Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-11T11:28:41.989Z Has data issue: false hasContentIssue false

2 - Simulations of cold dark matter haloes

Published online by Cambridge University Press:  04 August 2010

Gianfranco Bertone
Affiliation:
Institut d'Astrophysique de Paris
Get access

Summary

Numerical studies of the formation of cold dark matter haloes have produced several robust results that allow unique tests of the hierarchical clustering paradigm. Universal properties of haloes, including their mass profiles and substructure properties, are being tested against observational data from the scales of dwarf galaxies to galaxy clusters. Resolving the fine-grained structure of haloes has enabled us to make predictions for ongoing and planned direct and indirect dark matter detection experiments taking us beyond the smooth spherical isotropic model for the Galactic halo.

From cold collapse to hierarchical clustering – a brief history

N-body simulations of the gravitational collapse of a collisionless system of particles pre-date the CDM model. Early simulations in the 1960s studied the formation of elliptical galaxies from the collapse of a cold top-hat perturbation of stars [1089; 1556; 1889]. The resulting virialization process gave rise to equilibrium structures with de Vaucouleurs [633] or Einasto [741; 743] type density profiles. Profiles of the same form but with higher concentrations are widely used to describe the light distribution of elliptical galaxies. It is remarkable that the end state of almost any gravitational collapse, independent of the small-scale structure and hierarchical merging pattern, leads to a similar global structure of the final equilibrium system [1143; 1426; 1474].

Computer simulations in the 1970s attempted to follow the expansion and collapse of a spherical overdensity to relate to the observed properties of virialized structures such as galaxy clusters [1930].

Type
Chapter
Information
Particle Dark Matter
Observations, Models and Searches
, pp. 14 - 37
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×