Skip to main content Accessibility help
  • Print publication year: 2013
  • Online publication date: April 2013

Chapter 3 - The sperm epigenome: a role in embryogenesis and fetal health?


1. CarrellDT. Epigenetics of the male gamete. Fertil Steril. 2012;97(2):267–74.
2. CarrellDT, HammoudSS. The human sperm epigenome and its potential role in embryonic development. Mol Hum Reprod. 2010;16(1):37–47.
3. GarridoN, RemohiJ, Martinez-ConejeroJAet al. Contribution of sperm molecular features to embryo quality and assisted reproduction success. Reprod Biomed Online. 2008;17(6):855–65.
4. KnezK, ZornB, TomazevicTet al. The IMSI procedure improves poor embryo development in the same infertile couples with poor semen quality: a comparative prospective randomized study. Reprod Biol Endocrinol. 2011;9:123.
5. RiggsAD, MartinssenRA, RussoVEA. Epigenetic Mechanisms of Gene Regulation. Cold Spring Harbor, NY: Cold Spring Harbor Press; 1996.
6. HercegZ, VaissiereT. Epigenetic mechanisms and cancer: an interface between the environment and the genome. Epigenetics. 2011;6(7):804–19.
7. LiuL, RandoTA. Manifestations and mechanisms of stem cell aging. J Cell Biol. 2011;193(2):257–66.
8. PuriD, DhawanJ, MishraRK. The paternal hidden agenda: epigenetic inheritance through sperm chromatin. Epigenetics. 2010;5(5):386–91.
9. BiermannK, StegerK. Epigenetics in male germ cells. J Androl. 2007;28(4):466–80.
10. JenkinsTG, CarrellDT. The paternal epigenome and embryogenesis: poising mechanisms for development. Asian J Androl. 2010;13(1):76–80.
11. HammoudSS, NixDA, ZhangHet al. Distinctive chromatin in human sperm packages genes for embryo development. Nature. 2009;460(7254):473–8.
12. Navarro-CostaP, NogueiraP, CarvalhoMet al. Incorrect DNA methylation of the dazl promoter cpg island associates with defective human sperm. Hum Reprod. 2010;25(10):2647–54.
13. YanagimachiR. Male gamete contributions to the embryo. Ann N Y Acad Sci. 2005;1061:203–7.
14. OlivaR. Protamines and male infertility. Hum Reprod Update. 2006;12(4):417–35.
15. van RoijenHJ, OomsMP, SpaargarenMCet al. Immunoexpression of testis-specific histone 2b in human spermatozoa and testis tissue. Hum Reprod. 1998;13(6):1559–66.
16. ChurikovD, SiinoJ, SvetlovaMet al. Novel human testis-specific histone h2b encoded by the interrupted gene on the x chromosome. Genomics. 2004;84(4):745–56.
17. RousseauxS, GaucherJ, ThevenonJet al. Spermiogenesis: histone acetylation triggers male genome reprogramming. Gynecol Obstet Fertil. 2009;37(6):519–22.
18. RousseauxS, BoussouarF, GaucherJet al. Molecular models for post-meiotic male genome reprogramming. Syst Biol Reprod Med. 2011;57(1–2):50–3.
19. SongN, LiuJ, AnSet al. Immunohistochemical analysis of histone H3 modifications in germ cells during mouse spermatogenesis. Acta Histochem Cytochem. 2011;44(4):183–90.
20. MeistrichML, MohapatraB, ShirleyCRet al. Roles of transition nuclear proteins in spermiogenesis. Chromosoma. 2003;111(8):483–8.
21. ShirleyCR, HayashiS, MounseySet al. Abnormalities and reduced reproductive potential of sperm from TNP1- and TNP2-null double mutant mice. Biol Reprod. 2004;71(4):1220–9.
22. SuganumaR, YanagimachiR, MeistrichML. Decline in fertility of mouse sperm with abnormal chromatin during epididymal passage as revealed by ICSI. Hum Reprod. 2005;20(11):3101–8.
23. CorzettM, MazrimasJ, BalhornR. Protamine 1: protamine 2 stoichiometry in the sperm of eutherian mammals. Mol Reprod Dev. 2002;61(4):519–27.
24. AokiVW, CarrellDT. Human protamines and the developing spermatid: their structure, function, expression and relationship with male infertility. Asian J Androl. 2003;5(4):315–24.
25. de MateoS, RamosL, de BoerPet al. Protamine 2 precursors and processing. Protein Pept Lett. 2011;18(8):778–85.
26. CarrellDT, LiuL. Altered protamine 2 expression is uncommon in donors of known fertility, but common among men with poor fertilizing capacity, and may reflect other abnormalities of spermiogenesis. J Androl. 2001;22(4):604–10.
27. AokiVW, LiuL, JonesKPet al. Sperm protamine 1/protamine 2 ratios are related to in vitro fertilization pregnancy rates and predictive of fertilization ability. Fertil Steril. 2006;86(5):1408–15.
28. CreeLH, BalhornR, BrewerLR. Single molecule studies of DNA–protamine interactions. Protein Pept Lett. 2011;18(8):802–10.
29. BalhornR. A model for the structure of chromatin in mammalian sperm. J Cell Biol. 1982;93(2):298–305.
30. WardWS. Function of sperm chromatin structural elements in fertilization and development. Mol Hum Reprod. 2010;16(1):30–6.
31. YamauchiY, ShamanJA, WardWS. Non-genetic contributions of the sperm nucleus to embryonic development. Asian J Androl. 2011;13(1):31–5.
32. DominguezK, ArcaCDR, WardWS. The relationship between chromatin structure and DNA damage in mammalian spermatozoa. In ZiniA, AgarwalA, editors. Sperm Chromatin: Biological and Clinical Applications in Male Infertility and Assisted Reproduction. New York, NY: Springer; 2011, pp. 61–8.
33. Garcia-PeiroA, Martinez-HerediaJ, Oliver-BonetMet al. Protamine 1 to protamine 2 ratio correlates with dynamic aspects of DNA fragmentation in human sperm. Fertil Steril. 2011;95(1):105–9.
34. TorregrosaN, Dominguez-FandosD, CamejoMIet al. Protamine 2 precursors, protamine 1/protamine 2 ratio, DNA integrity and other sperm parameters in infertile patients. Hum Reprod. 2006;21(8):2084–9.
35. AokiVW, MoskovtsevSI, WillisJet al. DNA integrity is compromised in protamine-deficient human sperm. J Androl. 2005;26(6):741–8.
36. de MateoS, GazquezC, GuimeraMet al. Protamine 2 precursors (pre-P2), protamine 1 to protamine 2 ratio (P1/P2), and assisted reproduction outcome. Fertil Steril. 2009;91(3):715–22.
37. SimonL, CastilloJ, OlivaRet al. Relationships between human sperm protamines, DNA damage and assisted reproduction outcomes. Reprod Biomed Online. 2011;23(6):724–34..
38. CarrellDT, EmeryBR, HammoudS. Altered protamine expression and diminished spermatogenesis: what is the link?Hum Reprod Update. 2007;13(3):313–27.
39. NanassyL, LiuL, GriffinJet al. The clinical utility of the protamine 1/protamine 2 ratio in sperm. Protein Pept Lett. 2011;18(8):772–7.
40. HuserT, OrmeCA, HollarsCWet al. Raman spectroscopy of DNA packaging in individual human sperm cells distinguishes normal from abnormal cells. J Biophotonics. 2009;2(5):322–32.
41. AokiVW, EmeryBR, LiuLet al. Protamine levels vary between individual sperm cells of infertile human males and correlate with viability and DNA integrity. J Androl. 2006;27(6):890–8.
42. HammoudS, LiuL, CarrellDT. Protamine ratio and the level of histone retention in sperm selected from a density gradient preparation. Andrologia. 2009;41(2):88–94.
43. LiY, LalancetteC, MillerDet al. Characterization of nucleohistone and nucleoprotamine components in the mature human sperm nucleus. Asian J Androl. 2008;10(4):535–41.
44. MillerD, BrinkworthM, IlesD. Paternal DNA packaging in spermatozoa: More than the sum of its parts? DNA, histones, protamines and epigenetics. Reproduction. 2010;139(2):287–301.
45. CamposEI, ReinbergD. Histones: annotating chromatin. Annu Rev Genet. 2009;43:559–99.
46. CairnsBR. The logic of chromatin architecture and remodelling at promoters. Nature. 2009;461(7261):193–8.
47. KouzaridesT. Chromatin modifications and their function. Cell. 2007;128(4):693–705.
48. HandyDE, CastroR, LoscalzoJ. Epigenetic modifications: basic mechanisms and role in cardiovascular disease. Circulation. 2011;123(19):2145–56.
49. LiuY, LuC, YangYet al. Influence of histone tails and H4 tail acetylations on nucleosome-nucleosome interactions. J Mol Biol. 2011;414(5):749–64.
50. PengL, SetoE. Deacetylation of nonhistone proteins by HDACs and the implications in cancer. Handb Exp Pharmacol. 2011;206:39–56.
51. WernerM, RuthenburgAJ. The united states of histone ubiquitylation and methylation. Mol Cell. 2011;43(1):5–7.
52. ArpanahiA, BrinkworthM, IlesDet al. Endonuclease-sensitive regions of human spermatozoal chromatin are highly enriched in promoter and CTCF binding sequences. Genome Res. 2009;19(8):1338–49.
53. JonesEL, ZalenskyAO, ZalenskayaIA. Protamine withdrawal from human sperm nuclei following heterologous ICSI into hamster oocytes. Protein Pept Lett. 2011;18(8):811–16.
54. GanQ, YoshidaT, McDonaldOGet al. Concise review: epigenetic mechanisms contribute to pluripotency and cell lineage determination of embryonic stem cells. Stem Cells. 2007;25(1):2–9.
55. RangasamyD, BervenL, RidgwayPet al. Pericentric heterochromatin becomes enriched with H2A.Z during early mammalian development. Embo J. 2003;22(7):1599–607.
56. WuSF, ZhangH, CairnsBR. Genes for embryo development are packaged in blocks of multivalent chromatin in zebrafish sperm. Genome Res. 2011;21(4):578–89.
57. CarrellDT. Epigenetic marks in zebrafish sperm: insights into chromatin compaction, maintenance of pluripotency, and the role of the paternal genome after fertilization. Asian J Androl. 2011;13(4):620–1.
58. PortelaA, EstellerM. Epigenetic modifications and human disease. Nat Biotechnol. 2010;28(10):1057–68.
59. NgHH, BirdA. DNA methylation and chromatin modification. Curr Opin Genet Dev. 1999;9(2):158–63.
60. BronnerC, ChataigneauT, Schini-KerthVBet al. The “epigenetic code replication machinery”, ECREM: a promising druggable target of the epigenetic cell memory. Curr Med Chem. 2007;14(25):2629–41.
61. DeatonAM, BirdA. CPG islands and the regulation of transcription. Genes Dev. 2011;25(10):1010–22.
62. ThomsonJP, SkenePJ, SelfridgeJet al. CpG islands influence chromatin structure via the CpG-binding protein CFP1. Nature. 2010 Apr 15;464(7291):1082–6.
63. IllingworthRS, BirdAP. CpG islands – ‘a rough guide’. FEBS Lett. 2009;583(11):1713–20.
64. MolaroA, HodgesE, FangFet al. Sperm methylation profiles reveal features of epigenetic inheritance and evolution in primates. Cell. 2011;146(6):1029–41.
65. JenkinsTG, CarrellD. Sperm epigenetics before and after fertilization. Frontiers in Genetics. (Submitted).
66. LiE. Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet. 2002 Sep;3(9):662–73.
67. ReikW, DeanW, WalterJ. Epigenetic reprogramming in mammalian development. Science. 2001;293(5532):1089–93.
68. AbdallaH, HirabayashiM, HochiS. Demethylation dynamics of the paternal genome in pronuclear-stage bovine zygotes produced by in vitro fertilization and ooplasmic injection of freeze-thawed or freeze-dried spermatozoa. J Reprod Dev. 2009;55(4):433–9.
69. HalesBF, GrenierL, LalancetteCet al. Epigenetic programming: from gametes to blastocyst. Birth Defects Res A Clin Mol Teratol. 2011;91(8):652–65.
70. MeehanRR. DNA methylation in animal development. Semin Cell Dev Biol. 2003;14(1):53–65.
71. RougierN, Bourc’hisD, GomesDMet al. Chromosome methylation patterns during mammalian preimplantation development. Genes Dev. 1998;12(14):2108–13.
72. MayerW, NiveleauA, WalterJet al. Demethylation of the zygotic paternal genome. Nature. 2000 Feb 3;403(6769):501–2.
73. YoungLE, BeaujeanN. DNA methylation in the preimplantation embryo: the differing stories of the mouse and sheep. Anim Reprod Sci. 2004;82–83:61–78.
74. ZaitsevaI, ZaitsevS, AleninaNet al. Dynamics of DNA-demethylation in early mouse and rat embryos developed in vivo and in vitro. Mol Reprod Dev. 2007;74(10):1255–61.
75. DeanW, SantosF, StojkovicMet al. Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proc Natl Acad Sci USA. 2001;98(24):13,734–8.
76. OdomLN, SegarsJ. Imprinting disorders and assisted reproductive technology. Curr Opin Endocrinol Diabetes Obes. 2010;17(6):517–22.
77. OwenCM, SegarsJH Jr.Imprinting disorders and assisted reproductive technology. Semin Reprod Med. 2009;27(5):417–28.
78. RajenderS, AveryK, AgarwalA. Epigenetics, spermatogenesis and male infertility. Mutat Res. 2011;727(3):62–71.
79. MarquesCJ, CostaP, VazBet al. Abnormal methylation of imprinted genes in human sperm is associated with oligozoospermia. Mol Hum Reprod. 2008;14(2):67–74.
80. KobayashiH, SatoA, OtsuEet al. Aberrant DNA methylation of imprinted loci in sperm from oligospermic patients. Hum Mol Genet. 2007;16(21):2542–51.
81. MinorA, ChowV, MaS. Aberrant DNA methylation at imprinted genes in testicular sperm retrieved from men with obstructive azoospermia and undergoing vasectomy reversal. Reproduction. 2011;141(6):749–57.
82. PoplinskiA, TuttelmannF, KanberDet al. Idiopathic male infertility is strongly associated with aberrant methylation of MEST and IGF2/H19 ICR1. Int J Androl. 2010;33(4):642–9.
83. HammoudSS, PurwarJ, PfluegerCet al. Alterations in sperm DNA methylation patterns at imprinted loci in two classes of infertility. Fertil Steril. 2010;94(5):1728–33.
84. NanassyL, CarrellDT. Analysis of the methylation pattern of six gene promoters in sperm of men with abnormal protamination. Asian J Androl. 2011;13(2):342–6.
85. NanassyL, CarrellDT. Abnormal methylation of the promoter of CREM is broadly associated with male factor infertility and poor sperm quality but is improved in sperm selected by density gradient centrifugation. Fertil Steril. 2011;95(7):2310–14.
86. AshtonKI, PunjV, LiuLet al. Genome-wide DNA methylation is altered in some men with abnormal chromatin packaging or poor IVF embryogenesis. Fertil Steril. 2012;97(2):285–92
87. HammoudSS, NixDA, HammoudAOet al. Genome-wide analysis identifies changes in histone retention and epigenetic modifications at developmental and imprinted gene loci in the sperm of infertile men. Hum Reprod. 2011;26(9):2558–69.
88. CaroneBR, FauquierL, HabibNet al. Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell. 2010;143(7):1084–96.
89. NgSF, LinRC, LaybuttDRet al. Chronic high-fat diet in fathers programs beta-cell dysfunction in female rat offspring. Nature. 2010;467(7318):963–6.
90. KaatiG, BygrenLO, PembreyMet al. Transgenerational response to nutrition, early life circumstances and longevity. Eur J Hum Genet. 2007;15(7):784–90.
91. PembreyME, BygrenLO, KaatiGet al. Sex-specific, male-line transgenerational responses in humans. Eur J Hum Genet. 2006;14(2):159–66.
92. JenkinsTG, AstonKI, CarrellD, editors. Global changes to 5-methylcytosine and 5-hydroxymethylcytosine levels associated with aging and oligozoospermia. American Society of Andrology Annual Meeting; 2012 April 22–24; Tuscon, AZ.
93. PuleoCM, SchmeidlerJ, ReichenbergAet al. Advancing paternal age and simplex autism. Autism. 2012;16(4):367–80.
94. LuY, MaH, Sullivan-HalleyJet al. Parents’ ages at birth and risk of adult-onset hematologic malignancies among female teachers in California. Am J Epidemiol. 2010;171(12):1262–9.
95. YipBH, PawitanY, CzeneK. Parental age and risk of childhood cancers: a population-based cohort study from Sweden. Int J Epidemiol. 2006;35(6):1495–503.