Skip to main content Accessibility help
Passive Imaging with Ambient Noise
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 6
  • Export citation
  • Recommend to librarian
  • Buy the print book

Book description

Waves generated by opportunistic or ambient noise sources and recorded by passive sensor arrays can be used to image the medium through which they travel. Spectacular results have been obtained in seismic interferometry, which open up new perspectives in acoustics, electromagnetics, and optics. The authors present, for the first time in book form, a self-contained and unified account of correlation-based and ambient noise imaging. In order to facilitate understanding of the core material, they also address a number of related topics in conventional sensor array imaging, wave propagation in random media, and high-frequency asymptotics for wave propagation. Taking a multidisciplinary approach, the book uses mathematical tools from probability, partial differential equations and asymptotic analysis, combined with the physics of wave propagation and modelling of imaging modalities. Suitable for applied mathematicians and geophysicists, it is also accessible to graduate students in applied mathematics, physics, and engineering.

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.


M., Abramowitz and I., Stegun, Handbook of Mathematical Functions (Dover Publications, New York, 1965)
D. G. Alfaro, Vigo, J.-P., Fouque, J., Garnier, and A., Nachbin, Robustness of time reversal for waves in time-dependent random media, Stochastic Process. Appl., 111 (2004), pp. 289–313
H., Ammari, E., Bonnetier, and Y., Capdeboscq, Enhanced resolution in structured media, SIAM J. Appl. Math., 70 (2009), pp. 1428–52
H., Ammari, J., Garnier, and W., Jing, Passive array correlation-based imaging in a random waveguide, SIAM Multiscale Model. Simul., 11 (2013), pp. 656–81
T., Anggono, T., Nishimura, H., Sato, H., Ueda, and M., Ukawa, Spatio-temporal changes in seismic velocity associated with the 2000 activity of Miyakejima volcano as inferred from cross-correlation analyses of ambient noise, Journal of Volcanology and Geothermal Research, 247–8 (2012), pp. 93–107
M., Asch, W., Kohler, G., Papanicolaou, M., Postel, and B., White, Frequency content of randomly scattered signals, SIAM Review, 33 (1991), pp. 519–626
M. M., Backus,Water reverberations – their nature and elimination, Geophysics, 24 (1959), pp. 233–61
A., Bakulin and R., Calvert, The virtual source method: Theory and case study, Geophysics, 71 (2006), pp. SI139–50
C., Bardos, J., Garnier, and G., Papanicolaou, Identification of Green's functions singularities by cross correlation of noisy signals, Inverse Problems, 24 (2008), 015011
G. D., Bensen, M. H., Ritzwoller, M. P., Barmin, A. L., Levshin, F., Lin, M. P., Moschetti, N. M., Shapiro, and Y., Yang, Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements, Geophys. J. Int., 169 (2007), pp. 1239–60
P., Bernard, Etude sur l'Agitation Microséismique et ses Variations, Presses Universitaires de France, Paris, 1941
J., Berryman, Stable iterative reconstruction algorithm for nonlinear travel time tomography, Inverse Problems, 6 (1990), pp. 21–42
G., Beylkin, M., Oristaglio, and D., Miller, Spatial resolution of migration algorithms. In Proceedings of 14th International Symposium on Acoustical Imaging, edited by A. J., Berkhout, J., Ridder, and L.F. van der, Walls (Plenum, New York, 1985), pp. 155–67
B. L., Biondi, 3D Seismic Imaging. Volume 14 in Investigations in Geophysics, Society of Exploration Geophysics (Tulsa, 2006)
D. T., Blackstock, Fundamentals of Physical Acoustics (Wiley, New York, 2000)
N., Bleisten and R., Handelsman, Asymptotic Expansions of Integrals (Dover, New York, 1986)
N., Bleistein, J. K., Cohen, and J.W., Stockwell Jr, Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion (Springer Verlag, New York, 2001)
P., Blomgren, G., Papanicolaou, and H., Zhao, Super-resolution in time-reversal acoustics, J. Acoust. Soc. Amer., 111 (2002), pp. 230–48
L., Borcea, G., Papanicolaou, and C., Tsogka, Theory and applications of time reversal and interferometric imaging, Inverse Problems, 19 (2003), pp. S134–64
L., Borcea, G., Papanicolaou, and C., Tsogka, Interferometric array imaging in clutter, Inverse Problems, 21 (2005), pp. 1419–60
L., Borcea, G., Papanicolaou, and C., Tsogka, Adaptive interferometric imaging in clutter and optimal illumination, Inverse Problems, 22 (2006a), pp. 1405–36
L., Borcea, G., Papanicolaou, and C., Tsogka, Coherent interferometric imaging in clutter, Geophysics, 71 (2006b), pp. SI165–75
L., Borcea, G., Papanicolaou, and C., Tsogka, Optimal illumination and waveform design for imaging in random media, J. Acoust. Soc. Am., 122 (2007), pp. 3507–18
L., Borcea, F., Gonzalez del Cueto, G., Papanicolaou, and C., Tsogka, Filtering deterministic layering effects in imaging, SIAM Multiscale Model. Simul., 7 (2009), pp. 1267–1301
L., Borcea, T., Callaghan, J., Garnier, and G., Papanicolaou, A universal filter for enhanced imaging with small arrays, Inverse Problems, 26 (2010), 015006
L., Borcea, J., Garnier, G., Papanicolaou, and C., Tsogka, Enhanced statistical stability in coherent interferometric imaging, Inverse Problems, 27 (2011), 085004
L., Borcea, T., Callaghan, and G., Papanicolaou, Synthetic aperture radar imaging with motion estimation and autofocus, Inverse Problems, 28 (2012) 045006
M., Born and E., Wolf, Principles of Optics (Cambridge University Press, 1999)
L., Breiman, Probability (Addison-Wesley, Reading, 1968; reprinted by Society for Industrial and Applied Mathematics, Philadelphia, 1992)
F., Brenguier, N. M., Shapiro, M., Campillo, A., Nercessian, and V., Ferrazzini, 3D surface wave tomography of the Piton de la Fournaise volcano using seismic noise correlations, Geophys. Res. Lett., 34 (2007), L02305
F., Brenguier,M., Campillo, C., Hadziioannou, N. M., Shapiro, R.M., Nadeau, and E., Larose, Postseismic relaxation along the San Andreas fault at Parkfield from continuous seismological observations, Science, 321 (2008a), pp. 1478–81
F., Brenguier, N. M., Shapiro, M., Campillo, V., Ferrazzini, Z., Duputel, O., Coutant, and A., Nercessian, Towards forecasting volcanic eruptions using seismic noise, Nature Geoscience, 1 (2008b), pp. 126–30
F., Brenguier, M., Campillo, T., Takeda, Y., Aoki, N. M., Shapiro, X., Briand, K., Emoto, and H., Miyake, Mapping pressurized volcanic fluids from induced crustal seismic velocity drops, Science, 345 (2014), pp. 80–2
T., Callaghan, N., Czink, A., Paulraj, and G., Papanicolaou, Correlation-based radio localization in an indoor environment, EURASIP Journal on Wireless Communications and Networking, 2011 (2011), pp. 135:1–15
A. J., Calvert, Ray-tracing based prediction and subtraction of water-layer multiples, Geophysics, 55 (1990), pp. 443–51
M., Campillo and L., Stehly, Using coda waves extracted from microseisms to construct direct arrivals, Eos Trans. AGU, 88(52) (2007), Fall Meet. Suppl., Abstract S51D–07
A., Chai, M., Moscoso, and G., Papanicolaou, Imaging strong localized scatterers with sparsity promoting optimization, SIAM J. Imaging Sciences, 7 (2014), pp. 1358–87
J., Chen and G., Schuster, Resolution limits of migrated images, Geophysics, 64 (1999), pp. 1046–53
M., Cheney, A mathematical tutorial on synthetic aperture radar, SIAM Review, 43 (2001), pp. 301–12
J., Cheng, Ghost imaging through turbulent atmosphere, Opt. Express, 17 (2009), pp. 7916–17
J. F., Claerbout, Synthesis of a layered medium from its acoustic transmission response, Geophysics, 33 (1968), pp. 264–9
J. F., Claerbout, Imaging the Earth's Interior (Blackwell Scientific Publications, Palo Alto, 1985)
B., Clerckx and C., Oestges, MIMO Wireless Networks: Channels, Techniques and Standards for Multi-Antenna, Multi-User and Multi-Cell Systems (Academic Press, Oxford, 2013)
Y. Colin de, Verdière, Semiclassical analysis and passive imaging, Nonlinearity, 22 (2009), pp. R45–R75
R., Courant and D., Hilbert, Methods of Mathematical Physics (Wiley, New York, 1991)
P., Cupillard, L., Stehly, and B., Romanowicz, The one-bit noise correlation: a theory based on the concepts of coherent and incoherent noise, Geophys. J. Int., 184 (2011), pp. 1397–1414
A., Curtis and D., Halliday, Source–receiver wave field interferometry, Phys. Rev. E, 81 (2010), 046601
A., Curtis, P., Gerstoft, H., Sato, R., Snieder, and K., Wapenaar, Seismic interferometry – turning noise into signal, The Leading Edge, 25 (2006), pp. 1082–92
A., Curtis, H., Nicolson, D., Halliday, J., Trampert, and B., Baptie, Virtual seismometers in the subsurface of the Earth from seismic interferometry, Nature Geoscience, 2 (2009), pp. 700–4
D., Dawson and G., Papanicolaou, A random wave process, Appl. Math. Optim., 12 (1984), pp. 97–114
M. V. de, Hoop, J., Garnier, S. F., Holman, and K., Sølna, Scattering enabled retrieval of Green's functions from remotely incident wave packets using cross correlations, CRAS Geoscience, 343 (2011), pp. 526–32
M. V. de, Hoop, J., Garnier, S. F., Holman, and K., Sølna, Retrieval of a Green's function with reflections from partly coherent waves generated by a wave packet using cross correlationsSIAM J. Appl. Math., 73 (2013), pp. 493–522
M. de, Hoop and K., Sølna, Estimating a Green's function from field-field correlations in a random medium, SIAM J. Appl. Math., 69 (2009), pp. 909–32
S. A. L. de, Ridder, Passive Seismic Surface-Wave Interferometry for Reservoir Scale Imaging, PhD thesis (Stanford University, 2014); available at /data/media/public/docs/sep151/title.pdf
A., Derode, P., Roux, and M., Fink, Robust acoustic time reversal with high-order multiple scattering, Phys. Rev. Lett., 75 (1995), pp. 4206–9
A., Derode, A., Tourin, and M., Fink, Ultrasonic pulse compression with one-bit time reversal through multiple scattering, J. Appl. Phys., 85 (1999), pp. 6343–52
A., Derode, E., Larose,M., Tanter, J. de, Rosny, A., Tourin,M., Campillo, and M., Fink, Recovering the Green's function from field–field correlations in an open scattering medium, J. Acoust. Soc. Am., 113 (2003), pp. 2973–6
D., Draganov, K., Wapenaar, and J., Thorbecke, Seismic interferometry: Reconstructing the earth's reflection response, Geophysics, 71 (2006), pp. S161–70
D., Draganov, K., Heller, and R., Ghose, Monitoring CO2 storage using ghost reflections retrieved from seismic interferometry, International Journal of Greenhouse Gas Control, 11S (2012), pp. S35–S46
D., Draganov, X., Campman, J., Thorbecke, A., Verdel, and K., Wapenaar, Seismic exploration-scale velocities and structure from ambient seismic noise (> 1 Hz)J. Geophys. Res.: Solid Earth, 118 (2013), pp. 4345–60
T. L., Duvall Jr, S. M., Jefferies, J. W., Harvey, and M. A., Pomerantz, Time-distance helioseismology, Nature, 362 (1993), pp. 430–2
W., Elmore and M., Heald, Physics of Waves (Dover, New York, 1969)
L., Erdös and H.-T., Yau, Linear Boltzmann equation as the weak coupling limit of the random Schrödinger equation, Comm. Pure Appl. Math., 53 (2000), pp. 667–735
L. C., Evans, Partial Differential Equations, 2nd edition (American Mathematical Society, Providence, 2010)
A., Farina and H., Kuschel, Guest editorial special issue on passive radar (Part I), IEEE Aerospace and Electronic Systems Magazine, 27 (2012), issue 10.
J. R., Fienup, Phase retrieval algorithms: a comparison, Appl. Opt., 21 (1982), pp. 2758–69
J. R., Fienup, Reconstruction of a complex-valued object from the modulus of its Fourier transform using a support constraint, J. Opt. Soc. Am. A, 4 (1987), pp. 118–23
J. R., Fienup and C. C., Wackerman, Phase-retrieval stagnation problems and solutions, J. Opt. Soc. Am. A, 3 (1986), pp. 1897–1907
M., Fink, Time reversed acoustics, Physics Today, 20 (1997), pp. 34–40
J.-P., Fouque, J., Garnier, G., Papanicolaou, and K., Sølna, Wave Propagation and Time Reversal in Randomly Layered Media (Springer, New York, 2007)
L. J., Fradkin, Limits of validity of geometrical optics in weakly irregular media, J. Opt. Soc. Am. A, 6 (1989), pp. 1315–19
U., Frisch, Wave propagation in random media. In Probabilistic Methods in Applied Mathematics, edited by A. T., Bharucha-Reid, Academic Press, New York (1968), pp. 75–198
J., Garnier, Imaging in randomly layered media by cross-correlating noisy signals, SIAM Multiscale Model. Simul., 4 (2005), pp. 610–40
J., Garnier and G., Papanicolaou, Pulse propagation and time reversal in random waveguides, SIAM J. Appl. Math., 67 (2007), pp. 1718–39
J., Garnier and G., Papanicolaou, Passive sensor imaging using cross correlations of noisy signals in a scattering medium, SIAM J. Imaging Sciences, 2 (2009), pp. 396–437
J., Garnier and G., Papanicolaou, Resolution analysis for imaging with noise, Inverse Problems, 26 (2010), 074001
J., Garnier and G., Papanicolaou, Fluctuation theory of ambient noise imaging, CRAS Geoscience, 343 (2011), pp. 502–11
J., Garnier and G., Papanicolaou, Correlation based virtual source imaging in strongly scattering media, Inverse Problems, 28 (2012), 075002
J., Garnier and G., Papanicolaou, Role of scattering in virtual source array imaging, SIAM J. Imaging Sciences, 7 (2014a), pp. 1210–36
J., Garnier and G., Papanicolaou, Resolution enhancement from scattering in passive sensor imaging with cross correlations, Inverse Problems and Imaging, 8 (2014b), pp. 645–83
J., Garnier, G., Papanicolaou, A., Semin, and C., Tsogka, Signal-to-noise ratio estimation in passive correlation-based imaging, SIAM J. Imaging Sciences, 6 (2013), pp. 1092–110
J., Garnier, G., Papanicolaou, A., Semin, and C., Tsogka, Signal to noise ratio analysis in virtual source array imaging, SIAM J. Imaging Sci., 8 (2015), pp. 248–79
J., Garnier and K., Sølna, Coupled paraxial wave equations in random media in the whitenoise regime, Ann. Appl. Probab., 19 (2009a), pp. 318–46
J., Garnier and K., Sølna, Background velocity estimation with cross correlations of incoherent waves in the parabolic scaling, Inverse Problems, 25 (2009b), 045005
J., Garnier and K., Sølna,Wave transmission through random layering with pressure release boundary conditions, SIAM Multiscale Model. Simul., 8 (2010a), pp. 912–43
J., Garnier and K., Sølna, Cross correlation and deconvolution of noise signals in randomly layered media, SIAM J. Imaging Sciences, 3 (2010b), pp. 809–34
J., Garnier and K., Sølna, Background velocity estimation by cross correlation of ambient noise signals in the radiative transport regime, Comm. Math. Sci., 3 (2011a), pp. 743–66
J., Garnier and K., Sølna, Filtered Kirchhoff migration of cross correlations of ambient noise signals, Inverse Problems and Imaging, 5 (2011b), pp. 371–90
I.I., Gihman and A. V., Skorohod, The Theory of Stochastic Processes, Vol. 1 (Springer-Verlag, Berlin, 1974)
O. A., Godin, Accuracy of the deterministic travel time retrieval from cross-correlations of non-diffuse ambient noise, J. Acoust. Soc. Am., 126 (2009), pp. EL183–9
G. H., Golub and C. F. van, Loan, Matrix Computations, 3rd ed. (Johns Hopkins University Press, Baltimore, 1996)
C., Gomez, Time-reversal superresolution in random waveguides, SIAM Multiscale Model. Simul., 7 (2009), pp. 1348–86
P., Gouédard, L., Stehly, F., Brenguier, M., Campillo, Y. Colin de, Verdière, E., Larose, L., Margerin, P., Roux, F. J., Sanchez-Sesma, N. M., Shapiro, and R. L., Weaver, Crosscorrelation of random fields: mathematical approach and applications, Geophysical Prospecting, 56 (2008), pp. 375–93
P., Gouédard, H., Yao, F., Ernst, and R. D. van der, Hilst, Surface-wave eikonal tomography for dense geophysical arrays, Geophys. J. Int., 191 (2012), pp. 781–8
N. D., Hardy and J. H., Shapiro, Reflective Ghost Imaging through turbulence, Phys. Rev. A, 84 (2011), 063824
P., Hariharan, Optical Holography (Cambridge University Press, 1996)
U., Harmankaya, A., Kaslilar, J., Thorbecke, K., Wapenaar, and D., Draganov, Locating near-surface scatterers using non-physical scattered waves resulting from seismic interferometry, Journal of Applied Geophysics, 91 (2013), pp. 66–81
A., Ishimaru, Wave Propagation and Scattering in Random Media (IEEE Press, Piscataway, 1997)
F. B., Jensen, W. A., Kuperman, M. B., Porter, and H., Schmidt, Computational Ocean Acoustics, Chapter 9 (Springer, New York, 2011)
A., Kaslilar, U., Harmankaya, K., Wapenaar, and D., Draganov, Estimating the location of a tunnel using correlation and inversion of Rayleigh wave scattering, Geophys. Res. Lett., 40 (2013), pp. 6084–8
A., Kaslilar, U., Harmankaya, K. van, Wijk, K., Wapenaar, and D., Draganov, Estimating location of scatterers using seismic interferometry of scattered Rayleigh waves, Near Surface Geophysics, 12 (2014), pp. 721–30
O., Katz, Y., Bromberg, and Y., Silberberg, Compressive ghost imaging, Appl. Phys. Lett., 95 (2009), 131110
J. B., Keller, R. M., Lewis, and B. D., Seckler, Asymptotic solution of some diffraction problems, Comm. Pure Appl. Math., 9 (1956), pp. 207–65
L. A., Konstantaki, D., Draganov, T., Heimovaara, and R., Ghose, Imaging scatterers in landfills using seismic interferometry, Geophysics, 78 (2013), pp. EN107–16
E., Larose, L., Margerin, A., Derode, B. Van, Tiggelen, M., Campillo, N., Shapiro, A., Paul, L., Stehly, and M., Tanter, Correlation of random wave fields: an interdisciplinary review, Geophysics, 71 (2006), pp. SI11–21
E., Larose, P., Roux, and M., Campillo, Reconstruction of Rayleigh–Lamb dispersion spectrum based on noise obtained from an air-jet forcing, J. Acoust. Soc. Am., 122 (2007), pp. 3437–44
T., Lecocq, C., Caudron, and F., Brenguier, MSNoise, a Python package for monitoring seismic velocity changes using ambient seismic noise, Seismo. Res. Letter, 85 (2014), pp. 715–26
G., Lerosey, J. de, Rosny, A., Tourin, and M., Fink, Focusing beyond the diffraction limit with far-field time reversal, Science, 315 (2007), pp. 1120–2
P. D., Letourneau, Fast Algorithms and Imaging in Strongly Scattering Media, PhD thesis, Stanford University, 2013; available at :pf259md7940/Thesis-augmented.pdf
C., Li, T., Wang, J., Pu, W., Zhu, and R., Rao, Ghost imaging with partially coherent light radiation through turbulent atmosphere, Appl. Phys. B, 99 (2010), pp. 599–604
F.-C., Lin, M. H., Ritzwoller, and R., Snieder, Eikonal tomography: surface wave tomography by phase front tracking across a regional broad-band seismic array, Geophys. J. Int., 177 (2009), pp. 1091–110
Z., Liu, J., Huang, and J., Li, Comparison of four techniques for estimating temporal change of seismic velocity with passive image interferometry, Earthq. Sci., 23 (2010), pp. 511–8
O. I., Lobkis and R. L., Weaver, On the emergence of the Green's function in the correlations of a diffuse field, J. Acoustic. Soc. Am., 110 (2001), pp. 3011–17
M. S., Longuet-Higgins, A theory of the origin of microseisms, Phil. Trans. Roy. Soc. Series A, 243 (1950), pp. 1–35
A. E., Malcolm, J., Scales, and B. A. Van, Tiggelen, Extracting the Green function from diffuse, equipartitioned waves, Phys. Rev. E, 70 (2004), 015601
L., Mandel and E., Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995)
P. A., Martin, Acoustic scattering by inhomogeneous obstacles, SIAM J. Appl. Math., 64 (2003), pp. 297–308
K., Mehta, A., Bakulin, J., Sheiman, R., Calvert, and R., Snieder, Improving the virtual source method by wavefield separation, Geophysics, 72 (2007), pp. V79–86
Y., Meyer, Wavelets and Operators (Cambridge University Press, 1992)
G., Papanicolaou, L., Ryzhik, and K., Sølna, Statistical stability in time reversal, SIAM J. Appl. Math., 64 (2004), pp. 1133–55
G., Papanicolaou, L., Ryzhik, and K., Sølna, Self-averaging from lateral diversity in the Ito–Schrödinger equation, SIAM Multiscale Model. Simul., 6 (2007), pp. 468–92
B., Perthame and L., Vega, Energy concentration and Sommerfeld condition for Helmholtz equation with variable index at infinity, Geom. Funct. Anal., 17 (2008), pp. 1685– 1707
J., Rickett and J., Claerbout, Acoustic daylight imaging via spectral factorization: Helioseismology and reservoir monitoring, The Leading Edge, 18 (1999), pp. 957–60
P., Roux and M., Fink, Green's function estimation using secondary sources in a shallow water environment, J. Acoust. Soc. Am., 113 (2003), pp. 1406–16
P., Roux, K. G., Sabra, W. A., Kuperman, and A., Roux, Ambient noise cross correlation in free space: Theoretical approach, J. Acoust. Soc. Am., 117 (2005), pp. 79–84
S. M., Rytov, Y. A., Kravtsov, and V. I., Tatarskii, Principles of Statistical Radiophysics. 4. Wave Propagation through Random Media (Springer-Verlag, Berlin, 1989)
L. V., Ryzhik, G. C., Papanicolaou, and J. B., Keller, Transport equations for elastic and other waves in random media, Wave Motion, 24 (1996), pp. 327–70
K. G., Sabra, P., Gerstoft, P., Roux, and W., Kuperman, Surface wave tomography from microseisms in Southern California, Geophys. Res. Lett., 32 (2005), L14311
K. G., Sabra, P., Roux, P., Gerstoft, W. A., Kuperman, and M. C., Fehler, Extracting coherent coda arrivals from cross correlations of long period seismic waves during the Mount St Helens 2004 eruption, Geophys. Res. Lett., 33 (2006), L06313
H., Sato and M., Fehler, Wave Propagation and Scattering in the Heterogeneous Earth (Springer-Verlag, New York, 1998)
G. T., Schuster, Seismic Interferometry (Cambridge University Press, 2009)
G. T., Schuster, J., Yu, J., Sheng, and J., Rickett, Interferometric daylight seismic imaging, Geophysical Journal International, 157 (2004), pp. 832–52
C., Sens-Schönfelder and U., Wegler, Passive image interferometry and seasonal variations of seismic velocities at Merapi volcano (Indonesia), Geophys. Res. Lett., 33 (2006), L21302
J. H., Shapiro, Computational ghost imaging, Phys. Rev. A, 78 (2008), 061802(R)
J. H., Shapiro and R. W., Boyd, The physics of ghost imaging, Quantum Inf. Process., 11 (2012), pp. 949–93
N. M., Shapiro, M., Campillo, L., Stehly, and M. H., Ritzwoller, High-resolution surface wave tomography from ambient noise, Science, 307 (2005), pp. 1615–18
P., Sheng, Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena, 2nd edition (Springer-Verlag, Berlin, 2006)
R., Snieder, Extracting the Green's function from the correlation of coda waves: A derivation based on stationary phase, Phys. Rev. E, 69 (2004), 046610
R., Snieder, K., Wapenaar, and U., Wegler, Unified Green's function retrieval by crosscorrelation; connection with energy principles, Phys. Rev. E, 75 (2007), 036103
L., Stehly, M., Campillo, and N. M., Shapiro, A study of the seismic noise from its long-range correlation properties, Geophys. Res. Lett., 111 (2006), B1030
L., Stehly, M., Campillo, and N. M., Shapiro, Traveltime measurements from noise correlation: stability and detection of instrumental time-shifts, Geophys. J. Int., 171 (2007), pp. 223–30
L., Stehly, M., Campillo, B., Froment, and R., Weaver, Reconstructing Green's function by correlation of the coda of the correlation (C3) of ambient seismic noise, J. Geophys. Res., 113 (2008), B11306
W. W., Symes and J. J., Carazzone, Velocity inversion by differential semblance optimization, Geophysics, 56 (1991), pp. 654–63
F. D., Tappert, The parabolic approximation method. In Wave Propagation and Underwater Acoustics, Springer Lecture Notes in Physics, Vol. 70 (1977), pp. 224–87
V. I., Tatarski, Wave Propagation in a Turbulent Medium (Dover, New York, 1961)
B. J., Uscinski, The Elements of Wave Propagation in Random Media, (McGraw Hill, New York, 1977)
A., Valencia, G., Scarcelli, M., D'Angelo, and Y., Shih, Two-photon imaging with thermal light, Phys. Rev. Lett., 94 (2005), 063601
D.-J. van, Manen, A., Curtis, and J. O. A., Robertsson, Interferometric modeling of wave propagation in inhomogeneous elastic media using time reversal and reciprocity, Geophysics, 71 (2006), pp. SI47–60
M. C. W. van, Rossum and Th. M., Nieuwenhuizen, Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion, Reviews of Modern Physics, 71 (1999), pp. 313–71
G. W., Walker, Modern Seismology (Longmans, Green and Co., London, 1913)
K., Wapenaar, Retrieving the elastodynamic Green's function of an arbitrary inhomogeneous medium by cross correlation, Phys. Rev. Lett., 93 (2004), 254301
K., Wapenaar and J., Fokkema, Green's function representations for seismic interferometry, Geophysics, 71 (2006), pp. SI33–46
K., Wapenaar, D., Draganov, R., Snieder, X., Campman, and A., Verdel, Tutorial on seismic interferometry: Part 1 – Basic principles and applications, Geophysics, 75 (2010a), pp. A195–A209
K., Wapenaar, E., Slob, R., Snieder, and A., Curtis, Tutorial on seismic interferometry: Part 2 – Underlying theory and new advances, Geophysics, 75 (2010b), pp. A211–27
R., Weaver and O. I., Lobkis, Ultrasonics without a source: Thermal fluctuation correlations at MHz frequencies, Phys. Rev. Lett., 87 (2001), 134301.
B., White, P., Sheng, and B., Nair, Localization and backscattering spectrum of seismic waves in stratified lithology, Geophysics, 55 (1990), pp. 1158–65
R., Wong, Asymptotic Approximations of Integrals (SIAM, Philadelphia, 2001)
H., Yao and R. van der, Hilst, Analysis of ambient noise energy distribution and phase velocity bias in ambient noise tomography, with application to SE Tibet, Geophys. J. Int., 179 (2009), pp. 1113–32
H., Yao, R. D. van der, Hilst, and M. V. de, Hoop, Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis I. Phase velocity maps, Geophysical Journal International, 166 (2006), pp. 732–44
P., Zhang, W., Gong, X., Shen, and S., Han, Correlated imaging through atmospheric turbulence, Phys. Rev. A, 82 (2010), 033817


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed