Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-18T08:52:06.106Z Has data issue: false hasContentIssue false

Section 5 - Infectious Diseases

Published online by Cambridge University Press:  10 August 2023

Helen Liapis
Affiliation:
Ludwig Maximilian University, Nephrology Center, Munich, Adjunct Professor and Washington University St Louis, Department of Pathology and Immunology, Retired Professor
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barsoum, R. S., Francis, M. R., Sitprija, V.. Renal involvement in tropical diseases. In Schrier, R. W. (ed) Atlas of Diseases of the Kidney. 1999;6–18.Google Scholar
Cantwell, M. F., Shehab, Z. M., Costello, A. M., Sands, L., Green, W. F., Ewing, E. P. J., et al. Brief report: Congenital tuberculosis. NEJM 1994;330:1051–4.Google Scholar
Dhua, A. K., Borkar, N., Ghosh, V., Aggarwal, S. K.. Renal tuberculosis in infancy. J Indian Assoc Pediatric Surg. 2011;16:6971.Google Scholar
Zhang, X., Xie, Y., Huang, G., Fu, H.. Analysis of 17 children with renal abscess. Int J Clin Exp Pathol. 2019;12:3179–84.Google Scholar
Chattopadhyay, A., Bhatnagar, V., Agarwala, S., Mitra, D. K.. Genitourinary tuberculosis in pediatric surgical practice. J Pediatr Surg. 1997;32:1283–6.Google Scholar
Singh, J. P., Priyadarshi, V., Kundu, A. K., Vijay, M. K., Bera, M. K., Pal, D. K.. Genito-urinary tuberculosis revisited--13 years’ experience of a single centre. Indian J Tuberc. 2013;60:1522.Google Scholar
Gibson, M. S., Puckett, M. L., Shelly, M. E.. Renal tuberculosis. Radiographics. 2004;24:251–6.Google Scholar
Daher, E. De F., da Silva, G. B., Barros, E. J.. Renal tuberculosis in the modern era. Am J Trop Med Hyg. 2013;88:5464.CrossRefGoogle ScholarPubMed
Kritsaneepaiboon, S., Andres, M. M., Tatco, V. R., Lim, C. C. Q., Concepcion, N. D. P.. Extrapulmonary involvement in pediatric tuberculosis. Pediatr Radiol. 2017;47:1249–59.Google Scholar
Dettmar, A. K., Oh, J.. Infection-related focal segmental glomerulosclerosis in children. BioMed Res Int. 2016;2016:7351964.Google Scholar
Ramsuran, D., Bhimma, R., Ramdial, P. K., Naicker, E., Adhikari, M., Deonarain, J., et al. The spectrum of HIV-related nephropathy in children. Pediatr Nephrol. 2012;27:821–7.Google Scholar
Bhimma, R., Purswani, M. U., Kala, U.. Kidney disease in children and adolescents with perinatal HIV-1 infection. J Int AIDS Soc. 2013;16:18596.Google Scholar
Hatsukari, I., Singh, P., Hitosugi, N., Messmer, D., Valderrama, E., Teichberg, S., et al. DEC-205-mediated internalization of HIV-1 results in the establishment of silent infection in renal tubular cells. J Am Soc Nephrol. 2007;18:780–7.Google Scholar
Singh, P., Goel, H., Husain, M., Lan, X., Mikulak, J., Malthotra, A., et al. Tubular cell HIV-entry through apoptosed CD4 T cells: A novel pathway. Virology. 2012;434:6877.Google Scholar
Xie, X., Colberg-Poley, A. M., Das, J. R., Li, J., Zhang, A., Tang, P., et al. The basic domain of HIV-tat transactivating protein is essential for its targeting to lipid rafts and regulating fibroblast growth factor-2 signaling in podocytes isolated from children with HIV-1-associated nephropathy. J Am Soc Nephrol. 2014;25:1800–13.Google Scholar
Jindal, A. K., Tiewsoh, K., Pilania, R. K.. A review of renal disease in children with HIV infection. Infect Dis. 2018;50:112.Google Scholar
Meehan, S. M., Pascual, M., Williams, W. W., Tolkoff-Rubin, N., Delmonico, F. L., Cosimi, A. B., et al. De novo collapsing glomerulopathy in renal allografts. Transplantation. 1998;65(9):1192–7.CrossRefGoogle ScholarPubMed
Ponticelli, C., Moroni, G., Glassock, R. J.. De novo glomerular diseases after renal transplantation. Clin J Am Soc Nephrol. 2014;9(8):1479–87.Google Scholar
Wierenga, K. J., Pattison, J. R., Brink, N., Griffiths, M., Miller, M., Shah, D.J., et al. Glomerulonephritis after human parvovirus infection in homozygous sickle-cell disease. Lancet. 1995;346:475–6.Google Scholar
Wong, T. Y., Chan, P. K., Leung, C. B., Szeto, C. C., Tam, J. S., Li, P. K.. Parvovirus B19 infection causing red cell aplasia in renal transplantation on tacrolimus. Am J Kidney Dis. 1999;34:1132–6.Google Scholar
Besse, W., Mansour, S., Jatwani, K., Nast, C. C., Brewster, U. C.. Collapsing glomerulopathy in a young woman with APOL1 risk alleles following acute parvovirus B19 infection: A case report investigation. BMC Nephrol. 2016;17:125.Google Scholar
Moudgil, A., Nast, C. C., Bagga, A., Wei, L., Nurmamet, A., Cohen, A. H., et al. Association of parvovirus B19 infection with idiopathic collapsing glomerulopathy. Kidney Int. 2001;59:2126–33.Google Scholar
Bönsch, C., Zuercher, C., Lieby, P., Kempf, C., Ros, C.. The globoside receptor triggers structural changes in the B19 virus capsid that facilitate virus internalization. J Virol. 2010;84:11737–46.Google Scholar
Barisoni, L., Kriz, W., Mundel, P., D’Agati, V.. The dysregulated podocyte phenotype: A novel concept in the pathogenesis of collapsing idiopathic focal segmental glomerulosclerosis and HIV-associated nephropathy. J Am Soc Nephrol. 1999;10:5161.Google Scholar
Albaqumi, M., Soos, T. J., Barisoni, L., Nelson, P. J.. Collapsing glomerulopathy. J Am Soc Nephrol. 2006;17:2854–63.Google Scholar
Tucker, J. K.. Focal segmental glomerulosclerosis in African Americans. Am J Med Sci. 2002;323:90–3.Google Scholar
Ferluga, D., Vizjak, A.. Hantavirus nephropathy. J Am Soc Nephrol. 2008;19:1653–8.Google Scholar
Mustonen, J., Huttunen, N. P., Brummer-Korvenkontio, M., Vaheri, A.. Clinical picture of nephropathia epidemica in children. Acta Paediatr. 1994;83:526–9.Google Scholar
Latus, J., Schwab, M., Tacconelli, E., Pieper, F. M., Wegener, D., Rettenmaier, B., et al. Acute kidney injury and tools for risk-stratification in 456 patients with hantavirus-induced nephropathia epidemica. Nephrol Dial Transplant. 2015;30:245–51.Google Scholar
Faulde, M., Sobe, D., Kimmig, P., Scharninghausen, J.. Renal failure and hantavirus infection in Europe. Nephrol Dial Transplant. 2000;15:751–3.CrossRefGoogle ScholarPubMed
Vachvanichsanong, P., Thisyakorn, U., Thisyakorn, C.. Dengue hemorrhagic fever and the kidney. Arch Virol. 2016;161:771–8.Google Scholar
Hebbal, P., Darwich, Y., Fong, J., Hagmann, S. H. F., Purswani, M. U.. Nephrotic-range proteinuria in an eight-year-old traveler with severe dengue: Case report and review of the literature. Travel Med Infect Dis. 2016;14:45–8.CrossRefGoogle Scholar
Ismail, J., Sankar, J.. Acute kidney injury in dengue - not unprecedented. Indian J Pediatr. 2020;87:993–4.Google Scholar
Kamath, N., Iyengar, A.. Infections and the kidney: A tale from the tropics. Pediatr Nephrol. 2018;33:1317–26.Google Scholar
Modhiran, N., Watterson, D., Muller, D. A., Panetta, A. K., Sester, D. P., Liu, L., et al. Dengue virus NS1 protein activates cells via Toll-like receptor 4 and disrupts endothelial cell monolayer integrity. Sci Transl Med. 2015;7:304ra142.CrossRefGoogle ScholarPubMed
Rajan, M., Geminiganesan, S., Sankaranarayanan, S., Padmanaban, R., Selvam, M. P.. Renal manifestations in children with dengue fever hospitalized in pediatric intensive care unit. Indian J Pediatr. 2020;87:1014–17.Google Scholar
Gurugama, P., Jayarajah, U., Wanigasuriya, K., Wijewickrama, A., Perera, J., Seneviratne, S. L.. Renal manifestations of dengue virus infections. J Clin Virol. 2018;101:16.Google Scholar
Farouk, S. S., Fiaccadori, E., Cravedi, P., Campbell, K. N.. COVID-19 and the kidney: What we think we know so far and what we don’t. J Nephrol. 2020;33:1213–8.CrossRefGoogle ScholarPubMed
Hirsch, J. S., Ng, J. H., Ross, D. W., Sharma, P., Shah, H. H., Barnett, R. L., et al. Acute kidney injury in patients hospitalized with COVID-19. Kidney Int. 2020;98:209–18.CrossRefGoogle ScholarPubMed
Prendecki, M., Clarke, C., Cairns, T., Cook, T., Roufosse, C., Thomas, D., et al. Anti-glomerular basement membrane disease during the COVID-19 pandemic. Kidney Int. 2020;98:780–1.Google Scholar
Batlle, D. Soler, M. J., Sparks, M. A., Hiremath, S., South, A. M., Welling, P. A., et al. Acute kidney injury in COVID-19: Emerging evidence of a distinct pathophysiology. J Am Soc Nephrol. 2020;31:1380–3.Google Scholar
Nadim, M. K., Forni, L. G., Mehta, R. L., Connor, M. J. J., Liu, K. D., Ostermann, M., et al. COVID-19-associated acute kidney injury: Consensus report of the 25th Acute Disease Quality Initiative (ADQI) Workgroup. Nat Rev Nephrol. 2020;16:747–64.Google Scholar
Puelles, V. G., Lütgehetmann, M., Lindenmeyer, M. T., Sperhake, J. P., Wong, M. N., Allweiss, L., et al. Multiorgan and renal tropism of SARS-CoV-2. N Engl J Med. 2020;383;590–2.Google Scholar
Kudose, S., Batal, I., Santoriello, D., Xu, K., Barasch, J., Peleg, Y., et al. Kidney biopsy findings in patients with COVID-19. J Am Soc Nephrol. 2020;31:1959–68.Google Scholar
Werion, A., Belkhir, L., Perrot, M., Schmit, G., Aydin, S., Chen, Z., et al. SARS-CoV-2 causes a specific dysfunction of the kidney proximal tubule. Kidney Int. 2020;98:1296–307.Google Scholar
Roufosse, C., Curtis, E., Moran, L., Hollinshead, M., Cook, T., Hanley, B., et al. Electron microscopic investigations in COVID-19: Not all crowns are coronas. Kidney Int. 202;98:505–6.Google Scholar
Akilesh, S., Nast, C. C., Yamashita, M., Henriksen, K., Charu, V., Troxell, M. L., et al. Multicenter clinicopathologic correlation of kidney biopsies performed in COVID-19 patients presenting with acute kidney injury or proteinuria. Am J Kidney Dis. 2021;77:8293.e1.CrossRefGoogle ScholarPubMed
Al-Mendalawi, M. D.. Ultrasound findings in urinary schistosomiasis infection in school children in Gezira State, Central Sudan. Saudi J Kidney Dis Transpl. 2013;24:1252–3.Google Scholar
Bocanegra, C., Pintar, Z., Mendioroz, J., Serres, X., Gallego, S., Nindia, A., et al. Ultrasound evolution of pediatric urinary schistosomiasis after treatment with praziquantel in a highly endemic area. AmJ Trop Med Hygiene. 2018;99:1011–17.Google Scholar
Kayange, N. M., Smart, L. R., Tallman, J. E., Chu, E. Y., Fitzgerald, D. W., Pain, K. J., et al. Kidney disease among children in sub-Saharan Africa: Systematic review. Pediatr Res. 2015;77:272–81.CrossRefGoogle ScholarPubMed
Mishra, S. K., Das, B. S.. Malaria and acute kidney injury. Semin Nephrol. 2008;28:395408.Google Scholar
Ehrich, J. H. H., Eke, F. U.. Malaria-induced renal damage: Facts and myths. Pediatr Nephrol. 2007;22:626–37.Google Scholar
Padhi, R. K., Mishra, S.. Incidence of renal involvement in malaria in children of odisha. ISRN Nephrol. 2013;2013:573735.Google Scholar
Olowu, W. A., Adelusola, K. A., Adefehinti, O., Oyetunji, T. G.. Quartan malaria-associated childhood nephrotic syndrome: Now a rare clinical entity in malaria endemic Nigeria. Nephrol Dial Transplant. 2010;25:794801.Google Scholar
Hendrickse, R. G., Adeniyi, A.. Quartan malarial nephrotic syndrome in children. Kidney Int. 1979;16:6474.Google Scholar
Zaki, S. A., Shenoy, P., Shanbag, P., Mauskar, A., Patil, A., Nagotkar, L.. Acute renal failure associated with malaria in children. Saudi J Kidney Dis Transpl. 2013;24:303–8.Google Scholar
Nagajyothi, F., Machado, F. S., Burleigh, B. A., Jelicks, L. A., Scherer, P. E., Mukherjee, S., et al. Mechanisms of Trypanosoma cruzi persistence in Chagas disease. Cell Microbiol. 2012;14:634–43.CrossRefGoogle ScholarPubMed
Robello, C., Maldonado, D. P., Hevia, A., Hoashi, M., Frattaroli, P., Montacutti, V., et al. The fecal, oral, and skin microbiota of children with Chagas disease treated with benznidazole. PloS One. 2019;14:e0212593.Google Scholar
Ngoma, M. S., Nalubamba, M., Kowa, S., Minyoi, D., Mubanga, J., Mwansa, J., et al. Congenital trypanosomiasis. J Trop Pediatr. 2004;50:377–8.Google Scholar
Costa, R. S., Monteiro, R. C., Lehuen, A., Joskowicz, M., Noël, L. H., Droz, D.. Immune complex-mediated glomerulopathy in experimental Chagas’ disease. Clin Immunol Immunopathol. 1991;58:102–14.Google Scholar
Lemos, J. R. D., Rodrigues, W. F., Miguel, C. B., Parreira, R. C., Miguel, R. B., de Paula Rogerio, A., et al. Influence of parasite load on renal function in mice acutely infected with Trypanosoma cruzi. PLoS ONE. 2013;8:e71772.Google Scholar
Bern, C.. Chagas’ disease. N EnglJ Med. 2015;373:456–66.Google Scholar
Traynor, K.. Benznidazole approved for Chagas disease in children. Am J Health Syst Pharm. 2017;74:1519.Google Scholar
de Andrade, A. L., Zicker, F., de Oliveira, R. M., Almeida Silva, S., Luquetti, A., Travassos, L. R., et al. Randomised trial of efficacy of benznidazole in treatment of early Trypanosoma cruzi infection. Lancet. 1996;348:1407–13.Google Scholar
Andrade, L., de Francesco Daher, E., Seguro, A. C.. Leptospiral nephropathy. Semin Nephrol. 2008;28:383–94.CrossRefGoogle ScholarPubMed
Visith, S., Kearkiat, P.. Nephropathy in leptospirosis. J Postgrad Med. 2005;51:184–8.Google Scholar
Agampodi, S. B., Peacock, S. J., Thevanesam, V., Nugegoda, D. B., Smythe, L., Thaipadungpanit, J., et al. Leptospirosis outbreak in Sri Lanka in 2008: Lessons for assessing the global burden of disease. Am J Trop Med Hygiene. 2011;85:471–8.Google Scholar
Sethi, S., Sharma, N., Kakkar, N., Taneja, J., Chatterjee, S. S., Banga, S. S., et al. Increasing trends of leptospirosis in northern India: A clinico-epidemiological study. PLoS Negl Trop Dis. 2010;4(1):e579.Google Scholar
Kim, Y. H., Song, J. H., Kim, C. J., Yang, E. M.. Congenital syphilis presenting with only nephrotic syndrome: Reemergence of a forgotten disease. J Korean Med Sci. 2017;32:1374–6.Google Scholar
Vachvanichsanong, P., Mitarnun, W., Tungsinmunkong, K., Dissaneewate, P.. Congenital and infantile nephrotic syndrome in Thai infants. Clin Pediatr. 2005;44:169–74.Google Scholar
Mahajan, S. K.. Rickettsial diseases. J Assoc Physicians India. 2012;60:3744.Google Scholar
Kim, D-M., Kang, D. W., Kim, J. O., Chung, J. H., Kim, H. L., Park, C. Y., et al. Acute renal failure due to acute tubular necrosis caused by direct invasion of Orientia tsutsugamushi. J Clin Microbiol. 2008;46:1548–50.Google Scholar
Rathi, N., Kulkarni, A., Yewale, V.. IAP guidelines on rickettsial diseases in children. Indian Pediatr. 2017;54:223–9.CrossRefGoogle ScholarPubMed
Alvarez-Hernandez, G., Murillo-Benitez, C., Candia-Plata, M. del C., Moro, M.. Clinical profile and predictors of fatal Rocky Mountain spotted fever in children from Sonora, Mexico. Pediatr Infect Dis J. 2015;34:125–30.Google Scholar
Ramdial, P. K., Sing, Y., Deonarain, J., Bhimma, R., Chotey, N., Sewram, V.. Pediatric renal cryptococcosis: Novel manifestations in the acquired immunodeficiency syndrome era. Int J Surg Pathol. 2011;19:386–92.Google Scholar
Suárez-Rivera, M., Abadeer, R. A., Kott, M. M., Braun, M. C.. Cryptococcosis associated with crescentic glomerulonephritis. Pediatr Nephrol. 2008;23:827–30.Google Scholar
Chung, S., Park, C. W., Chung, H. W., Chang, Y. S.. Acute renal failure presenting as a granulomatous interstitial nephritis due to cryptococcal infection. Kidney Int. 2009;76:453–8.Google Scholar
Petrela, R., Kuneshka, L., Foto, E., Zavalani, F., Gradoni, L.. Pediatric visceral leishmaniasis in Albania: A retrospective analysis of 1,210 consecutive hospitalized patients (1995-2009). PLoS Negl Trop Dis. 2010;4:9.Google Scholar
Libório, A. B., Rocha, N. A., Oliveira, M. J. C., Franco, L. F. L. G., Aguiar, G. B. R., Pimentel, R. S., et al. Acute kidney injury in children with visceral leishmaniasis. Pediatr Infect Dis J. 2012;31:451–4.Google Scholar
Wiedermann, C. J., Wiedermann, W., Joannidis, M.. Causal relationship between hypoalbuminemia and acute kidney injury. World J Nephrol. 2017;6:176–87.Google Scholar
Rocha, N. A., Oliveira, M. J. C., Franco, L. F. L. G., Júnior, G. B. S., Alves, M. P., Sampaio, A. M., et al. Comparative analysis of pediatric and adult visceral leishmaniasis in Brazil. Pediatr Infect Dis J. 2013;32:e182–5.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Infectious Diseases
  • Edited by Helen Liapis, Ludwig Maximilian University, Nephrology Center, Munich, Adjunct Professor and Washington University St Louis, Department of Pathology and Immunology, Retired Professor
  • Book: Pediatric Nephropathology & Childhood Kidney Tumors
  • Online publication: 10 August 2023
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Infectious Diseases
  • Edited by Helen Liapis, Ludwig Maximilian University, Nephrology Center, Munich, Adjunct Professor and Washington University St Louis, Department of Pathology and Immunology, Retired Professor
  • Book: Pediatric Nephropathology & Childhood Kidney Tumors
  • Online publication: 10 August 2023
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Infectious Diseases
  • Edited by Helen Liapis, Ludwig Maximilian University, Nephrology Center, Munich, Adjunct Professor and Washington University St Louis, Department of Pathology and Immunology, Retired Professor
  • Book: Pediatric Nephropathology & Childhood Kidney Tumors
  • Online publication: 10 August 2023
Available formats
×