Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-14T00:27:19.117Z Has data issue: false hasContentIssue false

Section 5 - Alternatives to Ovarian Hyperstimulation and Delayed Transfer

Published online by Cambridge University Press:  14 April 2022

Mohamed Aboulghar
Affiliation:
University of Cairo IVF Centre
Botros Rizk
Affiliation:
University of South Alabama
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Ovarian Stimulation , pp. 223 - 264
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Davis, JR. Prolactin and reproductive medicine. Curr Opin Obstet Gynecol 2004;4:331337.Google Scholar
Treier, M, Gleiberman, AS, O’Connell, SM, et al. Multistep signaling requirements for pituitary organogenesis in vivo. Genes Dev 1998;12(11):16911704. http://www.genesdev.org/cgi/doi/10.1101/gad.12.11.1691.Google Scholar
Sharp, ZD. Rat Pit-1 stimulates transcription in vitro by influencing pre-initiation complex assembly. Biochem Biophys Res Commun 1995;206(1):4045.Google Scholar
Goffin, V, Shiverick, KT, Kelly, PA, Martial, JA. Sequence-function relationships within the expanding family of prolactin, growth hormone, placental lactogen and related proteins in mammals. Endocr Rev 1996;17(4):385410.Google Scholar
Horseman, ND, Yu-Lee, LY. Transcriptional regulation by the helix bundle peptide hormones: growth hormone, prolactin, and hematopoietic cytokines. Endocr Rev 1994;15(5):627649.CrossRefGoogle ScholarPubMed
Featherstone, K, White, MR, Davis, RJ. The prolactin gene: a paradigm of tissue‐specific gene regulation with complex temporal transcription dynamics. J Neuroendocrinol 2012;24:977990.CrossRefGoogle ScholarPubMed
Cohen, LE, Wondisford, FE, Radovick, S. Role of Pit-1 in the gene expression of growth hormone, prolactin, and thyrotropin. Endocrinol Metab Clin North Am 1996;25(3):523540. https://linkinghub.elsevier.com/retrieve/pii/S088985290570339X.Google Scholar
González‐Parra, S, Chowen, JA, Segura, LMG, Argente, J. Ontogeny of pituitary transcription factor‐1 (Pit‐1), growth hormone (GH) and prolactin (PRL) mRNA levels in male and female rats and the differential expression of Pit‐1 in lactotrophs and somatotrophs. J Neuroendocrinol 1996;8(3):211225. https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-2826.1996.04526.x.Google Scholar
Nicoll, CS, Mayer, GL, Russell, SM. Structural features of prolactins and growth hormones that can be related to their biological properties. Endocr Rev 1986;7(2):169203. https://academic.oup.com/edrv/article-lookup/doi/10.1210/edrv-7-2-169.CrossRefGoogle ScholarPubMed
Teilum, K, Hoch, JC, Goffin, V, et al. Solution structure of human prolactin. J Mol Biol 2005;351(4):810823.Google Scholar
Brooks, CL. Molecular mechanisms of prolactin and its receptor. Endocr Rev 2012;33(4):504525. https://academic.oup.com/edrv/article-lookup/doi/10.1210/er.2011-1040.Google Scholar
Bazan, JF. Structural design and molecular evolution of a cytokine receptor superfamily. Proc Natl Acad Sci U S A 1990;87(18):69346938.Google Scholar
Berwaer, M, Monget, P, Peers, B, et al. Multihormonal regulation of the human prolactin gene expression from 5000 bp of its upstream sequence. Mol Cell Endocrinol 1991;80(1–3):5364.Google Scholar
Berwaer, M, Martial, JA, Davis, JR. Characterization of an up-stream promoter directing extrapituitary expression of the human prolactin gene. Mol Endocrinol 1994;8(5):635642.Google Scholar
Peers, B, Voz, ML, Monget, P, et al. Regulatory elements controlling pituitary-specific expression of the human prolactin gene. Mol Cell Biol 1990;10(9):46904700.Google ScholarPubMed
Truong, AT, Duez, C, Belayew, A, et al. Isolation and characterization of the human prolactin gene. EMBO J 1984;3(2):429437. http://doi.wiley.com/10.1002/j.1460-2075.1984.tb01824.x.CrossRefGoogle ScholarPubMed
Sinha, YN. Structural variants of prolactin: occurrence and physiological significance. Endocr Rev 1995;16(3):354369.CrossRefGoogle ScholarPubMed
Keeler, C, Dannies, PS, Hodsdon, ME. The tertiary structure and backbone dynamics of human prolactin. J Mol Biol 2003:328(5):11051121.CrossRefGoogle ScholarPubMed
Thirunavakkarasu, K, Dutta, P, Sridhar, S, et al. Macroprolactinemia in hyperprolactinemic infertile women. Endocrine 2013;44(3):750755.Google Scholar
Bazan, JF. Haemopoietic receptors and helical cytokines. Immunol Today 1990;11(11):350354. https://linkinghub.elsevier.com/retrieve/pii/016756999090139Z.CrossRefGoogle ScholarPubMed
Rizk, B. Genetics of ovarian hyperstimulation syndrome. In: Rizk, B, ed. Ovarian Hyperstimulation Syndrome. Cambridge: Cambridge University Press; 2006:7991.Google Scholar
Schuler, LA, Nagel, RM, Gao, J, Horseman, ND, Kessler, MA. Prolactin receptor heterogeneity in bovine fetal and maternal tissues. Endocrinology 1997;138(8):31873194.CrossRefGoogle ScholarPubMed
Kline, JB, Roehrs, H, Clevenger, CV. Functional characterization of the intermediate isoform of the human prolactin receptor. J Biol Chem 1999;274(50):3546135468.Google Scholar
Trott, J, Hovey, R, Koduri, S, Vonderhaar, B. Alternative splicing to exon 11 of human prolactin receptor gene results in multiple isoforms including a secreted prolactin-binding protein. J Mol Endocrinol 2003;30:3147. https://jme.bioscientifica.com/view/journals/jme/30/1/31.xml.Google Scholar
Herman, A, Bignon, C, Daniel, N, Grosclaude, J, Gertler, A. Functional heterodimerization of prolactin and growth hormone receptors by ovine placental lactogen. J Biol Chem 2000;275:6295–301.Google Scholar
Bole-Feysot, C, Goffin, V, Edery, M, Binart, N, Kelly, PA. Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr Rev 1998;19(3):225268. https://academic.oup.com/edrv/article-lookup/doi/10.1210/edrv.19.3.0334.Google Scholar
Veldhuis, JD, Johnson, ML. Operating characteristics of the hypothalamo-pituitary-gonadal axis in men: circadian, ultradian, and pulsatile release of prolactin and its temporal coupling with luteinizing hormone. J Clin Endocrinol Metab 1988;67(1):116123.CrossRefGoogle ScholarPubMed
Veldhuis, JD, Evans, WS, Stumpf, PG. Mechanisms that subserve estradiol’s induction of increased prolactin concentrations: evidence of amplitude modulation of spontaneous prolactin secretory bursts. Am J Obstet Gynecol 1989;161(5):11491158.Google Scholar
Freeman, ME, Kanyicska, B, Lerant, A, Nagy, G. Prolactin: structure, function, and regulation of secretion. Physiol Rev 2000;80(4):15231631.Google Scholar
Van den Berghe, G, de Zegher, F, Veldhuis, JD, et al. Thyrotrophin and prolactin release in prolonged critical illness: dynamics of spontaneous secretion and effects of growth hormone-secretagogues. Clin Endocrinol (Oxf) 1997;47(5):599612.Google Scholar
Ben-Jonathan, N. Dopamine: a prolactin-inhibiting hormone. Endocr Rev 1985;6(4):564589. https://academic.oup.com/edrv/article-lookup/doi/10.1210/edrv-6-4-564.Google Scholar
Grattan, DR, Kokay, IC. Prolactin: a pleiotropic neuroendocrine hormone. J Neuroendocrinol 2008;20(6):752763.Google Scholar
Grattan, DR. The actions of prolactin in the brain during pregnancy and lactation. In: Progress in Brain Research, Vol. 133. Amsterdam: Elsevier; 2001:153171.Google Scholar
Vacher, P, Mariot, P, Dufy-Barbe, L, et al. The gonadotropin-releasing hormone associated peptide reduces calcium entry in prolactin-secreting cells. Endocrinology 1991;128(1):285294.Google Scholar
Steele, MK. The role of brain angiotensin II in the regulation of luteinizing hormone and prolactin secretion. Trends Endocrinol Metab 1992;3(8):295301.CrossRefGoogle ScholarPubMed
Steele, MK, McCann, SM, Negro-Vilar, A. Modulation by dopamine and estradiol of the central effects of angiotensin II on anterior pituitary hormone release. Endocrinology 1982;111(3):722729. https://academic.oup.com/endo/article-lookup/doi/10.1210/endo-111-3-722.CrossRefGoogle ScholarPubMed
Ayala, ME, Velázquez, DE, Mendoza, JL, et al. Dorsal and medial raphe nuclei participate differentially in reproductive functions of the male rat. Reprod Biol Endocrinol 2015;13(1):132. http://www.rbej.com/content/13/1/132.Google Scholar
Dalcik, H, Phelps, CJ. Median eminence-afferent vasoactive intestinal peptide (VIP) neurons in the hypothalamus: localization by simultaneous tract tracing and immunocytochemistry. Peptides 1993;14(5):10591066.Google Scholar
Braund, W, Roeger, DC, Judd, SJ. Synchronous secretion of luteinizing hormone and prolactin in the human luteal phase: neuroendocrine mechanisms. J Clin Endocrinol Metab 1984;58(2):293297.CrossRefGoogle ScholarPubMed
Christiansen, E, Veldhuis, JD, Rogol, AD, Stumpf, P. Evans, WS. Modulating actions of estradiol on gonadotropin-releasing hormone-stimulated prolactin secretion in postmenopausal individuals. Am J Obstet Gynecol 1987;157(2):320325.CrossRefGoogle ScholarPubMed
De, V, Kar, LD, Bethea, CL. Pharmacological evidence that serotonergic stimulation of prolactin secretion is mediated via the dorsal raphe nucleus. Neuroendocrinology 1982;35(4):225230.Google Scholar
Takahashi, K, Yoshinoya, A, Arihara, Z, et al. Regional distribution of immunoreactive prolactin-releasing peptide in the human brain. Peptides 2000;21(10):15511555.Google Scholar
Barber, MC, Clegg, RA, Finley, E, Vernon, RG, Flint, DJ. The role of growth hormone, prolactin and insulin-like growth factors in the regulation of rat mammary gland and adipose tissue metabolism during lactation. J Endocrinol 1992;135(2):195202.Google Scholar
Tucker, HA. Hormones, mammary growth, and lactation: a 41-year perspective. J Dairy Sci 2000;83(4):874884. https://www.researchgate.net/publication/246637154_Lactation_and_its_Hormonal_Control.CrossRefGoogle ScholarPubMed
Whitworth, N. Lactation in humans. Psychoneuroendocrinology 1988;13(1–2):171188. https://linkinghub.elsevier.com/retrieve/pii/0306453088900133.Google Scholar
Speroff, L, Glass, RH, Kase, NG. Clinical Gynecologic Endocrinology and Infertility, 6th ed. Baltimore, MD: Lippincott Williams & Wilkins; 1999.Google Scholar
Kruger, TH, Haake, P, Haverkamp, J, et al. Effects of acute prolactin manipulation on sexual drive and function in males. J Endocrinol 2003;179(3):357365.Google Scholar
Costello, LC, Franklin, RB. Effect of prolactin on the prostate. Prostate 1994;24(3):162166.Google Scholar
Sheth, AR, Mugatwala, PP, Shah, GV. Occurrence of prolactin in human semen. Fertil Steril 1975;26(9):905907.CrossRefGoogle ScholarPubMed
Shah, GV, Desai, RB, Sheth, AR. Effect of prolactin on metabolism of human spermatozoa. Fertil Steril 1976;27(11):12921294.Google Scholar
Soma-Pillay, P, Nelson-Piercy, C, Tolppanen, H, et al. Physiological changes in pregnancy. Cardiovasc J Afr 2016;27(2):8994.Google Scholar
Hernandez-Andrade, E, Villanueva-Diaz, C, Ahued-Ahued, JR. Growth hormone and prolactin in maternal plasma and amniotic fluid during normal gestation. Rev Invest Clin 2005;57(5):671675.Google Scholar
Shennan, DB. Regulation of water and solute transport across mammalian plasma cell membranes by prolactin. J Dairy Res 1994;61(1):155166.Google Scholar
Prolactin autoantibodies. In: Autoantibodies. E-book. Elsevier; 1996:400402. https://linkinghub.elsevier.com/retrieve/pii/B9780444823830500613.Google Scholar
Neidhart, M. Prolactin in autoimmune diseases. Exp Biol Med 1998;217(4):408419. http://ebm.sagepub.com/lookup/doi/10.3181/00379727-217-44251.Google Scholar
Walker, SE, Allen, SH, McMurray, RW. Prolactin and autoimmune disease. Trends Endocrinol Metab 1993;4(5):147151.Google Scholar
Egli, M, Leeners, B, Kruger, TH. Prolactin secretion patterns: basic mechanisms and clinical implications for reproduction. Reproduction 2010;140(5):643654.CrossRefGoogle ScholarPubMed
Roky, R, Paut-Pagano, L, Goffin, V, et al. Distribution of prolactin receptors in the rat forebrain. Immunohistochemical study. Neuroendocrinology 1996;63(5):422429.Google Scholar
Clapp, C, Martial, JA, Guzman, RC, Rentier-Delrue, F, Weiner, RI. The 16-kilodalton N-terminal fragment of human prolactin is a potent inhibitor of angiogenesis. Endocrinology 1993;133(3):12921299.CrossRefGoogle ScholarPubMed
Clapp, C, Torner, L, Gutiérrez-Ospina, G, et al. The prolactin gene is expressed in the hypothalamic-neurohypophyseal system and the protein is processed into a 14-kDa fragment with activity like 16-kDa prolactin. Proc Natl Acad Sci U S A 1994;91(22):1038410388.CrossRefGoogle ScholarPubMed
Clapp, C, Weiner, RI. A specific, high affinity, saturable binding site for the 16-kilodalton fragment of prolactin on capillary endothelial cells. Endocrinology 1992;130(3):13801386.Google Scholar
Lissoni, P, Mandala, M, Rovelli, F, et al. Paradoxical stimulation of prolactin secretion by L-dopa in metastatic prostate cancer and its possible role in prostate-cancer-related hyperprolactinemia. Eur Urol 2000;37:569572.Google Scholar
Leav, I, Merk, FB, Lee, KF, et al. Prolactin receptor expression in the developing human prostate and in hyperplastic, dysplastic, and neoplastic lesions. Am J Pathol 1999;154(3):863870. https://linkinghub.elsevier.com/retrieve/pii/S0002944010653333.Google Scholar
Touraine, P, Martini, J-F, Zafrani, B, et al. Increased expression of prolactin receptor gene assessed by quantitative polymerase chain reaction in human breast tumors versus normal breast tissues. J Clin Endocrinol Metab 1998;83(2):667674. https://academic.oup.com/jcem/article/83/2/667/2865659.Google Scholar
Wennbo, H, Gebre-Medhin, M, Gritli-Linde, A, et al. Activation of the prolactin receptor but not the growth hormone receptor is important for induction of mammary tumors in transgenic mice. J Clin Invest 1997;100(11):27442751.CrossRefGoogle Scholar
Goffin, V, Touraine, P, Pichard, C, Bernichtein, S KP. Should prolactin be reconsidered as a therapeutic target in human breast cancer? Mol Cell Endocrinol 1999;151(1–2):7987.CrossRefGoogle ScholarPubMed
Eniola, OW, Adetola, AA, Abayomi, BT. A review of female infertility; important etiological factors and management. J Microbiol Biotechnol Res 2017;2(3):379385.Google Scholar
Cheung, CY. Prolactin suppresses luteinizing hormone secretion and pituitary responsiveness to luteinizing hormone-releasing hormone by a direct action at the anterior pituitary. Endocrinology 1983;113(2):632638.CrossRefGoogle ScholarPubMed
Milenkovic, L, D’Angelo, G, Kelly, PA, Weiner, RI. Inhibition of gonadotropin hormone-releasing hormone release by prolactin from GIT neuronal cell lines through prolactin receptors. Proc Natl Acad Sci U S A 1994;91(4):12441247.Google Scholar
Glass, MR, Shaw, RW, Butt, WR, Edwards, RL, London, DR. An abnormality of oestrogen feedback in amenorrhoea-galactorrhoea. BMJ 1975;3(5978):274275. http://www.bmj.com/cgi/doi/10.1136/bmj.3.5978.274.CrossRefGoogle ScholarPubMed
McNeilly, KP, Glasier, A, Jonassen, J. Evidence for direct inhibition of ovarian function by prolactin. J Reprod Fert 1982;65:559569.Google Scholar
Dorrington, JH, Gore-Langton, RE. Antigonadal action of prolactin: further studies on the mechanism of inhibition of follicle stimulating hormone-induced aromatase activity in rat granulosa cell cultures. Endocrinology 1982;110(5):17011707.Google Scholar
McNatty, KP, Sawers, RS, McNeilly, AS. A possible role for prolactin in control of steroid secretion by human graffian follicle. Nature 1974;250(5468):653655.CrossRefGoogle Scholar
Del Pozo, E, Wyss, H, Tolis, G, et al. Prolactin and deficient luteal function. Obstet Gynecol 1979;53(3):282286.Google Scholar
Feltus, FA, Groner, B, Melner, MH. Stat5-mediated regulation of the human type II 3a hydroxysteroid dehydrogenase isomerase gene activation by prolactin. Mol Endocrinol 1999;13(7):10841093.Google Scholar
Singh, P, Singh, M, Cugati, G, Singh, A. Hyperprolactinemia: an often missed cause of male infertility. J Hum Reprod Sci 2011;4(2):102103.CrossRefGoogle ScholarPubMed
Cameron, DF, Murray, FT, Drylie, DD. Ultrastructural lesions in testes from hyperprolactinemic men. J Androl 1984;5(4):283293.Google Scholar
Lee, DY, Oh, YK, Yoon, BK, Choi, D. Prevalence of hyperprolactinemia in adolescents and young women with menstruation-related problems. Am J Obstet Gynecol 2012;206(3):213.e1–213.e5.Google Scholar
Minakami, H, Abe, N, Oka, N, et al. Prolactin release in polycystic ovarian syndrome. Endocrinol Jpn 1988;35(2):303310.Google Scholar
Tyson, JB, Ito, P, Guyda, H. Studies of prolactin in human pregnancy. Am J Obstet Gynecol 1972;113:1420.Google Scholar
Tyson, JE, Friesen, HG. Factors influencing the secretion of human prolactin and growth hormone in menstrual and gestational women. Am J Obstet Gynecol 1973;116:377387.Google Scholar
Barberia, JM, Abu-Fadil, S, Kletzky, OA, Nakamura, RM, Mishell, DR Jr. Serum prolactin patterns in early human gestation. Am J Obstet Gynecol 1975;121:11071110.CrossRefGoogle ScholarPubMed
Kleinberg, DL, Noel, GL, Frantz, AG. Galactorrhea: a study of 235 cases, including 48 with pituitary tumors. N Engl J Med 1977;296(11):589600. http://www.nejm.org/doi/abs/10.1056/NEJM197703172961103.Google Scholar
Alexander, JM, Biller, BMK, Bikkal, H. Clinically nonfunctioning pituitary tumors are monoclonal in origin. J Clin Invest 1990;86(1):336340.Google Scholar
Herman, V, Fagin, J, Gonsky, R. Clonal origin of pituitary adenomas. J Clin Endocrinol Metab 1990;71(6):14271433.Google Scholar
Zhang, X, Horwitz, GA, Heaney, AP. Pituitary tumor transforming gene (PTTG) expression in pituitary adenomas. J Clin Endocrinol Metab 1999;84(2):761767.Google Scholar
Ezzat, S, Zheng, L, Zhu, XF. Targeted expression of a human pituitary tumor-derived isoform of FGF receptor-4 recapitulates pituitary tumorigenesis. J Clin Invest 2002;109(1):6978.Google Scholar
Corenblum, B, Sirek, AMT, Horvath, E. Human mixed somatotrophic and lactotrophic pituitary adenomas. J Clin Endocrinol Metab 1976;42(5):857863.Google Scholar
Mindermann, T, Wilson, CB. Age-related and gender-related occurrence of pituitary adenomas. Clin Endocrinol (Oxf) 1994;41(3):359364. http://doi.wiley.com/10.1111/j.1365-2265.1994.tb02557.x.Google Scholar
Delgrange, E, Trouillas, J, Maiter, D. Sex-related difference in the growth of prolactinomas: a clinical and proliferation marker study. J Clin Endocrinol Metab 1997;82(7):21022107.Google Scholar
Prosser, PR, Karam, JH, Townsend, JJ, Forsham, PH. Prolactin-secreting pituitary adenomas in multiple endocrine adenomatosis, type 1. Ann Intern Med 1979;91(1):4144.Google Scholar
Elenkova, A, Аtanasova, I, Кirilov, G, et al. Autoimmune hypothyroidism is three times more frequent in female prolactinoma patients compared to healthy women: data from a cross-sectional case-control study. Endocrine 2017;57:486493.Google Scholar
Walker, JD, Grossman, A, Anderson, JV. Malignant prolactinoma with extracranial metastases: a report of three cases. Clin Endocrinol (Oxf) 1993;38(4):411419.CrossRefGoogle ScholarPubMed
Petakov, MS, Damjanović, SS, Nikolić-Durović, MM, et al. Pituitary adenomas secreting large amounts of prolactin may give false low values in immunoradiometric assays. The hook effect. J Endocrinol Invest 1998;21(3):184188. http://link.springer.com/10.1007/BF03347299.Google Scholar
St-Jean, E, Blain, F, Comtois, R. High prolactin levels may be missed by immunoradiometric assay in patients with macroprolactinomas. Clin Endocrinol (Oxf) 1996;44(3):305309.CrossRefGoogle ScholarPubMed
Barkan, AL, Chandler, WF. Giant pituitary prolactinoma with falsely low serum prolactin: the pitfall of the “high-dose hook effect.Neurosurgery 1998;42(4):913915.CrossRefGoogle ScholarPubMed
David, SR, Taylor, CC, Kinon, BJ, Breier, A. The effects of olanzapine, rispiridone, and haloperidol on plasma prolactin levels in patients with schizophrenia. Clin Ther 2000;22(9):10851096.Google Scholar
Rivera, JL, Lal, S, Ettigi, P, et al. Effect of acute and chronic neuroleptic therapy on serum prolactin levels in men and women of different age groups. Clin Endocrinol (Oxf) 1976;5(3):273282.CrossRefGoogle Scholar
McCallum, RW, Sowers, JR, Hershman, JM, Sturdevant, RA. Metoclopramide stimulates prolactin secretion in man. J Clin Endocrinol Metab 1976;42(6):11481152.Google Scholar
Mancini, AM, Guitelman, A, Vargas, CA, Debeljuk, L, Aparicio, NJ. Effect of sulpiride on serum prolactin levels in humans. J Clin Endocrinol Metab 1976;42(1):181184. https://academic.oup.com/jcem/article-lookup/doi/10.1210/jcem-42-1-181.Google Scholar
Sowers, JR, Sharp, B, McCallum, RW. Effect of domperidone, an extracerebral inhibitor of dopamine receptors, on thyrotropin, prolactin, renin, aldosterone, and 18-hydroxycorticosterone secretion in man. J Clin Endocrinol Metab 1982;54(4):869871.Google Scholar
Steiner, J, Cassar, J, Mashiter, K, et al. Effects of methyldopa on prolactin and growth hormone. BMJ 1976;1(6019):11861188. http://www.bmj.com/cgi/doi/10.1136/bmj.1.6019.1186.CrossRefGoogle ScholarPubMed
Lee, PA, Kelly, MR, Wallin, JD. Increased prolactin levels during reserpine treatment of hypertensive patients. JAMA 1976;235(21):23162317.Google Scholar
Fearrington, EL, Rand, CH, Rose, JD. Hyperprolactinemia-galactorrhea induced by verapamil. Am J Cardiol 1983;51(8):1466–7. https://linkinghub.elsevier.com/retrieve/pii/0002914983903363.Google Scholar
Veldhuis, JD, Borges, JLC, Drake, CR, et al. Divergent influences of the structurally dissimilar calcium entry blockers, diltiazem and verapamil, on the thyrotropin-and gonadotropin-releasing hormone-stimulated anterior pituitary hormone secretion in man. J Clin Endocrinol Metab 1985;60(1):144149.Google Scholar
Cowen, PJ, Sargent, PA. Changes in plasma prolactin during SSRI treatment: evidence for a delayed increase in 5-HT neurotransmission. J Psychopharmacol 1997;11(4):345348. http://journals.sagepub.com/doi/10.1177/026988119701100410.Google Scholar
Meltzer, H, Bastani, B, Jayathilake, K, Maes, M. Fluoxetine, but not tricyclic antidepressants, potentiates the 5-hydroxytryptophan-mediated increase in plasma cortisol and prolactin secretion in subjects with major depression or with obsessive compulsive disorder. Neuropsychopharmacology 1997;17(1):111.Google Scholar
Honbo, KS, van Herle, AJ, Kellett, KA. Serum prolactin levels in untreated primary hypothyroidism. Am J Med 1978;64(5):782787.CrossRefGoogle ScholarPubMed
Snyder, PJ, Jacobs, LS, Utiger, RD, Daughaday, WH. Thyroid hormone inhibition of the prolactin response to thyrotropin-releasing hormone. J Clin Invest. 1973;52(9):23242329.Google Scholar
Groff, TR, Shulkin, BL, Utiger, RD, Talbert, LM. Amenorrhea-galactorrhea, hyperprolactinemia, and suprasellar pituitary enlargement as presenting features of primary hypothyroidism. Obstet Gynecol 1984;63(3 Suppl):86S-89S.Google Scholar
Grubb, MR, Chakeres, D, Malarkey, WB. Patients with primary hypothyroidism presenting as prolactinomas. Am J Med 1987;83(4):765769.Google Scholar
Morley, JE, Hodgkinson, DH, Kalk, WJ. Galactorrhea and hyperprolactinemia associated with chest wall injury. J Clin Endocrinol Metab 1977;45(5):931935.Google Scholar
Lim, VS, Kathpalia, SC, Frohman, LA. Hyperprolactinemia and impaired pituitary response to suppression and stimulation in chronic renal failure: reversal after transplantation. J Clin Endocrinol Metab 1979;48(1):101107.Google Scholar
Sievertsen, GD, Lim, VS, Nakawatase, C, Frohman, LA. Metabolic clearance and secretion rates of human prolactin in normal subjects and patients with chronic renal failure. J Clin Endocrinol Metab 1980;50(5):846852.Google Scholar
Schlechte, J, Dolan, K, Sherman, B, Chapler, F, Luciano, A. The natural history of untreated hyperprolactinemia: a prospective analysis. J Clin Endocrinol Metab 1989;68(2):412418. https://academic.oup.com/jcem/article-lookup/doi/10.1210/jcem-68-2-412.Google Scholar
Martin, TL, Kim, M, Malarkey, WB. The natural history of idiopathic hyperprolactinemia. J Clin Endocrinol Metab 1985;60:855888.Google Scholar
Sluijmer, AV, Lappöhn, LR. Clinical history and outcome of 59 patients with idiopathic hyperprolactinemia. Fertil Steril 1992;58(1):7277.Google Scholar
Carlson, HE, Markoff, E, Lee, DW. On the nature of serum prolactin in two patients with macroprolactinemia. Fertil Steril 1992;58:7887.Google Scholar
Vallette-Kasic, S, Morange-Ramos, I, Selim, A, et al. Macroprolactinemia revisited: a study on 106 patients. J Clin Endocrinol Metab 2002;87(2):581588. https://academic.oup.com/jcem/article-lookup/doi/10.1210/jcem.87.2.8272.CrossRefGoogle Scholar
Olukoga, AO, Kane, JW. Macroprolactinaemia: validation and application of the polyethylene glycol precipitation test and clinical characterization of the condition. Clin Endocrinol (Oxf) 1999;51(1):119126.Google Scholar
Gibney, J, Smith, TP, McKenna, TJ. Clinical relevance of macroprolactin. Clin Endocrinol (Oxf) 2005;62(6):633643. http://doi.wiley.com/10.1111/j.1365-2265.2005.02243.x.Google Scholar
Gomez, F, Reyes, FI, Faiman, C. Nonpuerperal galactorrhea and hyperprolactinemia. Clinical findings, endocrine features and therapeutic responses in 56 cases. Am J Med 1977;62(5):648660.Google Scholar
Schlechte, J, Sherman, B, Halmi, N, et al. Prolactin-secreting pituitary tumors in amenorrheic women: a comprehensive study. Endocr Rev 1980;1(3):295308. https://academic.oup.com/edrv/article-lookup/doi/10.1210/edrv-1-3-295.Google Scholar
Seppälä, M, Ranta, T, Hirvonen, E. Hyperprolactinæmia and luteal insufficiency. Lancet 1976;307(7953):229230. https://linkinghub.elsevier.com/retrieve/pii/S014067367691343X.Google Scholar
Corenblum, B, Pairaudeau, N, Shewchuk, AB. Prolactin hypersecretion and short luteal phase defects. Obstet Gynecol 1976;47(4):486488.Google Scholar
Biller, BM, Baum, HB, Rosenthal, DI, et al. Progressive trabecular osteopenia in women with hyperprolactinemic amenorrhea. J Clin Endocrinol Metab 1992;75(3):692697. https://academic.oup.com/jcem/article-lookup/doi/10.1210/jcem.75.3.1517356.Google Scholar
Schlechte, J. A longitudinal analysis of premenopausal bone loss in healthy women and women with hyperprolactinemia. J Clin Endocrinol Metab 1992;75(3):698703. http://press.endocrine.org/doi/10.1210/jcem.75.3.1517357.Google Scholar
Colao, A, Di Somma, C, Loche, S, Di Sarno, , et al. Prolactinomas in adolescents: persistent bone loss after 2 years of prolactin normalization. Clin Endocrinol (Oxf) 2000;52(3):319327. http://doi.wiley.com/10.1046/j.1365-2265.2000.00902.x.Google Scholar
Carter, JN, Tyson, JE, Tolis, G. Prolactin-secreting tumors and hypogonadism in 22 men. N Engl J Med 1978;299(16):847852.Google Scholar
Segal, S, Yaffe, H, Laufer, N, Ben-David, M. Male hyperprolactinemia: effects on fertility. Fertil Steril 1979;32(5):556561.Google Scholar
Somma, C, Colao, A, Di Sarno, A. Marker and bone density responses to dopamine agonist therapy in hyperprolactinemic males. J Clin Endocrinol Metab 1998;83(3):807813.Google Scholar
Casanueva, FF, Molitch, ME, Schlechte, JA, et al. Guidelines of the Pituitary Society for the diagnosis and management of prolactinomas. Clin Endocrinol (Oxf) 2006;65(2):265273.Google Scholar
Sisam, DA, Sheehan, JP, Sheeler, LR. The natural history of untreated microprolactinomas. Fertil Steril 1987;48(1):6771. https://linkinghub.elsevier.com/retrieve/pii/S0015028216592929.Google Scholar
Costello, RT. Subclinical adenoma of the pituitary gland. Am J Pathol 1936;12(2):205–216.1.Google ScholarPubMed
Kraus, HE. Neoplastic diseases of the human hypophysis. Arch Pathol 1945;39:343349.Google Scholar
Burrow, GN, Wortzman, G, Rewcastle, NB, Holgate, RC, Kovacs, K. Microadenomas of the pituitary and abnormal sellar tomograms in an unselected autopsy series. N Engl J Med 1981;304(3):156158. http://www.nejm.org/doi/abs/10.1056/NEJM198101153040306.Google Scholar
Vance, ML. Drugs five years later. Bromocriptine. Ann Intern Med 1984;100(1):7891. http://annals.org/article.aspx?doi=10.7326/0003-4819-100-1-78.Google Scholar
Colao, A, Savastano, S. Medical treatment of prolactinomas. Nat Rev Endocrinol 2011;7(5):267278.Google Scholar
Webster, J, Piscitelli, G, Polli, A, et al. A comparison of cabergoline and bromocriptine in the treatment of hyperprolactinemic amenorrhea. N Engl J Med 1994;331(14):904909. http://www.nejm.org/doi/abs/10.1056/NEJM199410063311403.Google Scholar
Verhelst, J, Abs, R, Maiter, D, et al. Cabergoline in the treatment of hyperprolactinemia: a study in 455 patients. J Clin Endocrinol Metab 1999;84(7):25182522. https://academic.oup.com/jcem/article-lookup/doi/10.1210/jcem.84.7.5810.Google Scholar
Rizk, B. Treatment of ovarian hyperstimulation syndrome. In: Rizk, B, ed. Ovarian Hyperstimulation Syndrome. Cambridge: Cambridge University Press; 2006:200226.Google Scholar
Garcia-Velasco, JA. How to avoid ovarian hyperstimulation syndrome: a new indication for dopamine agonists. Reprod Biomed Online 2009;18:S71S75. https://linkinghub.elsevier.com/retrieve/pii/S147264831060452X.Google Scholar
Leitao, VMS, Moroni, RM, Seko, LMD, Nastri, CO, Martins, WP. Cabergoline for the prevention of ovarian hyperstimulation syndrome: systematic review and meta-analysis of randomized controlled trials. Fertil Steril 2014;101(3):664.e7–675.e7. https://linkinghub.elsevier.com/retrieve/pii/S0015028213032585.Google Scholar
Kleinberg, DL, Boyd, AE, Wardlaw, S, et al. Pergolide for the treatment of pituitary tumors secreting prolactin or growth hormone. N Engl J Med 1983;309(12):704709. http://www.nejm.org/doi/abs/10.1056/NEJM198309223091205.Google Scholar
Schade, R, Andersohn, F, Suissa, S, Haverkamp, W, Garbe, E. Dopamine agonists and the risk of cardiac-valve regurgitation. N Engl J Med 2007;356(1):2938.Google Scholar
Zanettini, R, Antonini, A, Gatto, G, et al. Valvular heart disease and the use of dopamine agonists for Parkinson’s disease. N Engl J Med 2007;356(1):3946. http://www.nejm.org/doi/abs/10.1056/NEJMoa054830.Google Scholar
Simonis, G, Fuhrmann, JT. Strasser, RH. Meta-analysis of heart valve abnormalities in Parkinson’s disease patients treated with dopamine agonists. Mov Disord 2007;22(13):19361942.Google Scholar
Antonini, A, Poewe, W. Fibrotic heart-valve reactions to dopamine-agonist treatment in Parkinson’s disease. Lancet Neurol 2007;6(9):826829. https://linkinghub.elsevier.com/retrieve/pii/S1474442207702181.Google Scholar
Mann, WA. Treatment for prolactinomas and hyperprolactinaemia: a lifetime approach. Eur J Clin Invest 2011;41(3):334342. http://doi.wiley.com/10.1111/j.1365-2362.2010.02399.x.Google Scholar
Kletzky, OA, Vermesh, M. Effectiveness of vaginal bromocriptine in treating women with hyperprolactinemia. Fertil Steril 1989;51(2):269272.Google Scholar
Motta, T, de Vincentiis, S, Marchini, M, Colombo, N, D’Alberton, A. Vaginal cabergoline in the treatment of hyperprolactinemic patients intolerant to oral dopaminergics. Fertil Steril 1996;65(2):440442. https://linkinghub.elsevier.com/retrieve/pii/S0015028216581138.Google Scholar
Leong, KS, Foy, PM, Swift, AC, et al. CSF rhinorrhoea following treatment with dopamine agonists for massive invasive prolactinomas. Clin Endocrinol (Oxf) 2000;52(1):4349. http://doi.wiley.com/10.1046/j.1365-2265.2000.00901.x.Google Scholar
Biller, BM, Molitch, ME, Vance, ML, et al. Treatment of prolactin-secreting macroadenomas with the once-weekly dopamine agonist cabergoline. J Clin Endocrinol Metab 1996;81(6):23382343. https://academic.oup.com/jcem/article-lookup/doi/10.1210/jcem.81.6.8964874.Google Scholar
Van der Lely, AJ, Brownell, J, Lamberts, SW. The efficacy and tolerability of CV 205-502 (a nonergot dopaminergic drug) in macroprolactinoma patients and in prolactinoma patients intolerant to bromocriptine. J Clin Endocrinol Metab 1991;72(5):11361141.Google Scholar
Molitch, ME. Macroprolactinoma size reduction with dopamine agonists. Endocrinologist 1997;7(5):390398.Google Scholar
Molitch, ME, Elton, RL, Blackwell, RE, et al. Bromocriptine as primary therapy for prolactin secreting macroadenomas: results of a prospective multicenter study. J Clin Endocrinol Metab 1985;60(4):698705.Google Scholar
Moster, ML, Savino, PJ, Schatz, NJ, et al. Visual function in prolactinoma patients treated with bromocriptine. Ophthalmology 1985;92(10):13321341.Google Scholar
De Rosa, M, Colao, A, Di Sarno, A, et al. Cabergoline treatment rapidly improves gonadal function in hyperprolactinemic males: a comparison with bromocriptine. Eur J Endocrinol 1998;138(3):286293. https://eje.bioscientifica.com/view/journals/eje/138/3/286.xml.Google Scholar
De Rosa, M, Zarrilli, S, Vitale, G, et al. Six months of treatment with cabergoline restores sexual potency in hyperprolactinemic males: an open longitudinal study monitoring nocturnal penile tumescence. J Clin Endocrinol Metab 2004;89(2):621625. https://academic.oup.com/jcem/article-lookup/doi/10.1210/jc.2003-030852.Google Scholar
Colao, A, Vitale, G, Cappabianca, P, et al. Outcome of cabergoline treatment in men with prolactinoma: effects of a 24-month treatment on prolactin levels, tumor mass, recovery of pituitary function, and semen analysis. J Clin Endocrinol Metab 2004;89(4):17041711.Google Scholar
Warfield, A. Bromocriptine treatment of prolactin-secreting pituitary adenomas may restore pituitary function. Ann Intern Med 1984;101(6):783785. http://annals.org/article.aspx?doi=10.7326/0003-4819-101-6-783.Google Scholar
Turkalj, I, Braun, P, Krupp, P. Surveillance of bromocriptine in pregnancy. JAMA 1982;247(11):15891591. http://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.1982.03320360039028.Google Scholar
Robert, E, Musatti, L, Piscitelli, G, Ferrari, CI. Pregnancy outcome after treatment with the ergot derivative, cabergoline. Reprod Toxicol 1996;10(4):333337. https://linkinghub.elsevier.com/retrieve/pii/0890623896000639.Google Scholar
Bajwa, S, Mohan, P, Bajwa, SS, Singh, A. Management of prolactinoma with cabergoline treatment in a pregnant woman during her entire pregnancy. Indian J Endocrinol Metab 2011;15(Suppl 3):S267S270. http://www.ijem.in/text.asp?2011/15/7/267/84883.Google Scholar
Liuzzi, A, Dallabonzana, D, Oppizzi, G, et al. Low doses of dopamine agonists in the long-term treatment of macroprolactinomas. N Engl J Med 1985;313(11):656659. http://www.nejm.org/doi/abs/10.1056/NEJM198509123131103.Google Scholar
Colao, A, Di Sarno, A, Cappabianca, P, et al. Withdrawal of long-term cabergoline therapy for tumoral and nontumoral hyperprolactinemia. N Engl J Med 2003;349(21):20232033. http://www.nejm.org/doi/abs/10.1056/NEJMoa022657.Google Scholar
Thorner, MO, Perryman, RL, Rogol, AD, et al. Rapid changes of prolactinoma volume after withdrawal and reinstitution of bromocriptine. J Clin Endocrinol Metab 1981;53(3):480483.CrossRefGoogle ScholarPubMed
Van’t Verlaat, JW, Croughs, RJM. Withdrawal of bromocriptine after long-term therapy for macroprolactinomas; effect on plasma prolactin and tumour size. Clin Endocrinol (Oxf) 1991;34(3):175178. http://doi.wiley.com/10.1111/j.1365-2265.1991.tb00289.x.Google Scholar
Passos, VQ, Souza, JJ, Musolino, NR, Bronstein, MD. Long-term follow-up of prolactinomas: normoprolactinemia after bromocriptine withdrawal. J Clin Endocrinol Metab 2002;87(8):35783582.Google Scholar
Feigenbaum, SL, Downey, DE, Wilson, CB, Jaffe, RB. Transsphenoidal pituitary resection for preoperative diagnosis of prolactin-secreting pituitary adenoma in women: long term follow-up. J Clin Endocrinol Metab 1996;81(5):17111719. https://academic.oup.com/jcem/article-lookup/doi/10.1210/jcem.81.5.8626821.Google Scholar
Randall, RV, Laws, JE, Abboud, CF, et al. Transsphenoidal microsurgical treatment of prolactin-producing pituitary adenomas. Results in 100 patients. Mayo Clin Proc 1983;58(2):108121. https://www.ncbi.nlm.nih.gov/pubmed/6681646.Google Scholar
Klibanski, A. Prolactinomas. N Engl J Med 2010;362(13):12191226. http://www.nejm.org/doi/abs/10.1056/NEJMcp0912025.Google Scholar
Loeffler, JS, Shih, HA. Radiation therapy in the management of pituitary adenomas. J Clin Endocrinol Metab 2011;96(7):19922003.Google Scholar

References

Stein, FI, Leventhal, ML. Amenorrhoea associated with bilateral polycystic ovaries. Am J Obstet Gynecol 1935;29:181191.Google Scholar
Greenblatt, RB. Chemical induction of ovulation. Fertil Steril 1961;60:766769.Google Scholar
Kovacs, GT, Pepperell, RJ, Evans, JH. Induction of ovulation with human pituitary gonadotrophin (HPG): the Australian experience. Aust N Z J Obstet Gynaecol 1989;29:315318.Google Scholar
Lunenfeld, B, Sulimovici, S, Rabau, E. L’Induction de l’ovulation les amenorhees hypophysaires par un trait-mentcombine de gonadotrophines urinaeres menopausiques et de gonadotrophines chorioniques. Compt Rendus Soc Fr Gynecol 1962;5:287.Google Scholar
Cohen, J, Audebert, A, De Brux, J, Giorgi, H. Les stérilités poar dysovulation: rôle pronotisque et thérapeutique de la biopsie ovairenne percoelioscopique. J Gynécol Obstet Biol Reprod (Paris) 1972;1:657671.Google Scholar
Cohen, J. Laparoscopic surgical treatment of infertility related to PCOS revisited. In: Kovacs, GT, Norman, R, eds. Polycystic Ovary Syndrome. Cambridge: Cambridge University Press; 2007:159176.Google Scholar
Gjönnaess, H. Polycystic ovarian syndrome treated by ovarian electrocautery through the laparoscope. Fertil Steril 1984;41:2025.Google Scholar
Daniell, JF, Miller, W. Polycystic ovaries treated by laparoscopic laser vaporization. Fertil Steril 1989;51:232236.Google Scholar
Petrucco, OM. Laparoscopic CO2 laser drilling of sheep ovaries-interval assessment of histological changes and adhesion formation. Abstracts of the Seventh Annual Scientific Meeting of The Fertility Society of Australia, Newcastle;1988:21.Google Scholar
Keckstein, J. Laparoscopic treatment of polycystic ovarian syndrome. In: Sutton, CJG, ed. Bailliere’s Clinical Obstetrics and Gynaecology. Laparoscopic Surgery Vol. 3 Iss. 3; 1989:563581.Google Scholar
Asada, H, Kishi, I, Kaseda, S, et al. Laparoscopic treatment of polycystic ovaries with the holmium: YAG laser. Fertil Steril 2002;77:852853.Google Scholar
Gürgan, T, Yarali, H, Urman, B. Laparoscopic treatment of polycystic ovarian disease. Hum Reprod 1994;9:573577.Google Scholar
Heylen, SM, Puttemans, PJ, Brosens, IA. Polycystic ovarian disease treated by laparoscopic argon laser capsule drilling: comparison of vaporization versus perforation technique. Hum Reprod 1994;9:10381042.Google Scholar
Farquhar, C, Vandekerckhove, P, Arnot, M, Lilford, R. Laparoscopic “drilling” by diathermy or laser for ovulation induction in anovulatory polycystic ovary syndrome. Cochrane Database Syst Rev 2000;2:CD001122.Google Scholar
Balen, AH, Jacobs, HS. A prospective study comparing unilateral and bilateral laparoscopic ovarian diathermy in women with the polycystic ovary syndrome. Fertil Steril 1994;62:921925.Google Scholar
Roy, KK, Baruah, J, Moda, N, Kumar, S. Evaluation of unilateral versus bilateral ovarian drilling in clomiphene citrate resistant cases of polycystic ovarian syndrome. Arch Gynecol Obstet 2009;280:573578.Google Scholar
Youssef, H, Atallah, MM. Unilateral ovarian drilling in polycystic ovarian syndrome: a prospective randomized study. Reprod Biomed Online 2007;15:457462.Google Scholar
Gordts, S, Campo, R, Rombauts, L, Brosens, I. Transvaginal hydrolaparoscopy as an outpatient procedure for infertility investigation. Hum Reprod 1998;13:99103.Google Scholar
Daraï, E, Coutant, C, Dessolle, L, Ballester, M. Transvaginal hydrolaparoscopy. Minerva Chir 2009;64:365372.Google Scholar
Gordts, S, Gordts, S, Puttemans, P, et al. Transvaginal hydrolaparoscopy in the treatment of polycystic ovary syndrome. Fertil Steril 2009;91:25202526.Google Scholar
Badawy, A, Khiary, M, Ragab, A, Hassan, M, Sherief, L. Ultrasound-guided transvaginal ovarian needle drilling (UTND) for treatment of polycystic ovary syndrome: a randomized controlled trial. Fertil Steril 2009;91:11641167.Google Scholar
Zhu, W, Li, X, Chen, X, Lin, Z, Zhang, L. Ovarian interstitial YAG-laser: an effective new method to manage anovulation in women with polycystic ovary syndrome. Am J Obstet Gynecol 2006;195:458463.Google Scholar
Zhu, WJ, Li, XM, Chen, XM, Lin, Z, Zhang, L. Transvaginal, ultrasound-guided, ovarian, interstitial laser treatment in anovulatory women with clomifene-citrate-resistant polycystic ovary syndrome. BJOG 2006;113:810816.Google Scholar
Zhu, W, Fu, Z, Chen, X, et al. Transvaginal ultrasound-guided ovarian interstitial laser treatment in anovulatory women with polycystic ovary syndrome: a randomized clinical trial on the effect of laser dose used on the outcome. Fertil Steril 2010;94:268275.Google Scholar
Api, M. Could transvaginal, ultrasound-guided ovarian interstitial laser treatment replace laparoscopic ovarian drilling in women with polycystic ovary syndrome resistant to clomiphene citrate? Fertil Steril 2009;92:20392040.Google Scholar
Kaya, H, Sezik, M, Ozkaya, O. Evaluation of a new surgical approach for the treatment of clomiphene citrate-resistant infertility in polycystic ovary syndrome: laparoscopic ovarian multi-needle intervention. J Minim Invasive Gynecol 2005;12:355358.Google Scholar
Mercorio, F, Mercorio, A, Di Spiezio Sardo, A, et al. Evaluation of ovarian adhesion formation after laparoscopic ovarian drilling by second-look minilaparoscopy. Fertil Steril 2007;88:894899.Google Scholar
Api, M. Is ovarian reserve diminished after laparoscopic ovarian drilling? Gynecol Endocrinol 2009;25:159165.Google Scholar
Weerakiet, S, Lertvikool, S, Tingthanatikul, Y, et al. Ovarian reserve in women with polycystic ovary syndrome who underwent laparoscopic ovarian drilling. Gynecol Endocrinol 2007;2:16.Google Scholar
Hendriks, M-L, van der Valk, P, Lambalk, CB, et al. Extensive tissue damage of bovine ovaries after bipolar ovarian drilling compared to monopolar electrocoagulation or carbon dioxide laser. Fertil Steril 2010;93:969975.Google Scholar
Vizer, M, Kiesel, L, Szabó, I, et al. Assessment of three-dimensional sonographic features of polycystic ovaries after laparoscopic ovarian electrocautery. Fertil Steril 2007;88:894899.Google Scholar
Lunde, O, Djoseland, O, Grottum, P. Polycystic ovarian syndrome: a follow-up study on fertility and menstrual pattern in 149 patients 15-25 years after ovarian wedge resection. Hum Reprod 2001; 16:14791485.Google Scholar
Kovacs, GT, Clarke, S, Burger, HG, Healy, DL, Vollenhoven, B. Surgical or medical treatment of polycystic ovary syndrome: a cost-benefit analysis. Gynecol Endocrinol 2002;16:5355.Google Scholar
Campo, S. Ovulatory cycles, pregnancy outcome and complications after surgical treatment of polycystic ovary syndrome. Obstet Gynecol Surv 1998;53:297308.Google Scholar
Kovacs, G, Buckler, H, Bangah, M, et al. Treatment of anovulation due to polycystic ovarian syndrome by laparoscopic ovarian electrocautery. Br J Obstet Gynaecol 1991;98:3035.CrossRefGoogle ScholarPubMed
Amer, SA, Laird, S, Ledger, WL, Li, TC. Effect of laparoscopic ovarian diathermy on circulating inhibin B in women with anovulatory polycystic ovary syndrome. Hum Reprod 2007;22:389394.Google Scholar
Seow, KM, Juan, CC, Hwang, JL, Ho, LT. Laparoscopic surgery in polycystic ovary syndrome: reproductive and metabolic effects. Semin Reprod Med 2008;26:101110.Google Scholar
Palomba, S, Falbo, A, Zullo, F. Management strategies for ovulation induction in women with polycystic ovary syndrome and known clomifene citrate resistance. Curr Opin Obstet Gynecol 2009;21:465473.Google Scholar
Thessaloniki ESHRE/ASRM-sponsored PCOS Consensus Workshop Group. Consensus on infertility treatment related to polycystic ovary syndrome. Hum Reprod 2008;23:462477.Google Scholar
Farquhar, C, Vandekerckhove, P, Lilford, R. Laparoscopic “drilling” by diathermy or laser for ovulation induction in anovulatory polycystic ovary syndrome. Cochrane Database Syst Rev 2001;4:CD001122.Google Scholar
Farquhar, C, Lilford, RJ, Marjoribanks, J, Vandekerckhove, P. Laparoscopic “drilling” by diathermy or laser for ovulation induction in anovulatory polycystic ovary syndrome. Cochrane Database Syst Rev 2005;3:CD001122.Google Scholar
Farquhar, C, Lilford, RJ, Marjoribanks, J, Vandekerckhove, P. Laparoscopic ‘drilling’ by diathermy or laser for ovulation induction in anovulatory polycystic ovary syndrome. Cochrane Database Syst Rev 2007;3:CD001122.Google Scholar
Farquhar, C, Brown, J, Marjoribanks, J. Laparoscopic drilling by diathermy or laser for ovulation induction in anovulatory polycystic ovary syndrome. Cochrane Database Syst Rev 2012;6:CD001122.Google Scholar
International evidence-based guideline for the assessment and management of polycystic ovary syndrome. Copyright Monash University, Melbourne Australia 2018.Google Scholar
Hamed, H, Hasan, AF, Ahmed, OG, Ahmed, MA. Metformin versus laparoscopic ovarian drilling in clomiphene- and insulin-resistant women with polycystic ovary syndrome. Int J Gynecol Obstet 2010;108:143–141.Google Scholar
Palomba, S, Orio, F Jr., Nardo, LG, et al. Metformin administration versus laparoscopic ovarian diathermy in clomiphene citrate-resistant women with polycystic ovary syndrome: a prospective parallel randomized double-blind placebo-controlled trial. J Clin Endocrinol Metab 2004;89:48014809.Google Scholar
Abu Hashim, H, Foda, O, Ghayaty, E, Elawa, A. Laparoscopic ovarian diathermy after clomiphene failure in polycystic ovary syndrome: is it worthwhile? A randomized controlled trial. Arch Gynecol Obstet 2011;284:13031309.Google Scholar
Amer, S, Li, TC, Metwally, M, Emarh, M, Ledger, WL. Randomized controlled trial comparing laparoscopic ovarian diathermy with clomiphene citrate as a first-line method of ovulation induction in women with polycystic ovary syndrome. Hum Reprod 2009;24:219225.Google Scholar

References

Fatemi, HM, Garcia-Velasco, J. Avoiding ovarian hyperstimulation syndrome with the use of gonadotropin-releasing hormone agonist trigger. Fertil Steril 2015;103:870873.Google Scholar
Basile, N, Garcia-Velasco, JA. The state of “freeze-for-all” in human ARTs. J Assist Reprod Genet 2016;33:15431550.Google Scholar
Coates, A, Kung, A, Mounts, E, et al. Optimal euploid embryo transfer strategy, fresh versus frozen, after preimplantation genetic screening with next generation sequencing: a randomized controlled trial. Fertil Steril 2017;107:723730.Google Scholar
Sparks, AE. Human embryo cryopreservation-methods, timing, and other considerations for optimizing an embryo cryopreservation program. Semin Reprod Med 2015;33:128144.Google Scholar
Weinerman, R, Mainigi, M. Why we should transfer frozen instead of fresh embryos: the translational rationale. Fertil Steril 2014;102:1018.Google Scholar
Shapiro, BS, Daneshmand, ST, Garner, FC, et al. Evidence of impaired endometrial receptivity after ovarian stimulation for in vitro fertilization: a prospective randomized trial comparing fresh and frozen-thawed embryo transfer in normal responders. Fertil Steril 2011;96:344348.Google Scholar
Meyer, WR, Novotny, DB, Fritz, MA, et al. Effect of exogenous gonadotropins on endometrial maturation in oocyte donors. Fertil Steril 1999;71:109114.Google Scholar
Ubaldi, F, Bourgain, C, Tournaye, H, et al. Endometrial evaluation by aspiration biopsy on the day of oocyte retrieval in the embryo transfer cycles in patients with serum progesterone rise during the follicular phase. Fertil Steril 1997;67:521526.Google Scholar
Cha, J, Sun, X, Dey, SK. Mechanisms of implantation: strategies for successful pregnancy. Nat Med 2012;18:17541767.Google Scholar
Horcajadas, JA, Mínguez, P, Dopazo, J, et al. Controlled ovarian stimulation induces a functional genomic delay of the endometrium with potential clinical implications. J Clin Endocrinol Metab 2008;93:45004510.Google Scholar
Liu, Y, Lee, KF, Ng, EH, Yeung, WS, Ho, PC. Gene expression profiling of human peri-implantation endometria between natural and stimulated cycles. Fertil Steril 2008;90:21522164.Google Scholar
Liu, Y, Kodithuwakku, SP, Ng, PY, et al. Excessive ovarian stimulation up-regulates the Wnt-signaling molecule DKK1 in human endometrium and may affect implantation: an in vitro co-culture study. Hum Reprod 2010;25:479490.Google Scholar
de Waal, E, Vrooman, LA, Fischer, E, et al. The cumulative effect of assisted reproduction procedures on placental development and epigenetic perturbations in a mouse model. Hum Mol Genet 2015;24:69756985.Google Scholar
Denomme, MM, Mann, MR. Genomic imprints as a model for the analysis of epigenetic stability during assisted reproductive technologies. Reproduction 2012;144:393409.Google Scholar
Market-Velker, BA, Zhang, L, Magri, LS, Bonvissuto, AC, Mann, MR. Dual effects of superovulation: loss of maternal and paternal imprinted methylation in a dose-dependent manner. Hum Mol Genet 2010;19:3651.Google Scholar
Trounson, A, Mohr, L. Human pregnancy following cryopreservation, thawing and transfer of an eight-cell embryo. Nature 1983;305:707709.Google Scholar
Yu, L, Jia, C, Lan, Y, et al. Analysis of embryo intactness and developmental potential following slow freezing and vitrification. Syst Biol Reprod Med 2017;63:285293.Google Scholar
Cobo, A, de los Santos, MJ, Castellò, D, et al. Outcomes of vitrified early cleavage-stage and blastocyst-stage embryos in a cryopreservation program: evaluation of 3,150 warming cycles. Fertil Steril 2012;98:11381146.Google Scholar
Devine, K, Connell, MT, Richter, KS, et al. Single vitrified blastocyst transfer maximizes liveborn children per embryo while minimizing preterm birth. Fertil Steril 2015;103:14541460.Google Scholar
Zech, J, Brandao, A, Zech, M, et al. Elective frozen-thawed embryo transfer (FET) in women at risk for ovarian hyperstimulation syndrome. Reprod Biol 2018;18:4652.Google Scholar
Itskovitz, J, Boldes, R, Levron, J, et al. Induction of preovulatory luteinizing hormone surge and prevention of ovarian hyperstimulation syndrome by gonadotropin-releasing hormone agonist. Fertil Steril 1991;56:213220.Google Scholar
Albano, C, Smitz, J, Camus, M, et al. Comparison of different doses of gonadotropin-releasing hormone antagonist cetrorelix during controlled ovarian hyperstimulation. Fertil Steril 1997;67:917922.Google Scholar
Engmann, L, Benadiva, C, Humaidan, P. GnRH agonist trigger for the induction of oocyte maturation in GnRH antagonist IVF cycles: a SWOT analysis. Reprod Biomed Online 2016;32:274285.Google Scholar
Al-Inany, HG, Youssef, MA, Ayeleke, RO, et al. Gonadotrophin-releasing hormone antagonists for assisted reproductive technology. Cochrane Database Syst Rev 2016;4:CD001750.Google Scholar
European IVF-Monitoring Consortium (EIM); European Society of Human Reproduction and Embryology (ESHRE); Kupka, MS, D’Hooghe, T, Ferraretti, AP, et al. Assisted reproductive technology in Europe, 2011: results generated from European registers by ESHRE. Hum Reprod 2016;31:233248.Google Scholar
Yen, SS, Llerena, O, Little, B, Pearson, OH. Disappearance rates of endogenous luteinizing hormone and chorionic gonadotropin in man. J Clin Endocrinol Metab 1968;28:17631767.Google Scholar
Fatemi, HM, Popovic-Todorovic, B, Humaidan, P, et al. Severe ovarian hyperstimulation syndrome after gonadotropin-releasing hormone (GnRH) agonist trigger and “freeze-all” approach in GnRH antagonist protocol. Fertil Steril 2014;101:1008-1011.Google Scholar
Ling, LP, Phoon, JW, Lau, MS, et al. GnRH agonist trigger and ovarian hyperstimulation syndrome: relook at ‘freeze-all strategy’ Reprod Biomed Online 2014;29:392394.Google Scholar
Venetis, CA, Kolibianakis, EM, Papanikolaou, E, et al. Is progesterone elevation on the day of human chorionic gonadotrophin administration associated with the probability of pregnancy in in vitro fertilization? A systematic review and meta-analysis. Hum Reprod Update 2007;13:343355.Google Scholar
Fatemi, HM, Van Vaerenbergh, I. Significance of premature progesterone rise in IVF. Curr Opin Obstet Gynecol 2015;27:242248.Google Scholar
Handyside, AH. 24-chromosome copy number analysis: a comparison of available technologies. Fertil Steril 2013;100:595602.Google Scholar
Sermon, K, Capalbo, A, Cohen, J, et al. The why, the how and the when of PGS 2.0: current practices and expert opinions of fertility specialists, molecular biologists, and embryologists. Mol Hum Reprod 2016;22:845857.Google Scholar
Kalem, Z, Kalem, MN, Gürgan, T. Methods for endometrial preparation in frozen-thawed embryo transfer cycles. J Turk Ger Gynecol Assoc 2016;17:168172.Google Scholar
O’Connor, KA, Brindle, E, Miller, RC, et al. Ovulation detection methods for urinary hormones: precision, daily and intermittent sampling and a combined hierarchical method. Hum Reprod 2006;21:14421452.Google Scholar
Andersen, AG, Als-Nielsen, B, Hornnes, PJ, Franch Andersen, L. Time interval from human chorionic gonadotrophin (HCG) injection to follicular rupture. Hum Reprod 1995;10:32023205.CrossRefGoogle ScholarPubMed
Al-Azemi, M, Kyrou, D, Kolibianakis, EM, et al. Elevated progesterone during ovarian stimulation for IVF. Reprod Biomed Online 2012;24:381388.Google Scholar
Fatemi, HM, Kyrou, D, Bourgain, C, et al. Cryopreserved-thawed human embryo transfer: spontaneous natural cycle is superior to human chorionic gonadotropin-induced natural cycle. Fertil Steril 2010;94:20542058.Google Scholar
Weissman, A, Horowitz, E, Ravhon, A, et al. Spontaneous ovulation versus HCG triggering for timing natural-cycle frozen–thawed embryo transfer: a randomized study. Reprod Biomed Online 2011;23:484489.Google Scholar
Saito, K, Kuwahara, A, Ishikawa, T, et al. Endometrial preparation methods for frozen-thawed embryo transfer are associated with altered risks of hypertensive disorders of pregnancy, placenta accreta, and gestational diabetes mellitus. Hum Reprod 2019;34(8):15671575.Google Scholar
El-Toukhy, T, Coomarasamy, A, Khairy, M, et al. The relationship between endometrial thickness and outcome of medicated frozen embryo replacement cycles. Fertil Steril 2008;89:832839.Google Scholar
Chen, ZJ, Shi, Y, Sun, Y, et al. Fresh versus frozen embryos for infertility in the polycystic ovary syndrome. N Engl J Med 2016;375:523533.Google Scholar
Shi, Y, Sun, Y, Hao, C, et al. Transfer of fresh versus frozen embryos in ovulatory women. N Engl J Med 2018;378:126136.Google Scholar
Vuong, LN, Dang, VQ, Ho, TM, et al. IVF transfer of fresh or frozen embryos in women without polycystic ovaries. N Engl J Med 2018;378:137147.Google Scholar
Zhang, X, Ma, C, Wu, Z, et al. Frozen-thawed embryo transfer cycles have a lower incidence of ectopic pregnancy compared with fresh embryo transfer cycles. Reprod Sci 2018;25:14311435.Google Scholar
Xiao, S, Mo, M, Hu, X, et al. Study on the incidence and influences on heterotopic pregnancy from embryo transfer of fresh cycles and frozen-thawed cycles. J Assist Reprod Genet 2018;35:677681.Google Scholar
Spijkers, S, Lens, JW, Schats, R, Lambalk, CB. Fresh and frozen-thawed embryo transfer compared to natural conception: differences in perinatal outcome. Gynecol Obstet Invest 2017;82:538546.Google Scholar
Maheshwari, A, Pandey, S, Amalraj Raja, E, et al. Is frozen embryo transfer better for mothers and babies? Can cumulative meta-analysis provide a definitive answer? Hum Reprod Update 2018;24:3558.Google Scholar
Maheshwari, A, Raja, EA, Bhattacharya, S. Obstetric and perinatal outcomes after either fresh or thawed frozen embryo transfer: an analysis of 112,432 singleton pregnancies recorded in the Human Fertilisation and Embryology Authority anonymized dataset. Fertil Steril 2016;106:17031708.Google Scholar
Ishihara, O, Araki, R, Kuwahara, A, et al. Impact of frozen-thawed single-blastocyst transfer on maternal and neonatal outcome: an analysis of 277,042 single-embryo transfer cycles from 2008 to 2010 in Japan. Fertil Steril 2014;101:128133.Google Scholar
Gu, F, Li, S, Zheng, L, et al. Perinatal outcomes of singletons following vitrification versus slow-freezing of embryos: a multicenter cohort study using propensity score analysis. Hum Reprod 2019;34(9):17881798.Google Scholar
Ginström Ernstad, E, Spangmose, AL, Opdahl, S, et al. Perinatal and maternal outcome after vitrification of blastocysts: a Nordic study in singletons from the CoNARTaS group. Hum Reprod 2019;34(11):22822289.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×