen fundoplication. J. Gastrointest. Surg. 2002; 6:638–644.CrossRefGoogle ScholarPubMed
Ittmann, P. I., Amarnath, R., & Berseth, C. L.Maturation of antroduodenal motor activity in preterm and term infants. Dig. Dis. Sci. 1992; 37:14–19.CrossRefGoogle ScholarPubMed
Berseth, C. L., & Nordyke, C. K.Enteral nutrients promote postnatal maturation of intestinal motor activity in preterm infants. Am. J. Physiol. 1993; 264:G1046–G1051.Google ScholarPubMed
Koenig, W. J., Amarnath, R. P., Hench, V., & Berseth, C. L.Manometrics for preterm and term infants: a new tool for old questions. Pediatrics 1995; 95:207–209.Google ScholarPubMed
Berseth, C. L. & Nordylee, C. K.Manometry can predict feeding readiness in preterm infants. Gastroenterology 1992; 103:1523–1528.CrossRefGoogle ScholarPubMed
Baker, J. & Berseth, C. L.Postnatal change in inhibitory regulation of intestinal motor activity in human and canine neonates. Pediatr. Res. 1995; 38:133–139.CrossRefGoogle ScholarPubMed
Sigurdsson, L., Flores, A., Putnam, P. E.et al.Postviral gastroparesis: presentation, treatment, and outcome. J. Pediatr. 1997; 131:751–755.CrossRefGoogle Scholar
Tougas, G., Eaker, E. Y., Abell, T. L.et al.Assessment of gastric emptying using a low fat meal: establishment of international control values. Am. J. Gastroenterol. 2000; 95:1456–1462.CrossRefGoogle ScholarPubMed
Di Lorenzo, C., Hyman, P. E., Flores, A. F.et al.Antroduodenal manometry in children and adults with severe non-ulcer dyspepsia. Scand. J. Gastroenterol. 1994; 29:799–806.CrossRefGoogle ScholarPubMed
Cucchiara, S., Bortolotti, M., Colombo, C.et al.Abnormalities of gastrointestinal motility in children with nonulcer dyspepsia and in children with gastroesophageal reflux disease. Dig. Dis. Sci. 1991; 36:1066–1073.CrossRefGoogle ScholarPubMed
Cucchiara, S. Ultrasound. In Hyman, P. E., & DiLorenzo, C. eds: Pediatric Gastrointestinal Motility Disorders. New York: Academy of Professional Information Services, 1994: 313–318.Google Scholar
Veereman-Wauters, G., Ghoos, Y., Schoor, S.et al.The 13C-octanoic acid breath test: a noninvasive technique to assess gastric emptying in preterm infants. J. Pediatr. Gastroenterol. Nutr. 1996; 23:111–117.CrossRefGoogle ScholarPubMed
Jones, M. P. & Maganti, K.A. systematic review of surgical therapy for gastroparesis. Am. J. Gastroenterol. 2003; 98:2122–2129.CrossRefGoogle ScholarPubMed
Lin, Z., Forester, J., Sarosiek, I., & McCallum, R. W.Treatment of gastroparesis with electrical stimulation. Dig. Dis. Sci. 2003; 48: 837–848.CrossRefGoogle ScholarPubMed
Samuk, I., Afriat, R., Horne, T.et al.Dumping syndrome following Nissen fundoplication, diagnosis, and treatment. J. Pediatr. Gastroenterol. Nutr. 1996; 23:235–240.CrossRefGoogle ScholarPubMed
Borovoy, J., Furuta, L., & Nurko, S.Benefit of uncooked cornstarch in the management of children with dumping syndrome fed exclusively by gastrostomy. Am. J. Gastroenterol. 1998; 93:814–818.CrossRefGoogle ScholarPubMed
Lamers, C. B., Bijlstra, A. M., & Harris, A. G.Octreotide, a long-acting somatostatin analog, in the management of postoperative dumping syndrome. An update. Dig. Dis. Sci. 1993; 38:359–364.CrossRefGoogle ScholarPubMed
Fonkal, E. W. srud, Ashcraft, K. W., Coran, A. G.et al.Surgical treatment of gastroesophageal reflux in children: a combined hospital study of 7467 patients. Pediatrics 1998; 101:419–422.Google Scholar
Uc, A., Hoon, A., Di Lorenzo, C., & Hyman, P. E.Antroduodenal manometry in children with no upper gastrointestinal symptoms. Scand. J. Gastroenterol. 1997; 32:681–685.CrossRefGoogle ScholarPubMed
Tomomasa, T., Di Lorenzo, C., Morikawa, A.et al.Analysis of fasting antroduodenal manometry in children. Dig. Dis. Sci. 1996; 41:2195–2203.CrossRefGoogle ScholarPubMed
Ittmann, P. I., Amarnath, R., & Berseth, C. L.Maturation of antroduodenal motor activity in preterm and term infants. Dig. Dis. Sci. 1992; 37:14–19.CrossRefGoogle ScholarPubMed
Berseth, C. L. & Nordyke, C. K.Enteral nutrients promote postnatal maturation of intestinal motor activity in preterm infants. Am. J. Physiol. 1993; 264:G1046–G1051.Google ScholarPubMed
Di Lorenzo, C., Lachman, R., & Hyman, P. E.Intravenous erythromycin for postpyloric intubation. J. Pediatr. Gastroenterol. Nutr. 1990; 11:45–47.CrossRefGoogle ScholarPubMed
Di Lorenzo, C.Pseudo-obstruction: current approaches. Gastroenterology 1999; 116:980–987.CrossRefGoogle ScholarPubMed
Rudolph, C. D., Hyman, P. E., Altschuler, S. M.et al.Diagnosis and treatment of chronic intestinal pseudo-obstruction in children: report of consensus workshop. J. Pediatr. Gastroenterol. Nutr. 1997; 24:102–112.CrossRefGoogle ScholarPubMed
Uc, A., Vasiliauskas, E., Piccoli, D. A.et al.Chronic intestinal pseudoobstruction associated with fetal alcohol syndrome. Dig. Dis. Sci. 1997; 42:1163–1167.Google ScholarPubMed
Verma, A., Piccoli, D. A., Bonilla, E., Berry, G. T., DiMauro, S., & Moraes, C. T.A novel mitochondrial G8313A mutation associated with prominent initial gastrointestinal symptoms and progressive encephaloneuropathy. Pediatr. Res. 1997; 42:448–454.CrossRefGoogle ScholarPubMed
Smith, V. V., Gregson, N., Foggensteiner, L., Neale, G., & Milla, P. J.Acquired intestinal aganglionosis and circulating autoantibodies without neoplasia or other neural involvement. Gastroenterology 1997; 112:1366–1371.CrossRefGoogle ScholarPubMed
Di Lorenzo, C., Hillemieier, C., Hyman, P. E.et al.Manometry studies in children: minimum standards for procedures. J. Neurogastroenterol. Motil. 2002; 14:411–420.CrossRefGoogle ScholarPubMed
Cucchiara, S., Borrelli, O., Salvia, G.et al.A normal gastrointestinal motility excludes chronic intestinal pseudoobstruction in children. Dig. Dis. Sci. 2000; 45:258–264.CrossRefGoogle ScholarPubMed
Hyman, P. E., Bursch, B., Beck, D.et al.Discriminating pediatric condition falsification from chronic intestinal pseudo-obstruction in toddlers. Child Maltreatment 2002; 7:132–137.CrossRefGoogle ScholarPubMed
Hyman, P. E., Bursch, B., Sood, M.et al.Visceral pain-associated disability syndrome: a descriptive analysis. J. Pediatr. Gastroenterol. Nutr. 2002; 35:663–668.CrossRefGoogle ScholarPubMed
Hyman, P. E., Di Lorenzo, C., McAdams, L., Flores, A. F., Tomomasa, T., & Garvey, T. Q., 3rd. Predicting the clinical response to cisapride in children with chronic intestinal pseudo-obstruction. Am. J. Gastroenterol. 1993; 88:832–836.Google ScholarPubMed
Fell, J. M., Smith, V. V., & Milla, P.Infantile chronic idiopathic pseudo-obstruction: the role of small intestinal manometry as a diagnostic tool and prognostic indicator. Gut 1996; 39:306–311.CrossRefGoogle ScholarPubMed
Heneyke, S., Smith, V. V., Spitz, L., & Milla, P. J.Chronic intestinal pseudo-obstruction: treatment and long term follow up of 44 patients. Arch. Dis. Child. 1999; 81:21–27.CrossRefGoogle ScholarPubMed
Di Lorenzo, C., Lucanto, C., Flores, A. F.et al.Effect of octreotide on gastrointestinal motility in children with functional gastrointestinal symptoms. J. Pediatr. Gastroenterol. Nutr. 1998; 27:508–512.CrossRefGoogle ScholarPubMed
Mousa, H., Hyman, P. E., Cocjin, J., Flores, A. F., & Di Lorenzo, C.Long-term outcome of congenital intestinal pseudoobstruction. Dig. Dis. Sci. 2002; 47:2298–2305.CrossRefGoogle ScholarPubMed
Sigurdsson, L., Reyes, J., Kocoshis, S. A.et al.Intestinal transplantation in children with chronic intestinal pseudo-obstruction. Gut 1999; 45:570–574.CrossRefGoogle ScholarPubMed
Schwankovsky, L., Mousa, H., Rowhani, A., Di Lorenzo, C., & Hyman, P. E.Quality of life outcomes in congenital chronic intestinal pseudo-obstruction. Dig. Dis. Sci. 2002; 47:19645–19648.CrossRefGoogle ScholarPubMed
Di Lorenzo, C., Flores, A. F., Reddy, S. N., & Hyman, P. E.Use of colonic manometry to differentiate causes of intractable constipation in children. J. Pediatr. 1992; 120:690–695.CrossRefGoogle ScholarPubMed
Hamid, S. A., Di Lorenzo, C., Reddy, S. N., Flores, A. F., & Hyman, P. E.Bisacodyl and high-amplitude-propagating colonic contractions in children. J. Pediatr. Gastroenterol. Nutr. 1998; 27:398–402.CrossRefGoogle ScholarPubMed
Baker, S., Liptak, G. S., Colletti, R. B.et al.Constipation in infants and children: evaluation and treatment. J. Pediatr. Gastroenterol. Nutr. 1999; 29:612–626.CrossRefGoogle ScholarPubMed
Brazzelli, M. & Griffiths, P.Behavioural and cognitive intervention with or without other treatments for defecation disorders in children. In The Cochrane Library, Issue 2, 2002.Google Scholar
Levine, M. D. & Bakow, H.Children with encopresis: a study of treatment outcome. Pediatrics 1976; 58(6):845–852.Google ScholarPubMed
Sondheimer, J. M. & Gervaise, E. P.Lubricant versus laxative in the treatment of chronic functional constipation of children: a comparative study. J. Pediatr. Gastroenterol. Nutr. 1982; 1:223–226.CrossRefGoogle ScholarPubMed
Abrahamian, F. P. & Lloyd-Still, J. D.Chronic constipation in childhood: a longitudinal study of 186 patients. J. Pediatr. Gastroenterol. Nutr. 1984; 3:460–467.CrossRefGoogle ScholarPubMed
Staiano, A., Andreotti, M. R., Greco, L., Basile, P., & Auricchio, S.Long-term follow-up of children with chronic idiopathic constipation. Dig. Dis. Sci. 1994; 39:561–564.CrossRefGoogle ScholarPubMed
Pashankar, D. S., Bishop, W. P., & Loening-Baucke, V.Long-term efficacy of polyethylene glycol 3350 for the treatment of chronic constipation in children with and without encopresis. Clin. Pediatr. 2003; 42:815–819.CrossRefGoogle ScholarPubMed
Ginkel, R., Reitsma, J. B., Buller, H. A.et al.Childhood constipation: longitudinal follow-up beyond puberty. Gastroenterology 2003; 125:357–363.CrossRefGoogle ScholarPubMed
Cord-Udy, C. L., Smith, V. V., Ahmed, S.et al.An evaluation of the role of suction rectal biopsy in the diagnosis of intestinal neuronal dysplasia. J. Pediatr. Gastroenterol. Nutr. 1997; 24:1–8.CrossRefGoogle Scholar
Koletzko, S., Ballauff, A., Hadziselimovic, F., & Enck, P.Is histological diagnosis of neuronal intestinal dysplasia related to clinical and manometric findings in constipated children? J. Pediatr. Gastroenterol. Nutr. 1993; 17:59.CrossRefGoogle ScholarPubMed
Villarreal, J., Sood, M., Zangen, T.et al.Colonic diversion for intractable constipation in children: colonic manometry helps guide clinical decisions. J. Pediatr. Gastroenterol. Nutr. 2001; 33:588–591.CrossRefGoogle ScholarPubMed
Malone, P. S., Ransley, P. G., & Kiely, E. M.Preliminary report: the antegrade continence enema. Lancet 1990; 336:1217–1218.CrossRefGoogle ScholarPubMed
Squire, R., Kiely, E. M., Carr, B.et al.The clinical application of the Malone antegrade colonic enema. J. Pediatr. Surg. 1993; 28:1012–1015.CrossRefGoogle ScholarPubMed
Di Lorenzo, C., Solzi, G. F., Flores, A. F., Schwankovsky, L., & Hyman, P. E.Colonic motility after surgery for Hirschsprung's disease. Am. J. Gastroenterol. 2000; 95:1759–1764.CrossRefGoogle ScholarPubMed
Catto-Smith, A. G., Coffey, C. M., Nolan, T. M., & Hutson, J. M.Fecal incontinence after the surgical treatment of Hirschsprung disease. J. Pediatr. 1995; 127:954–957.CrossRefGoogle ScholarPubMed
Di Lorenzo, C. & Benninga, M. A.Pathophysiology of pediatric fecal incontinence. Gastroenterology 2004; 126:S33–S40.CrossRefGoogle ScholarPubMed
Ciamarra, P., Nurko, S., Barksdale, E., Fishman, S., & Di Lorenzo, C.Internal anal sphincter achalasia in children: clinical characteristics and treatment with Clostridium botulinum toxin. J. Pediatr. Gastroenterol. Nutr. 2003; 37:315–319.CrossRefGoogle ScholarPubMed
Caluwe, D., Yoneda, A., Akl, U., & Puri, P.Internal anal sphincter achalasia: outcome after internal sphincter myectomy. J. Pediatr. Surg. 2001; 36:736–738.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×