Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-16T13:20:22.733Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  12 August 2009

Derek W. G. Sears
Affiliation:
University of Arkansas
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afiattalab, F. and Wasson, J. T. (1980) Composition of the metal phases in ordinary chondrites: implications regarding classification and metamorphism. Geochim. Cosmochim. Acta 44, 431–46CrossRefGoogle Scholar
Ahrens, L. H. (1965) Observations on the Fe–Si–Mg relationship in chondrites. Geochim. Cosmochim. Acta 29, 801–6CrossRefGoogle Scholar
Ahrens, L. H. (1970) The composition of stony meteorites (VII): Observations on fractionation between the L and H chondrites. Earth Planet. Sci. Lett. 9, 345–7CrossRefGoogle Scholar
Ahrens, L. H. and Michaelis, H. (1969) The composition of stony meteorites III. Some inter-element relationships. Earth Planet. Sci. Lett. 5, 395–400CrossRefGoogle Scholar
Ahrens T. J., O'Keefe J. D. and Lange M. A. (1989) Formation of atmospheres during accretion of the terrestrial planets. In Origin and Evolution of Planetary and Satellite Atmospheres. Ed. S. K. Atreya, J. B. Pollack and M. S. Matthews. University of Arizona Press, pp. 328–85
Akridge, G., Benoit, P. H. and Sears, D. W. G. (1998) Regolith and megaregolith formation of H-chondrites: Thermal constraints on the parent body. Icarus 132, 185–95CrossRefGoogle Scholar
Alexander, C. M. O'D. (1994) Trace element distributions within ordinary chondrite chondrules: Implications for chondrule formation conditions and precursors. Geochim. Cosmochim. Acta 58, 3451–67CrossRefGoogle Scholar
Alexander C. M. O'D. (1996) Recycling and volatile loss in chondrule formation. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 233–41
Alexander, C. M. O'D and Wang, J. (2001) Iron isotopes in chondrules: Implications for the role of evaporation during chondrule formation. Meteorit. Planet. Sci. 36, 419–28CrossRefGoogle Scholar
Alexander, C. M. O'D., Hutchison, R. and Barber, D. J. (1989) Origin of chondrule rims and interchondrule matrices in unequilibrated ordinary chondrites. Earth Planet. Sci. Lett. 95, 187–207CrossRefGoogle Scholar
Alexander, C. M. O'D., Grossman, J. N., Wang, J., et al. (2000) The lack of potassium-isotopic fractionation in Bishunpur chondrules. Meteorit. Planet. Sci. 35, 859–68CrossRefGoogle Scholar
Allen, I. S., Nozette, S. and Wilkening, L. L. (1980) A study of chondrule rims and chondrule irradiation records in unequilibrated ordinary chondrites. Geochim. Cosmochim. Acta 44, 1161–75CrossRefGoogle Scholar
Anders, E. (1964) Origin, age and composition of meteorites. Space Sci. Rev. 3, 583–714CrossRefGoogle Scholar
Anders, E. (1977) Critique of “Nebular condensation of moderately volatile elements and their abundances in ordinary chondrites” by C. M. Wai and J. T. Wasson. Earth Planet. Sci. Lett. 36, 14–20CrossRefGoogle Scholar
Anders E. (1988) Circumstellar material in meteorites: noble gases, carbon and nitrogen. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 927–55
Anders, E., Higuchi, H., Ganapathy, R. and Morgan, J. W. (1976) Chemical fractionations in meteorites – X. C3 chondrites. Geochim. Cosmochim. Acta 40, 1131–9CrossRefGoogle Scholar
Ashworth, J. R. (1977) Matrix textures in unequilibrated ordinary chondrites. Earth Planet. Sci. Lett. 35, 25–34CrossRefGoogle Scholar
Asphaug, E. and Nolan, M. C. (1992) Analytical and numerical predictions for regolith thickness on asteroids (abstract). Lunar Planet. Sci. XⅫI, 43–4Google Scholar
Baldwin, B. and Shaeffer, Y. (1971) Ablation and breakup of large meteoroids during atmospheric entry. J. Geophys. Res. 76, 4653–68CrossRefGoogle Scholar
Ball R. S. (1910) The Story of the Heavens. Cassell and Co
Batchelor, J. D., Symes, S. J. K., Benoit, P. H. and Sears, D. W. G. (1997) Constraints on the thermal and mixing history of lunar surface materials and comparisons with basaltic meteorites. J. Geophys. Res. 102, 19321–35CrossRefGoogle Scholar
Bell J. F. and Keil K. (1988) Spectral alteration effects in chondritic gas-rich breccias: Implication for S-class and Q-class asteroids. Proc. 18th Lunar Planet. Sci. Conf. Lunar and Planetary Institute, pp. 573–80
Bell J. F., Davis D. R., Hartmann W. K. and Gaffey M. J. (1989) Asteroids: The big picture. In Asteroids II. Ed. R. P. Binzel, T. Gehrels and M. S. Matthews. University of Arizona Press, pp. 921–45
Belton, M. J. S., Veverka, J., Thomas, P., et al. (1992) Galileo encounter with 951 Gaspra – First pictures of an asteroid. Science 257, 1647–52CrossRefGoogle ScholarPubMed
Bennett, M. E. and McSween, H. Y. (1996) Revised model calculations for the thermal histories for ordinary chondrite parent bodies. Meteorit. Planet. Sci. 31, 783–92CrossRefGoogle Scholar
Benoit, P. H. and Sears, D. W. G. (1992) The breakup of a meteorite parent body and the delivery of meteorites to Earth. Science 255, 1685–7CrossRefGoogle Scholar
Benoit, P. H. and Sears, D. W. G. (1993) A recent meteorite shower in Antarctica with an unusual orbital history. Earth Planet. Sci. Lett. 120, 463–71CrossRefGoogle Scholar
Benoit, P. H. and Sears, D. W. G. (1996) Rapid changes in the nature of the H chondrites falling to Earth. Meteorit. Planet. Sci. 31, 81–6CrossRefGoogle Scholar
Berwerth, F. M. (1901) Centralblatt Min. 21, 641–7. (Cited in Merrill, 1920.)
Berzelius, J. J. (1834) Uber Meteorstein. Annal. Physik 33, 1–32, 113–48Google Scholar
Bhandari N., Goswami J. N., Gupta S. K., et al. (1972) Collision controlled radiation history of the lunar regolith. Proc. 3rd Lunar Sci. Conf. Lunar and Planetary Institute, pp. 2811–29
Binzel R. P., Gehrels T. and Matthews M. S., Eds. (1989) Asteroids II. University of Arizona Press
Binzel, R. P., Schelte, J. B., Burbine, T. H. and Sunshine, J. M. (1996) Spectral properties of near-Earth asteroids: Evidence for sources of ordinary chondrite meteorites. Science 273, 946–8CrossRefGoogle ScholarPubMed
Birck, J.-L. and Allegre, C. J. (1985) Evidence for the presence of 53Mn in the early solar system. Geophys. Res. Lett. 12, 745–8CrossRefGoogle Scholar
Bischoff, A. (1998) Aqueous alteration of carbonaceous chondrites: Evidence for preaccretionary alteration – a review. Meteorit. Planet. Sci. 33, 1113–22CrossRefGoogle Scholar
Bischoff, A. and Keil, K. (1983) Ca–Al-rich chondrules and inclusions in ordinary chondrites. Nature 303, 588–92CrossRefGoogle Scholar
Bischoff, A., Palme, H., Weber, H. W., et al. (1987) Petrography, shock history, chemical composition and noble gas content of the lunar meteorites Yamato-82192 and -82193. Mem. Natl. Inst. Polar Res., Spec. Issue 46, 21–42Google Scholar
Bischoff, A., Palme, H., Ash, R. D., et al. (1993a) Paired Renazzo-type (CR) carbonaceous chondrites from the Sahara. Geochim. Cosmochim. Acta 57, 1587–603CrossRefGoogle Scholar
Bischoff, A., Palme, H., Schultz, L., et al. (1993b) ACFER 182 and paired samples, an iron-rich carbonaceous chondrite – Similarities with ALH85085 and relationship to CR chondrites. Geochim. Cosmochim. Acta 57, 2631–48CrossRefGoogle Scholar
Blander, M. (1975) Critical comments on a proposed cosmothermometer. Geochim. Cosmochim. Acta 39, 1315–20CrossRefGoogle Scholar
Blander M. (1983) Condensation of chondrules. In Chondrules and Their Origins. Ed. E. A. King. Lunar and Planetary Institute, pp. 1–9
Blander, M. and Katz, J. L. (1967) Condensation of primordial dust. Geochim. Cosmochim. Acta 31, 1025–34CrossRefGoogle Scholar
Bogard, D. D. (1994) Impact ages of meteorites: A synthesis. Meteoritics 30, 244–68CrossRefGoogle Scholar
Bogard, D. D. (1995) 39Ar–40Ar ages of two shocked L chondrites (abstract). Lunar Planet. Sci. XXVI, 1–4Google Scholar
Borg J., Chaumont J., Jouret C., Langevin Y. and Maurette M. (1980) Solar wind radiation damage in lunar dust grains and the characteristics of the ancient solar wind. In Proceedings of a Conference on the Ancient Sun. Ed. R. O. Pepin, J. A. Eddy and R. B. Merrill. Pergamon, pp. 431–61
Borgstrom, L. H. (1904) The Shelburne meteorite. Trans. Roy. Astron. Soc. Canada pp. 69–94Google Scholar
Boss, A. P. (1988) High temperatures in the early solar nebula. Science 241, 5–6CrossRefGoogle ScholarPubMed
Boss, A. P. (1993) Evolution of the solar nebula. II. Thermal structure during nebula formation. Astrophys. J. 417, 351–67CrossRefGoogle Scholar
Boss A. P. (1996a) Large scale processes in the solar nebula. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 29–34
Boss A. P. (1996b) A concise guide to chondrule formation models. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 257–63
Boss, A. P. and Graham, J. A. (1993) Clumpy disk accretion and chondrule formation. Icarus 106, 168–78CrossRefGoogle Scholar
Boynton, W. V. (1975) Fractionation in the solar nebula – Condensation of yttrium and the rare earth elements. Geochim. Cosmochim. Acta 39, 569–84CrossRefGoogle Scholar
Bradley J. P., Sandford S. A. and Walker R. M. (1988) Interplanetary dust particles. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 861–95
Brearley, A. J. (1993) Matrix and fine-grained rims in the unequilibrated CO3 chondrite, ALHA77307 – Origins and evidence for diverse, primitive nebular dust components. Geochim. Cosmochim. Acta 57, 1521–50CrossRefGoogle Scholar
Brearley A. J. (1996) Nature of matrix in unequilibrated chondrites and its possible relationship to chondrules. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 137–51
Brearley, A. J. and Geiger, T. (1991) Mineralogical and chemical studies bearing on the origin of accretionary rims in the Murchison CM2 carbonaceous chondrite. Meteoritics 26, 323Google Scholar
Brearley, A. J., Scott, E. R. D., Keil, K., et al. (1989) Chemical, isotopic and mineralogical evidence for the origin of matrix in ordinary chondrites. Geochim. Cosmochim. Acta 53, 2081–93CrossRefGoogle Scholar
Brezina A. (1885) Die Meteoritiensammlung des k. k. mineralogischen Hofkabinetes in Wein am 1 Mai 1885. Alfred Hölder
Bridges, J. C. (1999). Mineralogical controls on the oxygen isotopic compositions of UOCs. Geochim. Cosmochim. Acta 63, 945–51CrossRefGoogle Scholar
Bridges, J. C., Franchi, I. A., Hutchsion, R., Sexton, A. S. and Pillinger, C. T. (1997) Mineralogical and oxygen isotopic constraints on the formation of Chainpur (LL3) and Parnallee (LL3) chondrules (abstract). Lunar Planet. Sci. XXVIII, 1–5Google Scholar
Bridges, J. C., Franchi, I. A., Hutchsion, R., Sexton, A. S. and Pillinger, C. T. (1998) Correlated mineralogy, chemical compositions, oxygen isotopic composition and sizes of chondrules. Earth Planet. Sci. Lett. 155, 183–96CrossRefGoogle Scholar
Brigham, C. A., Yabuki, H., Ouyang, Z., et al. (1986) Silica-bearing chondrules and clasts in ordinary chondrites. Geochim. Cosmochim. Acta 50, 1655–66CrossRefGoogle Scholar
Britt D. T. and Consolmagno G. (2002) Stony meteorite porosities and densities: A review of data through 2001. Unpublished paper
Britt, D. T. and Pieters, C. M. (1991) Darkening in gas-rich ordinary chondrites: Spectral modeling and implications for the regoliths of ordinary chondrite parent bodies (abstract). Lunar Planet. Sci. XⅫ, 1–4Google Scholar
Britt D. T., Yeomans D., Housen K. and Consolmagno G. (2002) Asteroid density, porosity and structure. In Asteroids III. Ed. W. F. Bottke, A. Cellino, P. Paolicchi and R. P. Binzel. University of Arizona Press, pp. 485–500
Browning, L. B., McSween, H. Y. and Zolensky, M. E. (1996) Correlated alteration effects in CM carbonaceous chondrites. Geochim. Cosmochim. Acta 60, 2621–33CrossRefGoogle Scholar
Brownlee, D. E. and Rajan, R. S. (1973) Micrometeorite craters discovered on chondrule-like objects from the Kapoeta meteorite. Science 182, 1341–4CrossRefGoogle ScholarPubMed
Brownlee D. E., Bates B. and Beauchamp R. H. (1983) Meteor ablation spherules as chondrule analogs. In Chondrules and Their Origins. Ed. E. A. King. Lunar and Planetary Institute, pp. 10–25
Brownlee, D. E., Bates, B. and Schramm, L. (1997) The elemental composition of stony cosmic spherules. Meteoritics 32, 157–75CrossRefGoogle Scholar
Buchwald V. F. (1975) Handbook of Iron Meteorites, Their History, Composition and Structure. University of California Press
Buchwald V. F. (1992) Meteoritter – nøglen til Jordens fortid. GlydendaL
Bunch, T. E. and Chang, S. (1980) Carbonaceous chondrites–II. Carbonaceous chondrite phyllosilicates and light element geochemistry as indicators of parent body processes and surface conditions. Geochim. Cosmochim. Acta 44, 1543–77CrossRefGoogle Scholar
Bunch T. E. and Rajan R. S. (1988) Meteorite regolithic breccias. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 144–64
Bunch, T. E., Quaide, W., Prinz, M., Keil, K. and Dowty, E. (1972) Lunar ultramafic glasses, chondrules and rocks. Nat. Phys. Sci. 239, 57–9CrossRefGoogle Scholar
Bunch, T. E., Chang, S., Cassen, P., Reynolds, R. and Lissauer, J. (1985) Non-nebula origin for CAI rims (abstract). Lunar Planet. Sci. XVI, 97–8Google Scholar
Burbage, E. M., Burbage, G. R., Fowler, W. A. and Hoyle, F. (1957) Synthesis of the elements in stars. Rev. Mod. Phys. 29, 547–640CrossRefGoogle Scholar
Burbine T. H., McCoy T. J., Meibom A., Gladman B. and Keil K. (2003) Meteorite parent bodies: Their number and identification. In Asteroids III. Ed. W. F. Bottke, A. Cellino, P. Paolicchi and R. P. Binzel. University of Arizona Press, pp. 653–67
Burke J. G. (1986) Cosmic debris: Meteorites in History. University of California Press
Butler, R. F. (1972) Natural remanent magnetization and thermomagnetic properties of the Allende meteorite. Earth Planet. Sci. Lett. 17, 1–2CrossRefGoogle Scholar
Caffee M. W. and Macdougall J. D. (1988) Compaction ages. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 289–98
Caffee, M. W., Hohenberg, C. M., Swindle, T. D. and Goswami, J. N. (1987) Evidence in meteorites for an active early Sun. Astrophys. J. 313, L31–5CrossRefGoogle Scholar
Caffee M. W., Goswami J. N., Hohenberg C. M., Marti K. and Reedy R. C. (1988) Irradiation records in meteorites. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 205–45
Cameron, A. G. W. (1966) The accumulation of chondritic material. Earth Planet. Sci. Lett. 1, 93–6CrossRefGoogle Scholar
Cameron, A. G. W. (1995) The first ten million years in the solar nebula. Meteoritics 30, 133–61CrossRefGoogle Scholar
Cameron, A. G. W. and Fegley, M. B. (1982) Nucleation and condensation in the primitive solar nebula. Icarus 52, 1–13CrossRefGoogle Scholar
Carr, M. H., Kirk, R., McEwen, A., et al. (1994) The geology of Gaspra. Icarus 107, 61–71CrossRefGoogle Scholar
Cassen, P. (1994) Utilitarian models of the solar nebula. Icarus 112, 405–29CrossRefGoogle Scholar
Cassen P. (1996a) Overview of models of the solar nebula: Potential chondrule-forming environments. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 21–8
Cassen, P. (1996b) Models for the fractionation of moderately volatile elements in the solar nebula. Meteoritics 31, 793–806CrossRefGoogle Scholar
Cassen, P. (2001) Nebular thermal evolution and the properties of primitive planetary materials. Meteorit. Planet. Sci. 36, 671–700CrossRefGoogle Scholar
Cassen P. and Boss A. P. (1988) Protostellar collapse, dust grains and solar system formation. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 304–28
Castaing, R. (1952) Application des sondes electronique a une methode d'analyse ponctuelle chimique et crystallographique. Office Nat. d'Études Res. Aéronaut. 55, 27–31Google Scholar
Chambers, J. E. and Cassen, P. (2002) The effects of nebula surface density profile and giant-planet eccentricities on planetary accretion in the inner solar system. Meteorit. Planet. Sci. 37, 1523–40CrossRefGoogle Scholar
Chambers, J. E. and Wetherill, G. W. (1998) Making the terrestrial planets: N-body integrations of planetary embryos in three dimensions. Icarus 136, 304–27CrossRefGoogle Scholar
Chapman, C. R. (1976) Asteroids as meteorite parent-bodies: The astronomical perspective. Geochim. Cosmochim. Acta 40, 701–19CrossRefGoogle Scholar
Chapman, C. R. (1996) S-type asteroids, ordinary chondrites, and space weathering: The evidence from Galileo's fly-bys of Gaspra and Ida. Meteoritics 31, 699–725CrossRefGoogle Scholar
Chapman, C. R. (2001) Eros at very high resolution: Meteoritical implications. Meteorit. Planet. Sci. 36, Supplement, A39Google Scholar
Chapman, C. R., Veverka, J., Thomas, P. C., et al. (1995) Discovery and physical properties of Dactyl A satellite of asteroid 243 Ida. Nature 374, 7–8CrossRefGoogle Scholar
Chapman, C. R., Ryan, E. V., Merline, W. J., et al. (1996a) Cratering on Ida. Icarus 120, 77–86CrossRefGoogle Scholar
Chapman, C. R., Veverka, J., Belton, M. J. S., Neukum, G. and Morrison, D. (1996b) Cratering on Gaspra. Icarus 120, 231–45CrossRefGoogle Scholar
Chapman, C. R., Merline, W. J. and Thomas, P. (1999) Cratering on Mathilde. Icarus 140, 28–33CrossRefGoogle Scholar
Chapman, C. R., Merline, W. J., Thomas, P. C., et al. (2002) Impact history of Eros: craters and boulders. Icarus 155, 104–18CrossRefGoogle Scholar
Chladni E. F. F. (1794) Ueber den Orsprung der von Pallas gefunden und anderer ihr ähnlicher Eisenmassen. J. F. Hartknoch
Christophe-Michel-Lévy, M. (1976) La matrice noire et blanche de la chondrite de Tieschitz (H3). Earth Planet. Sci. Lett. 30, 143–50CrossRefGoogle Scholar
Christophe-Michel-Lévy, M. (1981) Some clues to the history of H-group chondrites. Earth Planet. Sci. Lett. 54, 67–80CrossRefGoogle Scholar
Christophe-Michel-Lévy, M. (1987) Microchondrules in the Mezö-Madaras and Krymka unequilibrated chondrites (abstract). Meteoritics 22, 3–5Google Scholar
Cirlin, E.-H., Taylor, L. A. and Lofgren, G. E. (1985) Fe/Mg KD for olivine/liquid in chondrules: Effects of cooling rate (abstract). Lunar Planet. Sci. XVI, 1–3Google Scholar
Clarke, C. L., Lin, D. N. C. and Pringle, J. E. (1990) Pre-conditions for discgenerated FU Orionis outbursts. Mon. Nat. Roy. Astron. Soc. 242, 439–46CrossRefGoogle Scholar
Clayton, D. D. (1980a) Chemical and isotopic fractionation by grain size separation. Earth Planet. Sci. Lett. 47, 199–210CrossRefGoogle Scholar
Clayton, D. D. (1980b) Chemical energy in cold-cloud aggregates: The origin of meteoritic chondrules. Astrophys. J.. 239, L37–41CrossRefGoogle Scholar
Clayton D. D. (1983) Chemical state of pre-solar matter. In Chondrules and Their Origins. Ed. E. A. King. Lunar and Planetary Institute, pp. 26–36
Clayton D. D. (1988) Stellar nucleosynthesis and chemical evolution of the solar neighborhood. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 1021–62
Clayton, R. N. (1993) Oxygen isotopes in meteorites. Ann. Rev. Earth Planet. Sci. 21, 115–49CrossRefGoogle Scholar
Clayton, R. N. and Mayeda, T. K. (1984) The oxygen isotope record in Murchison and other carbonaceous chondrites. Earth Planet. Sci. Lett. 67, 151–61CrossRefGoogle Scholar
Clayton, R. N. and Mayeda, T. K. (1985) Oxygen isotopes in chondrules from enstatite chondrites: Possible identification of a major nebular reservoir (abstract). Lunar Planet. Sci. XVI, 142–3Google Scholar
Clayton, R. N. and Mayeda, T. K. (1999) Links among CI and CM chondrites. Lunar Planet. Sci. XXX, abstract no. 1795Google Scholar
Clayton, R. N., Mayeda, T. K., Gooding, J. L., Keil, K. and Olsen, E. J. (1981) Redox processes in chondrules and chondrites (abstract). Lunar Planet. Sci. , 1–5Google Scholar
Clayton R. N., Onuma N., Ikeda Y., et al. (1983) Oxygen isotopic compositions of chondrules in Allende and ordinary chondrites. In Chondrules and Their Origins. Ed. E. A. King. Lunar and Planetary Institute, pp. 37–43
Clayton R. N., Mayeda T. K. and Molini-Velsko C. A. (1985) Isotopic variations in solar system material – Evaporation and condensation of silicates. In Protostars and Planets II. Ed. D. C. Black and M. S. Matthews. University of Arizona Press, pp. 755–71
Clayton, R. N., Mayeda, T. K., Rubin, A. E. and Wasson, J. T. (1987) Oxygen isotopes in Allende chondrules and coarse-grained rims (abstract). Lunar Planet. Sci. XVIII, 1–8Google Scholar
Clayton, R. N., Mayeda, T. K., Goswami, J. N. and Olsen, E. J. (1991) Oxygen isotopes studies of ordinary chondrites. Geochim. Cosmochim. Acta 55, 2317–37CrossRefGoogle Scholar
Clayton, R. N., Mayeda, T. K. and Nagahara, H. (1992) Oxygen isotope relationship among primitive achondrites (abstract). Lunar Planet. Sci. XⅫI, 2–3Google Scholar
Colson, R. O., Taylor, L. A. and McKay, G. A. (1986) Predictive thermodynamic modeling for trace element partitioning in magmatic systems (abstract.). Lunar Planet. Sci. XVII, 1–4Google Scholar
Colson, R. O., McKay, G. A. and Taylor, L. A. (1988) Temperature and composition dependencies of trace element partitioning: Olivine/melt and low-Ca pyroxene/melt. Geochim. Cosmochim. Acta 52, 539–53CrossRefGoogle Scholar
Connolly H. C. Jr and Hewins R. H. (1996) Constraints on chondrule precursors from experimental data. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 129–35
Connolly, H. C. Jr, Radomsky, P. M. and Hewins, R. H. (1988) Chondrule texture: The influence of bulk composition and heating time for uniform thermal conditions (abstract). Lunar Planet. Sci. XIX, 2–0Google Scholar
Connolly, H. C. Jr, Hewins, R. H. and Lofgren, G. E. (1993) Flash melting of chondrule precursors in excess of 1600 °C. Series I: Type II (B1) chondrule composition experiments (abstract). Lunar Planet. Sci. XⅪV, 329–30Google Scholar
Craig H. (1964) Petrological and compositional relationships in meteorites. In Isotopic and Cosmic Chemistry. Ed. H. Craig, S. L. Miller and G. J. Wasserburg. North-Holland, pp. 401–51
Cronin J. R., Pizzarello S. and Cruikshank D. P. (1988) Organic matter in carbonaceous chondrites, planetary satellites, asteroids and comets. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 819–57
Cuzzi, J. N., Dobrovolskis, A. R. and Champney, J. M. (1993) Particle–gas dynamics in the midplane of a protoplanetary nebula. Icarus 106, 102–34CrossRefGoogle Scholar
Cuzzi J. N., Dobrovolskis A. R. and Hogan R. C. (1996) Turbulence, chondrules, and planetesimals. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 35–43
Daubree G. A. (1879) Études Synthétiques de Geologic Expérimentale. Dunod, p. 530
Davis, A. M. and MacPherson, G. J. (1988) Further isotopic and chemical investigations of an isotopically heterogeneous Vigarano inclusion. Meteoritics 23, 2–6Google Scholar
Davis A. M. and MacPherson G. J. (1996) Thermal processing in the solar nebula: Constraints from refractory inclusions. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 71–6
Davis, A. M., Hashimoto, A., Clayton, R. N. and Mayeda, T. K. (1990) Isotope mass fractionation during evaporation of Mg2SiO4. Nature 347, 6–5CrossRefGoogle Scholar
Davis D. R., Chapman C. R., Greenberg R., Weidenschilling S. and Harris A. W. (1979) Collisional evolution of asteroids: Populations, rotations, and velocities. In Asteroids. Ed. T. Gehrels. University of Arizona Press, pp. 528–57
DeHart, J. M., Lofgren, G. E., Lu, J., Benoit, P. H. and Sears, D. W. G. (1992) Chemical and physical studies of chondrites X: Cathodoluminescence studies of metamorphism and nebular processes in type 3 ordinary chondrites. Geochim. Cosmochim. Acta 56, 3791–807CrossRefGoogle Scholar
Delano, J. W. (1986) Pristine lunar glasses: Criteria, data and implications. Proc. 16th Lunar Planet. Sci. Conf., part 2. J. Geophys. Res. 91, D201–13CrossRefGoogle Scholar
Delano, J. W. (1991) Geochemical comparison of impact glasses from lunar meteorites ALHA81004 and MAC 88105 and Apollo 16 regolith 64001. Geochim. Cosmochim. Acta 55, 3019–29CrossRefGoogle Scholar
Dence M. R. and Plant A. G. (1972) Analysis of Fra Mauro and the origin of the Imbrium Basin. Proc. 3rd Lunar Sci. Conf. Lunar and Planetary Institute, pp. 379–99
Desch, S. J. and Connolly, H. C. Jr (2002) A model of the thermal processing of particles in solar nebula shocks: Application to the cooling rates of chondrules. Meteorit. Planet. Sci. 37, 183–207CrossRefGoogle Scholar
Dodd, R. T. (1967) Particle sizes in and composition of unequilibrated ordinary chondrites (abstract). Trans. AGU 48, 159Google Scholar
Dodd, R. T. (1969) Metamorphism of ordinary chondrites: a review. Geochim. Cosmochim. Acta 33, 161–203CrossRefGoogle Scholar
Dodd, R. T. (1971) The petrology of chondrules in the Sharps meteorite. Contrib. Mineral. Petrol. 31, 201–27CrossRefGoogle Scholar
Dodd, R. T. (1973) Minor element abundances in olivines in the Sharps (H-3) chondrite. Contrib. Mineral. Petrol. 42, 159–67CrossRefGoogle Scholar
Dodd, R. T. (1974) The petrology of chondrules in the Hallingeberg meteorite. Contrib. Mineral. Petrol. 47, 97–112CrossRefGoogle Scholar
Dodd, R. T. (1976) Accretion of the ordinary chondrites. Earth Planet. Sci. Lett. 28, 479–84CrossRefGoogle Scholar
Dodd, R. T. (1978a) The composition and origin of large microporphyritic chondrules in the Manych (L-3) chondrite. Earth Planet. Sci. Lett. 39, 52–66CrossRefGoogle Scholar
Dodd, R. T. (1978b) Compositions of droplet chondrules in the Manych (L-3) chondrite and the origin of chondrules. Earth Planet. Sci. Lett. 40, 71–82CrossRefGoogle Scholar
Dodd R. T. (1981) Meteorites: A Petrologic–Chemical Synthesis. Cambridge University Press
Dodd R. T. (1986) Thunderstones and Shooting Stars. Cambridge University Press
Dodd, R. T. and Teleky, L. S. (1967) Preferred orientation of olivine crystals in porphyritic chondrules. Icarus 6, 407–16CrossRefGoogle Scholar
Dodd, R. T. and Schmus, W. R. (1971) Dark-zoned chondrules. Chem. Erde 30, 59–69Google Scholar
Dodd R. T. and Walter L. S. (1972) Chemical constraints on the origin of chondrules in ordinary chondrites. In On the Origin of the Solar System. Ed. H. Reeves. Centre National de la Recherche Scientifique, pp. 293–300
Dodd, R. T., Schmus, W. R. and Koffman, D. M. (1967) A survey of the unequilibrated ordinary chondrites. Geochim. Cosmochim. Acta 31, 921–51CrossRefGoogle Scholar
Donaldson, C. H. (1979) Composition changes in a basalt melt contained in a wire loop of Pt80 Rh20: Effects of temperature, time, and oxygen fugacity. Mineral. Mag. 43, 115–19Google Scholar
Donn, B. and Sears, D. G. W. (1963) Planets and comets: Role of crystal growth in their formation. Science 140, 1208–11CrossRefGoogle ScholarPubMed
Dubmile, B., Morrill, G. and Sterzik, M. (1995) The dust subdisk in the protoplanetary nebula. Icarus 114, 237–46Google Scholar
Dunn, T. (1987) Partitioning of Hf, Lu, Ti and Mn between olivine, clinopyroxene and basaltic liquid. Contrib. Mineral. Petrol. 96, 476–84CrossRefGoogle Scholar
Eisenhour, D. and Buseck, P. R. (1993) Primordial lighting: evidence preserved in chondrites (abstract). Lunar Planet. Sci. XⅪV, 4–3Google Scholar
Eisenhour, D. and Buseck, P. R. (1995) Radiative heating and the size distribution of pre-chondrule aggregates of dust (abstract). Lunar Planet. Sci. XXVI, 365–6Google Scholar
Eisenhour, D. D., Daulton, T. L. and Buseck, P. R. (1994) Electromagnetic heating in the early solar nebula and the formation of chondrules. Science 265, 1067–70CrossRefGoogle ScholarPubMed
Evensen, N. M., Carter, S. R., Hamilton, P. J., O'Nions, R. K. and Ridley, W. I. (1979) A combined chemical–petrological study of separated chondrules from the Richardton meteorite. Earth Planet. Sci. Lett. 42, 223–36CrossRefGoogle Scholar
Farinella, P., Paollicchi, P. and Zappalà, V. (1982) The asteroids as outcomes of catastrophic collisions. Icarus 52, 409–33CrossRefGoogle Scholar
Farinella, P., Vokrouhlicky, D. and Hartmann, W. K. (1998) Meteorite delivery via Yarkovsky orbital drift. Icarus 132, 378–87CrossRefGoogle Scholar
Farrington O. C. (1905) Meteorites: Their Structure, Composition and Terrestrial relations. Published by the author in Chicago
Fegley, B. Jr and Palme, H. (1985) Evidence for oxidizing conditions in the solar nebula from Mo and W depletions in refractory inclusions in carbonaceous chondrites. Earth Planet. Sci. Lett. 75, 311–26CrossRefGoogle Scholar
Fermor, L. L. (1938) Garnets and their role in nature. Indian Assoc. Adv. Sci. Spec. Publ. 6, 87–91Google Scholar
Ferraris, C., Folco, L. and Mellini, M. (2002) Chondrule thermal history from unequilibrated H chondrites: A transmission and analytical electron microscopy study. Meteorit. Planet. Sci. 37, 1–2CrossRefGoogle Scholar
Fisher, R. V., Smith, A. L. and Roobol, M. J. (1980) Destruction of St. Pierre, Martinique, by ash-cloud surges, May 8 and 20, 1902. Geology 8, 4–72.0.CO;2>CrossRefGoogle Scholar
Fleck, R. C. Jr (1990) Comment on ‘Magnetic reconnection flares in the protoplanetary nebula and the possible origin of meteorite chondrules’. Icarus 87, 2–4. Reply, 2–4CrossRefGoogle Scholar
Ford, C. E., Russell, D. G., Craven, J. A. and Fisk, M. R. (1983) Olivine–liquid equilibria: Temperature, pressure and compositional dependence of the crystal/liquid cation partition coefficients for Mg, Ca and Mn. J. Petrol. 24, 256–65CrossRefGoogle Scholar
Fougeroux, A. D., Cadet, L. C. and Lavoisier, A. (1772) Rapport fait a l'Academie Royale des Science, d'une observation communique par M. L'Abbe Bachelay, sur une Pierre qu'on prètend etre tombèe cu Ciel pendant un orage. Observations sur la physique, sur l'histoire naturelle, et sur les ArtsJ. Physique 2, 2–5 (printed and dated 1777)Google Scholar
Franzen, M. A. and Sears, D. W. G. (2003) The Hera near-Earth asteroid sample return mission: An overview (abstract). Lunar Planet. Sci. XXⅪV, abstract no. 1032Google Scholar
Fredriksson, K. (1963) Chondrules and the meteorite parent bodies. Trans. N. Y. Acad. Sci. 25, 756–69CrossRefGoogle Scholar
Fredriksson K. (1983) Crystallinity, recrystallization, equilibration, and metamorphism in chondrites. In Chondrules and Their Origins. Ed. E. A. King. Lunar and Planetary Institute, pp. 44–52
Fredriksson, K. and Ringwood, A. E. (1963) Origin of meteoritic chondrules. Geochim. Cosmochim. Acta 27, 639–41CrossRefGoogle Scholar
Fredriksson K., Nelen J. and Fredriksson B. J. (1968) The LL-group chondrites. In Origin and Distribution of the Elements. Ed. L. H. Ahrens. Pergamon, pp. 457–66CrossRef
Fredriksson, K., Jarosewich, E. and Nelen, J. (1969) The Sharps chondrite – New evidence on the origin of chondrules and chondrites. In Meteorite Research. Ed. P. M. Millman. Reidel, pp. 155–65CrossRef
Fredriksson, K., Nelen, J., Melson, W. G., Henderson, E. P. and Anderson, C. A. (1970) Lunar glasses and micro-breccias: Properties and origin. Science 167, 6–6CrossRefGoogle ScholarPubMed
Fredriksson, K., Noonan, A. and Nelen, J. (1973) Meteoritic, lunar, and lunar impact chondrules. Moon 7, 475–82CrossRefGoogle Scholar
Fruland, R. M., King, E. A. and McKay, D. S. (1978) Allende dark inclusions. Lunar Planet. Sci. IX, 1305–29Google Scholar
Fujii N. and Miyamoto M. (1983) Constraints on the heating and cooling processes of chondrule formation. In Chondrules and Their Origins. Ed. E. A. King. Lunar and Planetary Institute, pp. 53–60
Fujimaki H., Matsu-ura M., Sunagawa I. and Aoki K. (1981) Chemical compositions of Chondrules and matrices in the ALH-77015 chondrite (L3). Proceedings of the Sixth Symposium on Antarctic Meteorites. National Institute of Polar Research, pp. 161–74
Funaki, M., Nagata, R. and Momose, K. (1981) Natural remanent magnetizations of chondrules, metallic grains and matrix of an Antarctic chondrite, ALH-769. Mem. Natl. Inst. Polar Res. Special Issue 20, 300–15Google Scholar
Gaffey, M. J. and Gilbert, S. L. (1998) Asteroid 6 Hebe: The probable parent body of the H-Type ordinary chondrites and the IIE iron meteorites. Meteorit. Planet. Sci. 33, 1281–95CrossRefGoogle Scholar
Gaffey, M. J., Burbine, T. H. and Binzel, R. P. (1993a) Asteroid spectroscopy: Progress and perspective. Meteoritics 28, 161–87CrossRefGoogle Scholar
Gaffey, M. J., Bell, J. F., Brown, R. H., et al. (1993b) Mineralogical variations within the S-type asteroids class. Icarus 106, 573–602CrossRefGoogle Scholar
Georges, P., Libourel, G. and Deloule, E. (2000) Experimental constraints on alkali condensation in chondrule formation. Meteorit. Planet. Sci. 35, 1–1CrossRefGoogle Scholar
Gibbard S. G. and Levy E. H. (1994) On the possibility of precipitation induced vertical lightning in the protoplanetary nebula (abstract). Chondrules and the Protoplanetary Disk, LPI Contrib. 844. Lunar and Planetary Institute, p. 9
Gilmour, J. D., Whitby, J. A., Turner, G., Bridges, J. C. and Hutchison, R. (2000) The iodine–xenon system in clasts and chondrules from ordinary chondrites: Implications for early solar system chronology. Meteorit. Planet. Sci. 35, 445–56CrossRefGoogle Scholar
Goldstein, J. I. and Short, J. M. (1967) The iron meteorites, their thermal history and parent bodies. Geochim. Cosmochim. Acta 31, 1733–70CrossRefGoogle Scholar
Gooding J. L. (1983) Survey of chondrule average properties in H-, L-, and LL-group chondrites: Are chondrules the same in all unequilibrated ordinary chondrites? In Chondrules and Their Origins. Ed. E. A. King. Lunar and Planetary Institute, pp. 61–87
Gooding, J. L. and Keil, K. (1981) Relative abundances of chondrule primary textural types in ordinary chondrites and their bearing on conditions of chondrule formation. Meteoritics 16, 17–43CrossRefGoogle Scholar
Gooding, J. L. and Muenow, D. W. (1976) Activated release of alkalis during the vesiculation of molten basalts under high vacuum: Implications for lunar volcanism. Geochim. Cosmochim. Acta 40, 675–86CrossRefGoogle Scholar
Gooding, J. L. and Muenow, D. W. (1977) Experimental vaporization of the Holbrook chondrite. Meteoritics 12, 4–0CrossRefGoogle Scholar
Gooding, J. L., Keil, K., Fukuoka, T. and Schmitt, R. A. (1980) Elemental abundances in chondrules from unequilibrated chondrites: Evidence for chondrule origin by melting of preexisting materials. Earth Planet. Sci. Lett. 50, 171–80CrossRefGoogle Scholar
Gooding, J. L., Mayeda, T. K., Clayton, R. N., et al. (1982) Oxygen isotopic compositions of chondrules in unequilibrated chondrites: Further petrological interpretations (abstract). Lunar Planet. Sci. ⅫI, 2–7Google Scholar
Gooding, J. L., Mayeda, T. K., Clayton, R. N. and Fukuoka, T. (1983) Oxygen isotopic heterogeneities, their petrological correlations and implicatons for melt origins of chondrules in unequilibrated ordinary chondrites. Earth Planet. Sci. Lett. 65, 209–24CrossRefGoogle Scholar
Göpel, C., Manhes, G. and Allegre, C. J. (1994) U–Pb systematics of phosphates from equilibrated ordinary chondrites. Earth Planet. Sci. Lett. 121, 153–71CrossRefGoogle Scholar
Goswami, J. N., Sahijpal, S., Kehm, K., et al. (1998) In situ determination of iodine content and I–Xe systematics in silicates and troilite phases in chondrules from the LL3 chondrite Semarkona. Meteorit. Planet. Sci. 33, 527–34CrossRefGoogle Scholar
Grabb, J. and Schultz, L. (1981) Cosmic-ray exposure ages of ordinary chondrites and their significance for parent body stratigraphy, Geochim. Cosmochim. Acta 45, 2151–60Google Scholar
Graup, G. (1981) Terrestrial chondrules, glass spherules and accretionary lapilli from the suevite, Ries Crater, Germany. Earth Planet. Sci. Lett. 55, 407–18CrossRefGoogle Scholar
Gray, C. M. and Papanastassiou, D. A. (1973) The identification of early condensates from the solar nebula. Icarus 20, 213–39CrossRefGoogle Scholar
Greenberg, J. M. (1976) Radical formation, chemical processing, and explosion of interstellar grains. Astrophys. Space Sci. 39, 9–18CrossRefGoogle Scholar
Greenberg, R. and Chapman, C. R. (1983) Asteroids and meteorites: Parent bodies and delivered samples. Icarus 55, 455–81CrossRefGoogle Scholar
Greenberg R. and Nolan M. C. (1989) Delivery of asteroids and meteorites to the inner solar system. In Asteroids II. Ed. R. P Binzel, T. Gehrels and M. S. Matthews. University of Arizona Press, pp. 779–804
Greenwood J. P. and Hess P C. (1996) Congruent melting kinetics: Constraints on chondrule formation. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 205–11
Grimm, R. E. and McSween, H. Y. Jr (1989) Water and thermal evolution of carbonaceous chondrite parent bodies. Icarus 82, 244–80CrossRefGoogle Scholar
Grimm, R. E. and McSween, H. Y. Jr (1993) Heliocentric zoning of the asteroid belt by aluminum-26 heating. Science 259, 6–5Google Scholar
Grossman, J. N. (1985) Chemical evolution of the matrix of Semarkona (abstract). Lunar Planet. Sci. XVI, 3–0Google Scholar
Grossman J. N. (1988) Formation of chondrules. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 680–96
Grossman, J. N. (1996a) The redistribution of sodium in Semarkona chondrules by secondary processes (abstract). Lunar Planet. Sci. XVII, 4–6Google Scholar
Grossman J. N. (1996b) Chemical fractionations of chondrites: Signatures of events before chondrule formation. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 243–53
Grossman, J. N. and Rubin, A. E. (1986) The origin of chondrules and clasts bearing calcic plagioclase in ordinary chondrites (abstract). Lunar Planet. Sci. XVIII, 2–9Google Scholar
Grossman, J. N. and Wasson, J. T. (1982) Evidence for primitive nebular components in chondrules from Chainpur chondrite. Geochim. Cosmochim. Acta 46, 1081–99CrossRefGoogle Scholar
Grossman, J. N. and Wasson, J. T. (1983a) Refractory precursor components of Semarkona chondrules and the fractionation of refractory elements among chondrites. Geochim. Cosmochim. Acta 47, 759–71CrossRefGoogle Scholar
Grossman J. N. (1983b) The compositions of chondrules in unequilibrated chondrites: An evaluation of models for the formation of chondrules and their precursor materials. In Chondrules and Their Origins. Ed. E. A. King. Lunar and Planetary Institute, pp. 88–121
Grossman, J. N. (1985) The origin and history of the metal and sulfide components of chondrules. Geochim. Cosmochim. Acta 49, 925–39CrossRefGoogle Scholar
Grossman, J. N. (1987) Compositional evidence regarding the origins of rims on Semarkona chondrules. Geochim. Cosmochim. Acta 51, 3003–11CrossRefGoogle Scholar
Grossman, J. N., Kracher, A. and Wasson, J. T. (1979) Volatiles in Chainpur chondrules. Geophys. Res. Lett. 6, 597–600CrossRefGoogle Scholar
Grossman, J. N., Rubin, A. E., Rambaldi, E. R., Rajan, R. S. and Wasson, J. T. (1985) Chondrules in the Qingzhen type-3 enstatite chondrite: Possible precursor components and comparison to ordinary chondrite chondrules. Geochim. Cosmochim. Acta 49, 1781–95CrossRefGoogle Scholar
Grossman J. N., Rubin A. E., Nagahara H. and King E. A. (1988a) Properties of chondrules. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 619–59
Grossman, J. N., Rubin, A. E. and MacPherson, G. J. (1988b) ALH85085 – A unique volatile-poor carbonaceous chondrite with possible implications for nebular fractionation processes. Earth Planet. Sci. Lett. 91, 33–54CrossRefGoogle Scholar
Grossman, J. N., Alexander, C. M. O'D., Wang, Jianhua and Brearley, A. J. (2000) Bleached chondrules: Evidence for widespread aqueous processes on the parent asteroids of ordinary chondrites. Meteorit. Planet. Sci. 35, 467–86CrossRefGoogle Scholar
Grossman, J. N., Alexander, C. O'D., Wang, Jianhua and Brearley, A. J. (2002) Zoned chondrules in Semarkona: Evidence for high-and low-temperature processing. Meteorit. Planet. Sci. 37, 49–73CrossRefGoogle Scholar
Grossman, L. (1972) Condensation in the primitive solar nebula. Geochim. Cosmochim. Acta 36, 597–619CrossRefGoogle Scholar
Grossman, L. and Larimer, J. W. (1974) Early chemical history of the solar system. Rev. Geophys. Space Phys. 12, 71–101CrossRefGoogle Scholar
Guimon, R. K., Keck, B. D., Weeks, K. S., DeHart, J. and Sears, D. W. G. (1985) Chemical and physical studies of type 3 chondrites-IV: Annealing studies of a type 3.4 ordinary chondrite and the metamorphic history of meteorites. Geochim. Cosmochim. Acta 49, 1515–24CrossRefGoogle Scholar
Guimon, R. K., Symes, S. J. K., Sears, D. W. G. and Benoit, P. H. (1995) Chemical and physical studies of type 3 chondrites Ⅻ: The metamorphic history of CV chondrites and their components. Meteoritics 30, 704–14CrossRefGoogle Scholar
Haack, H., Rasmussen, K. L. and Warren, P. H. (1990) Effects of regolith/megaregolith insulation on the cooling histories of different asteroids, J. Geophys. Res. 95, 5111–24CrossRefGoogle Scholar
Haidinger W. K. (1867) Die Meteoriten des k. k. Hof-Mineraliencabinetes am 1 Juli 1867, und der Fortshritte set 7 Jänuar 1859. Sitz. Kaiserlichen königlichen. Akad. Wiss. Wien.
Hamilton, P. J., Evensen, N. M. and O'Nions, R. K. (1979) Chronology and chemistry of Parnallee (LL-3) chondrules (abstract). Lunar Planet. Sci. X, 4–9Google Scholar
Harris, P. G. and Tozer, D. C. (1967) Fractionation of iron in the solar system. Nature 215, 1449–51CrossRefGoogle Scholar
Hartmann L. (1996) Astronomical observations of phenomena in protostellar disks. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 13–20
Hartmann, L. and Kenyon, S. J. (1985) On the nature of FU Orionis objects. Astrophys. J. 299, 462–78CrossRefGoogle Scholar
Hartmann W. K., Philips R. J. and Taylor G. J. (1986) Origin of the Moon. Lunar and Planetary Institute
Hashimoto, A. (1983) Evaporation metamorphism in the early solar nebula – evaporation experiments on the melt FeO–MgO–SiO2–CaO–Al2O3 and chemical fractions of primitive material. Geochim. J. 17, 111–45CrossRefGoogle Scholar
Hashimoto, A., Kumazawa, M. and Onuma, N. (1979) Evaporation metamorphism of primitive dust material in the early solar nebula. Earth Planet. Sci. Lett. 43, 13–21CrossRefGoogle Scholar
Hashimoto, A., Davis, A. M., Clayton, R. N. and Mayeda, T. K. (1989) Correlated isotopic mass fractionation of oxygen, magnesium and silicon in forsterite evaporation residues (abstract). Meteoritics 24, 275Google Scholar
Heide F. and Wlotzka F. (1995) Meteorites: Messengers from Space. Springer-Verlag
Heiken G. H., Vaniman D. T. and French B. M., Eds. (1991) Lunar Sourcebook: A User's Guide to the Moon. Cambridge University Press
Herbig G. H. (1978) Some aspects of early stellar evolution that may be relevent to the origin of the solar system. In The Origin of the Solar System. Ed. S. F. Dermott. John Wiley, pp. 219–35
Herndon, J. M. and Herndon, M. A. (1977) Aluminum-26 as a planetoid heat source in the early solar system. Meteoritics 12, 459–65CrossRefGoogle Scholar
Herzberg, C. T. (1979) The solubility of olivine in basaltic liquid: An ionic model. Geochim. Cosmochim. Acta 43, 1241–51CrossRefGoogle Scholar
Hewins R. H. (1983) Dynamic crystallization experiments as constraints on chondrule genesis. In Chondrules and Their Origins. Ed. E. A. King. Lunar and Planetary Institute, pp. 122–33
Hewins R. H. (1988) Experimental studies of chondrules. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 660–79
Hewins R. H. (1989) The evolution of chondrules. Proc. NIPR Symp Antarctic Meteorites 2. National Institute of Polar Research, pp. 200–20
Hewins, R. H. (1991) Retention of sodium during chondrule formation. Geochim. Cosmochim. Acta 55, 935–42CrossRefGoogle Scholar
Hewins R. H. (1996) Chondrules and the protoplanetary disk: An overview. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 3–9
Hewins R. H. and Connolly H. C. Jr (1996) Peak temperatures of flash-melted chondrules. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 197–204
Hewins R. H. and Newsom H. E. (1988) Igneous activity in the early solar system. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 73–101
Hewins, R. H. and Radomsky, P. M. (1990) Temperature conditions of chondrule formation. Meteoritics 25, 309–18CrossRefGoogle Scholar
Hewins, R. H., Klein, L. C. and Fasano, B. V. (1981) Conditions of formation of pyroxene excentroradial chondrules. Lunar Planet. Sci. XII, 1123–33Google Scholar
Hewins R. H., Jones R. H. and Scott E. R. D., Eds. (1996) Chondrules and the Protoplanetary Disk. Cambridge University Press
Heymann, D. (1967) On the origin of hypersthene chondrites: Ages and shock effects of black chondrites. Icarus 6, 189–221CrossRefGoogle Scholar
Hinton, R. W., Long, J. V. P., Fallick, A. E. and Pillinger, C. T. (1983) Ion microprobe measurement of D/H ratios in meteorites (abstract). Lunar Planet. Sci. XIV, 313–14Google Scholar
Holder, J. and Ryder, G. (1995) Unique glass particles from 68001 lunar core thin sections. Lunar News 58, 7Google Scholar
Hood, L. L. and Horányi, M. (1991) Gas dynamic heating of chondrule precursor grains in the solar nebula. Icarus 93, 259–69CrossRefGoogle Scholar
Hood, L. L. and Horányi, M. (1993) The nebular shock wave model for chondrule formation: one-dimensional calculations. Icarus 106, 179–89CrossRefGoogle Scholar
Hood L. L. and Kring D. A. (1996) Models for multiple heating mechanisms. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 265–76
Hoppe, P., Goswami, J. N., Krähenbühl, U. and Marti, K. (2001) Boron in Chondrules. Meteorit. Planet. Sci. 36, 1331–43CrossRefGoogle Scholar
Horányi M. and Robertson S. (1996) Chondrule formation in lightning discharges: Status of theory and experiments. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 303–10
Horányi, M., Morrill, G., Goertz, C. K. and Levy, E. H. (1985) Chondrule formation in lightning discharges. Icarus 114, 174–85CrossRefGoogle Scholar
Hörz, F. and Cintala, M. (1997) Impact experiments related to the evolution of planetary regoliths. Meteorit. Planet. Sci. 32, 179–209CrossRefGoogle Scholar
Hörz, F. and Schaal, R. B. (1981) Asteroid agglutinate formation and implications for asteroid surfaces. Icarus 46, 337–53CrossRefGoogle Scholar
Hörz F., Grieve R., Heiken G., Spudis P. and Binder A. (1991) Lunar surface processes. In Lunar Sourcebook. Ed. G. H. Heiken, D. T. Vaniman and B. M. French. Lunar and Planetary Institute, pp. 61–120
Housen, K. R. (1992) Crater ejecta velocities for impacts on rocky bodies (abstract). Lunar Planet Sci. XXIII, 5–5Google Scholar
Housen, K. R., Wilkening, L. L., Chapman, C. R. and Greenberg, R. (1979) Asteroidal regoliths. Icarus 39, 317–51CrossRefGoogle Scholar
Housley R. M. and Cirlin E. H. (1983) On the alteration of Allende chondrules and the formation of matrix. In Chondrules and Their Origins. Ed. E. A. King. Lunar and Planetary Institute, pp. 145–61
Howard, E. C. (1802) Experiments and observations on certain stony substances, which at different times are said to have fallen on the Earth; also on various kinds of native iron. Phil. Trans. 92, 168–212CrossRefGoogle Scholar
Hua, X., Adam, J., Palme, H. and El Goresy, A. (1988) Fayalite-rich rims, veins, and halos around and in forsteritic olivines in CAIs and chondrules in carbonaceous chondrites: types, compositional profiles and constraints on their formation. Geochim. Cosmochim. Acta 52, 1–3CrossRefGoogle Scholar
Huang, S., Benoit, P. H. and Sears, D. W. G. (1993a) Metal and sulfide in Semarkona chondrules and rims: Evidence for reduction, evaporation and recondensation during chondrule formation (abstract). Meteoritics 28, 3–6Google Scholar
Huang, S., Benoit, P. H. and Sears, D. W. G. (1993b) The group A3 chondrules of Krymka: Further evidence for major evaporative loss during the formation of chondrules (abstract). Lunar Planet. Sci. XXIV, 6–8Google Scholar
Huang, S., Benoit, P. H. and Sears, D. W. G. (1994) Group A5 chondrules in ordinary chondrites: their formation and metamorphism (abstract)Lunar Planet. Sci. XXV, 5–7Google Scholar
Huang, S., Akridge, G. and Sears, D. W. G. (1996a) Metal–silicate fractionation in the surface dust layers of accreting planetesimals: Implications for the formation of ordinary chondrites and the nature of asteroid surfaces. J. Geophys. Res. (Planets) 101, 29373–85CrossRefGoogle Scholar
Huang, S., Lu, J., Prinz, M., Weisberg, M. K., Benoit, P. H. and Sears, D. W. G. (1996b) Chondrules: Their diversity and the role of open-system processes during their formation. Icarus 122, 316–46CrossRefGoogle Scholar
Hughes, D. W. (1978) A disaggregation and thin section analysis of size and mass distributions of the chondrules in the Bjurböle and Chainpur meteorites. Earth Planet. Sci. Lett. 38, 391–400CrossRefGoogle Scholar
Humboldt A. V. (1849) Cosmos: A sketch of a Physical Description of the Universe 1. H. G. Bohn, pp. 97–212
Huss, G. R. (1988) The role of presolar dust in the formation of the solar system. Earth, Moon, Planets 40, 165–211CrossRefGoogle Scholar
Huss, G. R., Keil, K. and Taylor, G. J. (1981) The matrices of unequilibrated ordinary chondrites: Implications for the origin and history of chondrites. Geochim. Cosmochim. Acta 45, 33–51CrossRefGoogle Scholar
Huss, G. R., MacPherson, G. J., Wasserburg, G. J., Russell, S. S. and Srinivasan, G. (2001) 26Al in CAIs and chondrules from unequilibrated ordinary chondrites. Meteorit. Planet. Sci. 36, 975–97CrossRefGoogle Scholar
Hutcheon, I. D., Hutchison, R. and Wasserburg, G. J. (1989) Evidence from the Semarkona ordinary chondrite for 26Al heating of small planets, Nature 237, 238–41CrossRefGoogle Scholar
Hutcheon, I. D., Hutchison, R. and Wasserburg, G. J. (1982) Meteorites – Evidence for the interrelationships of materials in the solar system 4.55 Ga ago. Earth Planet. Sci. Lett. 29, 199–208CrossRefGoogle Scholar
Hutchison R. (1983) The Search for our Beginning. British Museum (Natural History)/Oxford University Press, p. 39
Hutchison, R. (1992) New evidence for the origin of white matrix in Tieschitz (abstract). Meteoritics 27, 2–3Google Scholar
Hutchison R. (1996). Chondrules and their associates in ordinary chondrites: A planetary connection? In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 311–18
Hutchison R. and Bevan A. W. R. (1983) Conditions and time of chondrule accretion. In Chondrules and Their Origins. Ed. E. A. King. Lunar and Planetary Institute, pp. 162–79
Hutchison, R., Bevan, A. W. R., Agrell, S. O. and Ashworth, J. R. (1979) Accretion temperature of the Tieschitz, H3, chondritic meteorite. Nature 280, 116–19CrossRefGoogle Scholar
Hutchison, R., Alexander, C. M. O. and Barber, D. J. (1987) The Semarkona meteorite: First recorded occurrence of semecite in an ordinary chondrite, and its implications. Geochim. Cosmochim. Acta 51, 1875–82CrossRefGoogle Scholar
Hutchison, R., Alexander, C. M. O. and Barber, D. J. (1988). Chondrules: Chemical, mineralogical and isotopic constraints on theories of their origin. Phil. Trans. Roy. Soc. (London) A325, 445–58CrossRefGoogle Scholar
Ihinger, P. D. and Stolper, E. (1986) The color of meteoritic hibonite: An indicator of oxygen fungacity. Earth Planet. Sci. Lett. 78, 67–79CrossRefGoogle Scholar
Ikeda, Y. (1983) Major element compositions and chemical types of chondrules in unequilibrated E, O, and C chondrites from Antarctica. Mem. Natl. Inst. Polar Res., Spec. Issue 30, 122–45Google Scholar
Ikeda Y. (1989) Petrochemical study of the Yamato-691 enstatite chondrite (E3) V: Comparison of major element chemistries of chondrules and inclusions in Y-691 with those in ordinary and carbonaceous chondrites. Proceedings of the NIPR Symp. Antarctic Meteorites 2. National Institute of Polar Research, pp. 147–65
Ikeda, Y. and Kimura, M. (1985) Na–Ca zoning of chondrules in Allende and ALHA-77003 carbonaceous chondrites. Meteoritics 20, 6–7Google Scholar
Irving, A. J. (1978) A review of experimental studies of crystal/liquid trace element partitioning. Geochim. Cosmochim. Acta 42, 743–70CrossRefGoogle Scholar
Ishii, T., Miyamoto, M. and Takeda, H. (1976) Pyroxene geothermometry and crystallization-, subsolidus equilibration-temperatures of lunar and achondritic pyroxenes. Lunar Sci. VII, 408–10Google Scholar
Ivanov, A. V., Zolensky, M. E., Brandstätter, F., Kurat, G. and Kononkova, N. N. (1994) A phyllosilicate–sulfide vein in Kaidun (abstract). Meteoritics 29, 477Google Scholar
Jarosewich, E. (1990) Chemical analyses of meteorites: A compilation of stony and iron meteorite analyses. Meteoritics 25, 323–37CrossRefGoogle Scholar
Jarosewich, E. and Dodd, R. T. (1981) Chemical variations among L-chondrites – II: Chemical distinctions between L3 and LL3 chondrites. Meteoritics 16, 83–91CrossRefGoogle Scholar
Jarosewich, E. and Dodd, R. T. (1985) Chemical variations among L-chondrites – IV: Analyses, with petrographic notes, of 13 L-group and 3-LL group chondrites. Meteoritics 20, 23–36CrossRefGoogle Scholar
Johannes, W. (1968) Experimental investigation of the reaction forsterite + H2O = serpentine + brucite, Contrib. Mineral. Petrol. 19, 309–15CrossRefGoogle Scholar
Johnson, C. A., Prinz, M., Weisberg, M. K., Clayton, R. N. and Mayeda, T. K. (1990) Dark inclusions in Allende, Leoville, and Vigarano – Evidence for nebular oxidation of CV3 constituents. Geochim. Cosmochim. Acta 54, 819–30CrossRefGoogle Scholar
Johnson, M. C. (1986) The solar nebula redox state as recorded by the most reduced chondrules of five primitive chondrites. Geochim. Cosmochim. Acta 50, 1–4CrossRefGoogle Scholar
Jones, R. H. (1990) Petrology and mineralogy of type II chondrules in Semarkona (LL3.0): Origin of closed-system fractional crystallization, with evidence for supercooling. Geochim. Cosmochim. Acta 54, 1–7CrossRefGoogle Scholar
Jones, R. H. (1992) On the relationship between isolated and chondrule olivine grains in the carbonaceous chondrite ALHA77307. Geochim. Cosmochim. Acta 56, 467–82CrossRefGoogle Scholar
Jones, R. H. (1994) Petrology of FeO-poor, porphyritic pyroxene chondrules in the Semarkona chondrite. Geochim. Cosmochim. Acta 58, 5325–40CrossRefGoogle Scholar
Jones R. H. (1996) Relict grains in chondrules: Evidence for chondrule recycling. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 163–72
Jones, R. H. and Danielson, L. R. (1997) A chondrule origin for dusty relict olivine in unequilibrated chondrites. Meteorit. Planet. Sci. 32, 753–60CrossRefGoogle Scholar
Jones, R. H. and Lofgren, G. E. (1993) A comparison of FeO-rich, porphyritic olivine chondrules in unequilibrated chondrites and experimental analogues. Meteoritics 28, 213–21CrossRefGoogle Scholar
Jones R. H. and Scott E. R. D. (1989) Petrology and thermal history of type IA chondrules in the Semarkona (LL3.0) chondrite. Proc. 19th Lunar Planet. Sci. Conf. Lunar and Planetary Institute, pp. 523–36
Jurewicz, A. J. G. and Watson, E. B. (1988) Cations in olivine part I: Calcium partitioning and calcium–magnesium distribution between olivines and coexisting melts, with petrologic applications. Contrib. Mineral. Petrol. 99, 176–85CrossRefGoogle Scholar
Kallemeyn, G. W. (1988) Elemental variations in bulk chondrites: A brief review. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 390–3
Kallemeyn, G. W. and Wasson, J. T. (1982a). The compositional classification of chondrites: III. Ungrouped carbonaceous chondrites. Geochim. Cosmochim. Acta. 49, 2217–28CrossRefGoogle Scholar
Kallemeyn, G. W. and Wasson, J. T. (1982b). The compositional classification of chondrites: IV. Ungrouped chondritic meteorites and clasts. Geochim. Cosmochim. Acta. 49, 261–70CrossRefGoogle Scholar
Kallemeyn, G. W., Rubin, A. E. and Wasson, J. T. (1991) The compositional classification of chondrites: V. The Karoonda (CK) group carbonaceous chondrites. Geochim. Cosmochim. Acta 55, 881–92CrossRefGoogle Scholar
Kallemeyn, G. W., Rubin, A. E. and Wasson, J. T. (1994) The compositional classification of chondrites: VI. The CR carbonaceous chondrite group. Geochim. Cosmochim. Acta. 58, 2873–88CrossRefGoogle Scholar
Kallemeyn, G. W., Rubin, A. E. and Wasson, J. T. (1996) The compositional classification of chondrites: VII. The R chondrite group. Geochim. Cosmochim. Acta. 60, 2243–56CrossRefGoogle Scholar
Kaula, W. M. (1979) Thermal evolution of Earth and Moon growing by planetesimal impacts. J. Geophys. Res. 84, 999–1008CrossRefGoogle Scholar
Kaushal, S. K. and Wetherill, G. W. (1969) Rb87–Sr87 age of bronzite (H group) chondrites. J. Geophys. Res. 74, 2717–26CrossRefGoogle Scholar
Keil, K. (1968) Mineralogical and chemical relationships among enstatite chondrites. J. Geophys. Res. 73, 6945–76CrossRefGoogle Scholar
Keil K. (1982) Composition and origin of chondritic breccias. In Workshop on Lunar Breccias and Soil and Their Meteoritic Analogs. Ed. G. J. Taylor and L. L. Wilkening. LPI Tech. Report 82–02. Lunar and Planetary Institute, pp. 65–83
Keil, K. (1989) Enstatite meteorites and their parent bodies. Meteoritics 24, 195–208CrossRefGoogle Scholar
Keil, K. and Fredriksson, K. (1964) The iron, magnesium, and calcium distribution in coexisting olivines and rhombic pyroxenes of chondrites. J. Geophys. Res. 69, 3–4CrossRefGoogle Scholar
Keil, K., Kurat, G., Prinz, M. and Green, J. A. (1972) Lithic fragments, glasses and chondrules from Luna 16 finds. Earth Planet. Sci. Lett. 13, 243–56CrossRefGoogle Scholar
Keil K., Prinz M., Planner H. N., et al. (1973) A qualitative comparison of textures in lunar chondrules and CO2 laser-formed synthetic chondrule-like spherules. Institution of Meteoritics Special Publication No. 7. University of New Mexico
Keller, L. P. and Buseck, P. R. (1990) Matrix mineralogy of Lance CO3 carbonaceous chondrite: A transmission electron microscope study. Geochim. Cosmochim. Acta 54, 1155–63CrossRefGoogle Scholar
Kelly, W. R. and Larimer, J. W. (1977) Chemical fractionations in meteorites. VIII. Iron meteorites and the cosmochemical history of the metal phase. Geochim. Cosmochim. Acta 41, 93–111CrossRefGoogle Scholar
Kerridge, J. F. (1964) Low-temperature minerals from the fine-grained matrix of some carbonaceous chondrites. Ann. N. Y. Acad. Sci. 119, 41–53CrossRefGoogle Scholar
Kerridge, J. F. (1993) What can meteorites tell us about nebular conditions and processes during planetesimal accretion?Icarus 106, 135–50CrossRefGoogle ScholarPubMed
Kerridge J. F. and Bunch T. E. (1979) Aqueous activity on asteroids: Evidence from carbonaceous chondrites. In Asteroids. Ed. T. Gehrels. University of Arizona Press, pp. 745–64
Kerridge, J. F. and Kieffer, S. W. (1977). A constraint on impact theories of chondrule formation. Earth Planet. Sci. Lett. 35, 35–42CrossRefGoogle Scholar
Kerridge J. F. and Matthews M. S. (1988) Meteorites and the Early Solar System. University of Arizona Press
Kieffer, S. W. (1975). Droplet chondrules. Science 189, 333–40CrossRefGoogle ScholarPubMed
Kimura, M. and Watanabe, S. (1986). Adhesive growth and abrasion of chondrules during the accretion process. Mem. Natl. Inst. Polar Res., Spec. Issue 41, 222–34Google Scholar
Kimura, M. and Yagi, K. (1980) Crystallization of chondrules in ordinary chondrites. Geochim. Cosmochim. Acta 44, 589–602CrossRefGoogle Scholar
King, E. A. (1982). Refractory residues, condensates and chondrules from solar furnace experiments. Proc. 13th Lunar Planet. Sci. Conf. J. Geophys. Res. 87, A429–34CrossRefGoogle Scholar
King E. A. (Ed.) (1983a) Chondrules and Their Origins. Lunar and Planetary Institute
King E. A. (1983b) Reduction, partial evaporation, and spattering: Possible chemical and physical processes in fluid drop chondrule formation. In Chondrules and Their Origins. Ed. E. A. King. Lunar and Planetary Institute, pp. 180–7
King, E. A., Carman, M. F. and Butler, J. C. (1972a) Chondrules in Apollo 14 samples: Implications for the origin of chondritic meteorites. Science 195, 59–60CrossRefGoogle Scholar
King E. A., Carman M. F. and Butler J. C. (1972b) Chondrules in Apollo 14 samples and size analyses of Apollo 14 and 15 finds. Proc. III Lunar Sci. Conf. Lunar and Planetary Institute, pp. 673–86
King, T. V. V. and King, E. A. (1978) Grain size and petrography of C2 and C3 carbonaceous chondrites. Meteoritics 13, 47–72CrossRefGoogle Scholar
King, T. V. V. and King, E. A. (1979) Size–frequency distributions of fluid drop chondrules in ordinary chondrites. Meteoritics 14, 91–6CrossRefGoogle Scholar
King, T. V. V. and King, E. A. (1981) Accretionary dark rims in unequilibrated ordinary chondrites. Icarus 48, 460–72CrossRefGoogle Scholar
Kitamura M. and Tsuchiyama A. (1996) Collision of icy and slightly differentiated bodies as an origin for unequilibrated ordinary chondrites. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 319–26
Klein C. (1906) Studien uber Meteoriten, p. 35. (Cited in Merrill, 1920.)
Koeberl, C., Kurat, G. and Brandstätter, F. (1991) MAC 88105 – A regolith breccia from the lunar highlands: Mineralogical, petrological, and geochemical studies. Geochim. Cosmochim. Acta 55, 3073–87CrossRefGoogle Scholar
Kozul, J. M., Ulmer, G. C. and Hewins, R. H. (1988) Intrinsic oxygen fugacity measurements of some Allende type B inclusions. Geochim. Cosmochim. Acta 52, 2107–16CrossRefGoogle Scholar
Kracher, A., Scott, E. R. D. and Keil, K. (1984) Relict and other anomalous grains in chondrules; Implications for chondrule formation. Proc. XIV Lunar Planet. Sci. Conf. J. Geophys. Res. 89, B559–66CrossRefGoogle Scholar
Kring, D. A. (1986) O/H in the solar nebula gas in the zones of the C2, C3, and UOC chondrule formation (abstract). Lunar Planet. Sci. XVII, 4–5Google Scholar
Kring, D. A. (1987) Fe, Ca-rich rims around magnesian chondrules in the Kainsaz (CO3) chondrite (abstract). Lunar Planet. Sci. XVIII, 517–18Google Scholar
Kring, D. A. and Wood, J. A. (1987) Fe, Ca-rich and Mg-rich chondrule rims in the Kainsaz (CO3) chondrite: Evidence of fluctuating nebular conditions (abstract). Meteoritics 22, 432Google Scholar
Krot, A. N. and Keil, K. (2002) Anorthite-rich chondrules in CR and CH carbonaceous chondrites: Genetic link between Ca, Al-rich inclusions and ferromagnesian chondrules. Meteorit. Planet. Sci. 37, 91–111CrossRefGoogle Scholar
Krot A. N. and Rubin A. E. (1996) Microchondrule-bearing chondrule rims: Constraints on chondrule formation. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 173–84
Krot, A. N., Petaev, M. I., Scott, E. R. D., et al. (1998) Progressive alteration in CV3 chondrites: More evidence for asteroid alteration. Meteorit. Planet. Sci. 33, 1033–40CrossRefGoogle Scholar
Krot, A. N., Ulyanov, A. A., Meibom, A. and Keil, K. (2001) Forsterite-rich accretionary rims around Ca, Al-rich inclusions from the reduced CV3 chondrite Efremovka. Meteorit. Planet. Sci. 36, 611–28CrossRefGoogle Scholar
Krot, A. N., Hutcheon, I. D. and Keil, K. (2002) Plagioclase-rich chondrules in the reduced CV chondrites: Evidence for complex formation history and genetic links between calcium–aluminum-rich inclusions and ferromagnesian chondrules. Meteorit. Planet. Sci. 37, 155–82CrossRefGoogle Scholar
Kunii D. and Levenspiel O. (1991) Fluidization Engineering, 2nd edn. Butterworth and Heinemann
Kurat G., Keil K., Prinz M. and Nehru C. E. (1972) Chondrules of lunar origin. Proc. 3rd Lunar Sci. Conf. part 1. Lunar and Planetary Institute, pp. 707–21
Kurat, G., Keil, K. and Prinz, M. (1974) Rock 14318: a polymict lunar breccia with chondritic texture. Geochim. Cosmochim. Acta 38, 1133–46CrossRefGoogle Scholar
Lange, D. E. and Larimer, J. W. (1973) Chondrules: an origin by impacts between dust grains. Science 182, 9–2CrossRefGoogle ScholarPubMed
Lange, M. A. and Ahrens, T. J. (1982) The evolution of an impact-generated atmosphere. Icarus 51, 96–120CrossRefGoogle Scholar
Langevin, Y. and Maurette, M. (1980) A model for small body regolith evolution: the critical parameters (abstract). Lunar Planet. Sci. , 6–0Google Scholar
Lanoix, M., Strangway, D. W. and Pearce, G. W. (1977) Anomalous acquisition of thermoremanence at 130 °C in iron and paleointensity of the Allende meteorite. Lunar Planet. Sci. VIII, 689–701Google Scholar
Lanoix, M., Strangway, D. W. and Pearce, G. W. (1978) The primordial magnetic field preserved in chondrules of the Allende meteorite. Geophys. Res. Lett. 5, 73–6CrossRefGoogle Scholar
Larimer, J. W. (1967) Chemical fractionations in meteorites, I. Condensation of the elements. Geochim. Cosmochim. Acta 37, 1603–23CrossRefGoogle Scholar
Larimer J. W. (1988) The cosmochemical classification of the elements. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 375–89
Larimer, J. W. and Anders, E. (1967) Chemical fractionation in meteorites-II. Abundance patterns and their intrepretation. Geochim. Cosmochim. Acta 31, 1239–70CrossRefGoogle Scholar
Larimer, J. W. and Anders, E. (1970) Chemical fractionation in meteorites-III. Major element fractions in chondrites. Geochim. Cosmochim. Acta 34, 367–87CrossRefGoogle Scholar
Larimer, J. W. and Bartholomay, M. (1979) The role of carbon and oxygen in cosmic gases – Some applications to the chemistry and mineralogy of enstatite chondrites. Geochim. Cosmochim. Acta 43, 1455–66CrossRefGoogle Scholar
Larimer J. W. and Wasson J. T. (1988a) Refractory lithophile elements. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 394–415
Larimer J. W. and Wasson J. T. (1988b) Siderophile element fractionation. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 416–35
Larson H. P. and Veeder G. J. (1979) Infrared spectral reflectances of asteroid surfaces. In Asteroids. Ed. T. Gehrels. University of Arizona Press, pp. 724–44
Laul, J. C., Ganapathy, R., Anders, E. and Morgan, J. W. (1973) Chemical fractionations in meteorites – VI. Accretion temperatures of H-, LL- and E-chondrites from abundance of volatile trace elements. Geochim. Cosmochim. Acta 36, 329–57CrossRefGoogle Scholar
Lavoisier, A. (1772) Sur un effect singular de tonnerre. Observations sur la physics, sur la histoire naturelle, et sur les Arts. J. Physique 2, 310–12 (printed and dated 1777)Google Scholar
Lebofsky L. A., Jones T. D. and Herbert E. (1989) Asteroid volatile inventories. In Origin and Evolution of Planetary and Satellite Atmospheres. Ed. S. K. Atreya, J. B. Pollack and M. S. Matthews. University of Arizona Press, pp. 192–229
Lee T. (1988) Implications of isotopic anomalies for nucleosynthesis. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 1063–89
Lee, T., Papanastassiou, D. A. and Wasserburg, G. J. (1976) Demonstration of 26Mg excession in Allende and evidence for 26Al. Geophys. Res. Lett. 3, 41–4CrossRefGoogle Scholar
Lee, T., Mayeda, T. and Clayton, R. N. (1980) Oxygen isotopic anomalies in Allende inclusion HAL. Geophys. Res. Lett. 7, 4–9CrossRefGoogle Scholar
Leitch, C. A. and Smith, J. V. (1982) Petrography, mineral chemistry and origin of type I enstatite chondrites. Geochim. Cosmochim. Acta. 46, 2083–96CrossRefGoogle Scholar
Levy E. H. (1988) Energetics of chondrule formation. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 697–711
Levy, E. H. and Araki, S. (1989) Magnetic reconnection flares in the protoplanetary nebula and the possible origin of meteorite chondrules. Icarus 81, 74–91CrossRefGoogle Scholar
Levy E. H. and Sonett C. P. (1978) Meteorite magnetism and early solar system magnetic fields. In Protostars and Planets Ed. T. Gehrels. University of Arizona Press, pp. 516–32
Lewis, J. S. (1976a) Low-temperature condensation from the solar nebula. Icarus 16, 241–52CrossRefGoogle Scholar
Lewis, J. S. (1976b) Metal/silicate fractionation in the solar system. Earth Planet. Sci. Lett. 15, 286–90CrossRefGoogle Scholar
Lewis, R. D., Lofgren, G. E., Franzen, H. F. and Windom, K. E. (1993) The effect of Na vapor on the Na content of chondrules. Meteoritics 28, 6–2CrossRefGoogle Scholar
Li, Chunlai, Bridges, J. C., Hutchison, R., et al. (2000). Bo Xian (LL3.9): Oxygen-isotopic and mineralogical characterisation of separated chondrules. Meteorit. Planet. Sci. 35, 5–6CrossRefGoogle Scholar
Liffman, K. (1992) The formation of chondrules via ablation. Icarus 100, 608–20CrossRefGoogle Scholar
Liffman K. and Brown M. J. I. (1996) The protostellar jet model of chondrule formation. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 285–302
Lipschutz M. E. and Woolum D. S. (1988) Highly labile elements. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 462–87
Lipschutz M. E., Gaffey M. J. and Pellas P. (1989) Meteoritic parent bodies – Nature, number, size and relation to present-day asteroids. In Asteroids II. Ed. R. P Binzel, T. Gehrels and M. S. Matthews. University of Arizona Press, pp. 740–77
Lofgren, G. E. (1989) Dynamic crystallization of chondrule melts of porphyritic olivine composition; textures experimental and natural. Geochim. Cosmochim. Acta 53, 461–70CrossRefGoogle Scholar
Lofgren G. E. (1996) A dynamic crystallization model for chondrule melts. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 187–96
Lofgren, G. and Russell, W. J. (1986) Dynamic crystallization of chondrule melts of porphyritic and radial pyroxene composition. Geochim. Cosmochim. Acta 50, 1715–26CrossRefGoogle Scholar
Lord, H. C. (1965) Molecular equilibrium and condensation in a solar nebula and cool stellar atmospheres. Icarus 4, 279–88CrossRefGoogle Scholar
Love S. G., Keil K. and Scott E. R. D. (1994) Formation of chondrules by electrical discharge heating. In Papers Presented to Chondrules and the Protoplanetary Disk, LPI Contrib. 844. Lunar and Planetary Institute, p. 21
Loveland, W., Schmitt, R. A. and Fisher, D. E. (1969) Aluminum abundances in stony meteorites. Geochim. Cosmochim. Acta 33, 375–85CrossRefGoogle Scholar
Lovering, J. F. F., Nichiporuk, W., Chodos, A. and Brown, H. (1957) The distribution of gallium, germaniuun, cobalt, chromium, and copper in iron and stony-iron meteorites in relation to nickel content and structure. Geochim. Cosmochim Acta 11, 263–78CrossRefGoogle Scholar
Lu J. (1992) The physical and chemical studies of chondrules from the type 3 ordinary chondrites. Ph.D. Thesis, University of Arkansas, Fayetteville, AR
Lu, J., Sears, D. W. G., Keck, B., Prinz, M., Grossman, J. N. and Clayton, R. N. (1990) Semarkona type I chondrules compared with similar chondrules in other classes (abstract). Lunar Planet. Sci. XXI, 7–2Google Scholar
Lu, J., Sears, D. W. G., Benoit, P. H., Prinz, M. and Weisberg, M. K. (1992) The four primitive chondrule groups and the formation of chondrules (abstract). Lunar Planet. Sci. XXIII, 813–14Google Scholar
Lux, G., Keil, K. and Taylor, G. J. (1980) Metamorphism of the H-group chondrites: Implications from compositional and textural trends in chondrules. Geochim. Cosmochim. Acta 44, 841–55CrossRefGoogle Scholar
Lux, G., Keil, K. and Taylor, G. J. (1981) Chondrules in H3 chondrites: Textures, compositions and origins. Geochim. Cosmochim. Acta 45, 675–85CrossRefGoogle Scholar
Macdougall, J. D. and Kothari, B. K. (1976) Formation chronology for C2 meteorites. Earth Planet. Sci. Lett. 33, 33–44CrossRefGoogle Scholar
MacPherson, G. J., Hashimoto, A. and Grossman, L. (1985) Accretionary rims on inclusions in the Allende meteorite. Geochim. Cosmochim. Acta 49, 2267–79CrossRefGoogle Scholar
MacPherson G. J., Wark D. A. and Armstrong J. T. (1988) Primitive material surviving in chondrites: Refractory inclusions. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 746–807
MacPherson, G. J., Davis, A. M. and Zinner, E. K. (1995) The distribution of aluminum-26 in the early Solar System – a reappraisal. Meteoritics 30, 365–86CrossRefGoogle Scholar
Marti, K. and Graf, T. (1992) Cosmic-ray exposure history of ordinary chondrites. Ann. Rev. Earth Planet. Sci. 30, 244–68Google Scholar
Martin, P. M. and Mills, A. A. (1976) Size and shape of chondrules in the Bjurbole and Chainpur meteorites. Earth and Planet. Sci. Lett. 33, 239–48CrossRefGoogle Scholar
Martin, P. M. and Mills, A. A. (1978) Size and shape of near-spherical Allegan chondrules. Earth Planet. Sci. Lett. 38, 385–90CrossRefGoogle Scholar
Martin, P. M. and Mills, A. A. (1980) Preferred chondrule orientations in meteorites. Earth Planet. Sci. Lett. 51, 18–25CrossRefGoogle Scholar
Martin, P. M., Mills, A. A. and Walker, E. (1975) Preferential orientation in four C3 chondritic meteorites. Nature 257, 37–8CrossRefGoogle Scholar
Marvin, U. B. (1996) Ernst florens Friedrich Chladni (1756–1827) and the origins of modern meteorite research. Meteoritics 31, 545–88CrossRefGoogle Scholar
Marvin, U. B., Wood, J. A. and Dickey, J. S. (1970) Ca-Al rich phases in the Allende meteorite. Earth Planet. Sci. Lett. 7, 346–50CrossRefGoogle Scholar
Mason, B. (1960) Origin of chondrules and chondritic meteorites. Nature 186, 2–3CrossRefGoogle Scholar
Mason B. (1962) Meteorites. John Wiley
Mason, B. and Taylor, S. R. (1982) Inclusions in the Allende meteorite. Smithsonian Contrib. Earth Sci. 25, 1–30Google Scholar
Masursky, H., Batson, R. M., Melauley, J. F., et al. (1972) Mariner 9 television reconnaissance of Mars and its satellites. Science 175, 294–305CrossRefGoogle ScholarPubMed
Matsui, T. and Osaka, M. (1979) Thermal property measurement of Yamato meteorites. Mem. Nat. Inst. Polar Res. Spec. Issue 15, 243–52Google Scholar
Matsunami, S. (1984) The chemical compositions and textures of matrices and chondrule rims of eight unequilibrated ordinary chondrites; A preliminary report. Mem. Nat. Inst. Polar Res. Spec. Issue 35, 126–45Google Scholar
Matsunami, S., Ninagawa, K., Nishimura, S., et al. (1993) Thermoluminescence and compositional zoning in the mesostasis of a Semarkona group A1 chondrule and new insights into the chondrule-forming process. Geochim. Cosmochim. Acta 57, 2102–10CrossRefGoogle Scholar
Matza, S. D. and Lipschutz, M. E. (1977) Volatile/mobile trace elements in Karoonda (C4) chondrite. Geochim. Cosmochim. Acta 41, 1–3CrossRefGoogle Scholar
Maurette M. (1993) Hunting for Stars. McGraw-Hill
Mayeda, T. K., Clayton, R. N. and Sodonis, A. (1989) Internal oxygen isotope variations in two unequilibrated chondrites (abstract). Meteoritics 24, 301Google Scholar
McCall G. J. H. (1973) Meteorites and Their Origins. David and Charles
McCord, T. B., Adams, J. B. and Johnson, T. V. (1970) Asteroid Vesta: Spectral reflectivity and compositional implications. Science 168, 1–4CrossRefGoogle ScholarPubMed
McCoy, T. J., Scott, E. R. D., Jones, R. H., Keil, K. and Taylor, G. J. (1991) Composition of chondrule silicates in LL3–5 chondrites and implications for their nebular history and parent body metamorphism, Geochim. Cosmochim. Acta 55, 601–19CrossRefGoogle Scholar
McCoy, T. J., Keil, K., Mayeda, T. K. and Clayton, R. N. (1992) Monument Draw and the formation of the Acapulcoites. Lunar Planet. Sci. XXIII, 8–7Google Scholar
McCoy, T. J., Keil, K., Ash, R. D., et al. (1993). Roosevelt County 075: A petrologic chemical and isotopic study of the most unequilibrated known H chondrite. Meteoritics 28, 681–91CrossRefGoogle Scholar
McKay D. S., Swindle T. D. and Greenberg R. (1989) Asteroidal regoliths – What we do not know. In Asteroids II. Ed. R. P Binzel, T. Gehrels and M. S. Matthews. University of Arizona Press, pp. 921–45
McKay D. S., Heiken G., Basu A., et al. (1991) The lunar regolith. In Lunar Sourcebook: A User's Guide to the Moon. Ed. G. H. Heiken, D. T. Vaniman and B. M. French. Cambridge University Press, pp. 285–356
McMahon B. M. and Haggerty S. E. (1980) Experimental studies bearing on the magnetite alloy-sulfide association in the Allende meteorite: Constraints on the conditions of chondrule formation. Proc. 11th Lunar Planet. Sci. Conf. Lunar and Planetary Institute, pp. 1003–25
McSween, H. Y. Jr (1977a) Carbonaceous chondrites of the Ornans type: a metamorphic sequence. Geochim. Cosmochim. Acta 41, 477–91CrossRefGoogle Scholar
McSween, H. Y. Jr (1977b) Chemical and petrographic constraints on the origin of chondrules and inclusions in carbonaceous chondrites. Geochim. Cosmochim. Acta 41, 1843–60CrossRefGoogle Scholar
McSween, H. Y. Jr (1977c) Petrographic variations among carbonaceous chondrites of the Vigarano type. Geochim. Cosmochim. Acta 41, 477–91CrossRefGoogle Scholar
McSween H. Y. Jr (1977d) Chemical analyses of chondrules and inclusions in chondrite meteorites. Harvard/Smithsonian Center for Astrophysics Report, Cambridge, MA
McSween H. Y. Jr (1978) Chemical analyses of chondrules and inclusions in chondritic meteorites. Unpublished document available from the author
McSween, H. Y. Jr (1979a) Are carbonaceous chondrites primitive or processed? A review. J. Geophys. Space Phys. 17, 1059–78CrossRefGoogle Scholar
McSween, H. Y. Jr (1979b) Alteration in CM carbonaceous chondrites inferred from modal and chemical variations in matrix. Geochim. Cosmochim. Acta 43, 1761–70CrossRefGoogle Scholar
McSween, H. Y. Jr (1985) Constraints on chondrule origin from petrology of isotopically characterized chondrules in the Allende meteorite. Meteoritics 20, 523–40CrossRefGoogle Scholar
McSween H. Y. Jr (1987) Meteorites and Their Parent Planets. Cambridge University Press
McSween, H. Y. Jr and Richardson, S. M. (1977) The compositions of carbonaceous chondrite matrix. Geochim. Cosmochim. Acta 41, 1145–61CrossRefGoogle Scholar
McSween H. Y. Jr, Fronabarger A. K. and Driese S. G. (1983) Ferromagnesian chondrules in carbonaceous chondrites. In Chondrules and Their Origins Ed. E. A. King. Lunar and Planetary Institute, pp. 195–210
McSween H. Y. Jr, Sears D. W. G. and Dodd R. T. (1988) Thermal metamorphism. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 102–13
Meibom, A. and Clark, B. E. (1999) Evidence for the insignificance of ordinary chondritic material in the asteroid belt. Meteorit. Planet. Sci. 34, 7–24CrossRefGoogle Scholar
Melosh H. J. (1989) Impact Cratering, A Geologic Process. Oxford University Press
Merrill, G. P. (1920) On chondrules and chondritic structure in meteorites. Proc. Natl. Acad. Sci. 6, 449–72CrossRefGoogle ScholarPubMed
Merrill, G. P. (1921) On metamorphism in meteorites. Geol. Soc. Araer. Bull. 32, 395–414CrossRefGoogle Scholar
Metzler K. and Bischoff A. (1996) Constraints on chondrite agglomeration from fine-grained chondrule rims. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 153–61
Metzler, K., Bischoff, A. and Stöffler, D. (1992) Accretionary dust mantles on CM chondrites: Evidence for solar nebula processes. Geochim. Cosmochim. Acta 56, 2873–97CrossRefGoogle Scholar
Meunier, S. (1883) C. R. Paris Acad. Sci. 96. (Cited in Merrill, 1920.)
Minster, P. M. and Allégre, C. J. (1979) 87Rb–87Sr dating of L chondrites: Effects of shock and brecciation. Meteoritics 14, 235–48CrossRefGoogle Scholar
Misawa, K. and Fujita, T. (2000) Magnesium isotopic fractionations in barred olivine chondrules from the Allende meteorite. Meteorit. Planet. Sci. 35, 85–94CrossRefGoogle Scholar
Misawa, K. and Nakamura, N. (1988) Highly fractionated rare-earth elements in ferromagnesian chondrules from the Felix (CO3) meteorite. Nature 334, 47–50CrossRefGoogle Scholar
Misawa K. and Nakamura N. (1996) Origin of refractory precursor components of chondrules from carbonaceous chondrites. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 99–105
Miyamoto M., Fujii N. and Takeda H. (1981) Ordinary chondrite parent body: An internal heating model, Proc. 12th Lunar Planet. Sci. Conf. Lunar and Planetary Institute, pp. 1145–52
Miyamoto, M., McKay, D. S., McKay, G. A. and Duke, M. B. (1986) Chemical zoning and homogenization of olivines in ordinary chondrites and implications for thermal histories of chondrules. J. Geophys. Res. 91, 12804–16CrossRefGoogle Scholar
Morfill, G. (1983) Some cosmochemical consequences of a turbulent proto-planetary cloud. Icarus 53, 41–54CrossRefGoogle Scholar
Morfill G., Spruit, H. and Levy E. H. (1993) Physical processes and conditions associated with the formation of protoplanetary disks. In Protostars and Planets III. Ed. E. H. Levy and J. I. Lunine. University of Arizona Press, pp. 939–78
Morfill, G. E., Durisen, R. H. and Turner, G. W. (1998) An accretion rim constraint on chondrule formation theories. Icarus 134, 1–8CrossRefGoogle Scholar
Morse, A. D., Sears, D. W. G., Hutchison, R., et al. (1988) Alteration of type 3 ordinary chondrites (abstract). Meteoritics 23, 291Google Scholar
Mostefaoui, S., Lugmair, G. W., Hoppe, P. and El Goresy, A. (2002) Evidence for Live Iron-60 in Semarkona and Chervony Kut: A NanoSIMS Study (abstract). Lunar Planet. Sci. Abstract no. 1585Google Scholar
Müller, O., Baedecker, P. A. and Wasson, J. T. (1971) Relationship between siderophile element content and oxidation state of ordinary chondrites. Geochim. Cosmochim. Acta 35, 1121–37CrossRefGoogle Scholar
Murchie, S. and Erard, S. (1996) Spectral properties and heterogeneity of Phobos from measurements of Phobos 2. Icarus 123, 63–86CrossRefGoogle Scholar
Myson, B. O. and Kushiro, I. (1988) Condensation, evaporation, melting, and crystallization in the primitive solar nebula; Experimental data in the system MgO–SiO2–H2 to 1.0 × 10–9 bar and 2870 °C with variable oxygen fugacity. Amer. Mineral. 73, 1–19Google Scholar
Nagahara, H. (1981) Evidence for secondary origin of chondrules. Nature 292, 1–3CrossRefGoogle Scholar
Nagahara, H. (1983a) Texture of chondrules. Mem. Natl. Inst. Polar Res. Special Issue 30, 61–83Google Scholar
Nagahara H. (1983b) Chondrules formed through incomplete melting of the pre-existing mineral clusters and the origin of chondrules. In Chondrules and Their Origins. Ed. E. A. King. Lunar and Planetary Institute, pp. 211–22
Nagahara, H. (1984) Matrices of type 3 ordinary chondrites; Primitive nebular records. Geochim. Cosmochim. Acta 48, 2581–95CrossRefGoogle Scholar
Nagahara, H. (1986) Reduction kinetics of olivine and oxygen fugacity environment during chondrule formation. Lunar Planet. Sci. XVII, 5–9Google Scholar
Nagahara, H. and Kushiro, I. (1987) Origin of iron-rich olivine in the matrices of type 3 ordinary chondrites – an experimental study. Earth Planet. Sci. Lett. 85, 537–47CrossRefGoogle Scholar
Nagahara, H. and Kushiro, I. (1989) Vaporization experiments in the system plagioclase–hydrogen. Proceedings of the NIPR Symposium on Antarctic Meteorites, volume 2, pp. 235–51Google Scholar
Nagahara, H., Kushiro, I., Mysen, B. O. and Mori, H. (1989a) Experimental vaporization and condensation of olivine solid solution. Nature 331, 516–18CrossRefGoogle Scholar
Nagahara H., Kushiro I. and Tomeoka K. (1989b) Vaporization experiments in the system plagioclase–hydrogen: 2. Composition of the gas and residue (abstract). 14th Symposium on Antarctic Meteorites. National Institute of Polar Research, p. 84
Nagahara, H., Mysen, B. O. and Kushiro, I. (1994) Evaporation of olivine – low pressure phase relations of the olivine system and its implication for the origin of chondritic components in the solar nebula. Geochim. Cosmochim. Acta 58, 1951–63CrossRefGoogle Scholar
Nagata, T. and Funaki, M. (1983) Paleointensity of the Allende carbonaceous chondrite. Mem. Natl. Inst. Polar Res. Special Issue 30, 403–34Google Scholar
Nakamura, N. (1974) Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochim. Cosmochim. Acta 38, 757–75CrossRefGoogle Scholar
Nakamura, N. and Masuda, A. (1973) Chondrites with peculiar rare-earth patterns. Earth Planet. Sci. Lett. 19, 429–37CrossRefGoogle Scholar
Nakamura N. and Matsuda H. (1989) Further characterization of fractionated and unfractionated REE and alkali metal abundances in the Allende (CV3) chondrules (II) (abstract). 14th Symposium on Antarctic Meteorites. National Institute of Polar Research, pp. 99–100
Neal, C. R., Taylor, L. A., Lui, Y. and Schmitt, R. A. (1991) Paired lunar meteorites MAC 88104 and MAC 88105: A new FAN of lunar petrography. Geochim. Cosmochim. Acta 55, 3037–49CrossRefGoogle Scholar
Nehru, C. E., Prinz, M., Weisburg, M. K., et al. (1992) Brachnites: A new primitive achondrite group (abstract). Meteoritics 27, 267Google Scholar
Nelen J., Noonan A. and Fredriksson K. (1972) Lunar glasses, breccias and chondrules. Proc. 3rd Lunar Sci. Conf. Lunar and Planetary Institute, pp. 723–37
Nelson, L. S., Blander, M., Skaggs, S. R. and Keil, K. (1972) Use of a CO2 laser to prepare chondrule-like spherules from supercooled molten oxide and silicate droplets. Earth Planet. Sci. Lett. 14, 338–44CrossRefGoogle Scholar
Newsom, H. E. (1995) Metal–silicate fractionation in the solar nebula (abstract). Lunar Planet. Sci. XXVI, 1043–44Google Scholar
Nininger H. H. (1952) Out of the Sky. Dover Publications
Noddack, I. and Noddack, W. (1930) Die haufigkeit der chemischen elements. Naturwissenschaften 18, 757–64Google Scholar
Norton O. R. (1994) Rocks from Space. Mountain Press Publishing Co
Nuth J. A. III (1988) Astrophysical implications of presolar grains. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 984–91
Nyquist, L., Lindstrom, D., Mittlefehldt, D., et al. (2001) Manganese–chromium formation intervals for chondrules from the Bishunpur and Chainpur meteorites. Meteorit. Planet. Sci. 36, 911–38CrossRefGoogle Scholar
Olbers, H. W. M. (1803) Letter from Dr. Olbers of Bremen to Baron von Zach on the stones which have fallen from the heavens. Phil. Mag. 15, 289–93Google Scholar
Olmsted, D. (1834) Observations of the meteors of November 13, 1833. Amer. J. Sci. 25, 363–411; 36, 137–74Google Scholar
Olsen E. J. (1983) SiO2-bearing chondrules in the Murchison (C2) meteorite. In Chondrules and Their Origins. Ed. E. A. King. Lunar and Planetary Institute, pp. 223–34
Olsen, E. J. and Bunch, T. E. (1984) Equilibration temperatures of the ordinary chondrites – a new evaluation. Geochim. Cosmochim. Acta 48, 1–3CrossRefGoogle Scholar
Olsen, E. J. and Grossman, L. (1978) On the origin of isolated olivine grains in type 2 carbonaceous chondrites. Earth Planet. Sci. Lett. 41, 111–27CrossRefGoogle Scholar
Olsen, E. J. and Jarosewich, E. (1971) Chondrules: First occurrence in an iron meteorite. Science 174, 5–8CrossRefGoogle Scholar
Olsen, E. J., Fredriksson, K., Rajan, S. and Noonan, A. (1989) Chondrule-like objects and brown glasses in howardites. Meteoritics 25, 187–94CrossRefGoogle Scholar
Orowan, E. (1969) Density of the Moon and nucleation of planets. Nature 222, 867CrossRefGoogle Scholar
Palme, H. L. and Fegley, B. Jr (1987) Formation of FeO-bearing olivines in carbonaceous chondrites by high temperature oxidation in the solar nebula (abstract). Lunar Planet. Sci. XVIII, 7–5Google Scholar
Palme, H. L., Schultz, B., Spettel, H. W., et al. (1981) The Acapulco meteorite: Chemistry, mineralogy, and irradiation effects. Geochim. Cosmochim. Acta 45, 727–52CrossRefGoogle Scholar
Palme H. L., Larimer J. W. and Lipschutz M. E. (1988) Moderately volatile elements. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 436–61
Peck, J. A. and Wood, J. A. (1987) The origin of ferrous zoning in Allende chondrule olivines. Geochim. Cosmochim. Acta 51, 1503–10CrossRefGoogle Scholar
Pejovic B. (1982) Man and Meteorites. Thomas Head
Pellas P. (1973) Irradiation history of grain aggregates in ordinary chondrites: Possible clues to the advanced stages of accretion. In From Plasma to Planet. Ed. A. Elvius. John Wiley, p. 65
Pepin R. O., Eddy J. A. and Merrill R. B., Eds. (1980) The Ancient Sun: Fossil Record in the Earth, Moon and Meteorites; Proceedings of the Conference, Boulder, CO, October 16–19, 1979. Pergamon Press. (Geochim. Cosmochim. Acta, Supplement 13.)
Pieters, C. M., Taylor, L. A., Noble, S. K., et al. (2000) Space weathering on airless bodies: Resolving a mystery with lunar samples. Meteorit. Planet. Sci. 35, 1–1CrossRefGoogle Scholar
Podolak, M. and Cameron, A. G. W. (1974) Possible formation of meteoritic chondrules and inclusions in the precollapse Jovian protoplanetary atmosphere. Icarus 23, 326–33CrossRefGoogle Scholar
Podolak, M., Prialnik, D., Bunch, D. E., Cassen, P. and Reynolds, P. (1993) Secondary processing of chondrules and refractory inclusions (CAIs) by geodynamic heating. Icarus 104, 97–107CrossRefGoogle Scholar
Podosek, F. A. (1970) Dating of meteorites by the high-temperature release of iodine-correlated 129Xe. Geochim. Cosmochim. Acta 34, 341–65CrossRefGoogle Scholar
Podosek, F. A. and Cassen, P. (1994) Theoretical, observational, and isotopic estimates of the lifetime of the solar nebula. Meteoritics 29, 6–25CrossRefGoogle Scholar
Podosek F. A. and Swindle T. D. (1988a) Extinct radionuclides. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 1093–113
Podosek F. A. and Swindle T. D. (1988b) Nucleocosmochronology. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 1114–26
Poisson, S. D. (1803) Sur les substances minérals qu l'en suppose tombées du ciel sur la terre. Bulle. Sci. Soc. Philomat. 3, 1–8Google Scholar
Prior, G. T. (1916) The meteoritic stones of Launton, Warbreccan, Cronstad, Daniel's Kuil, Khairpur, and Soko Banja. Mineral. Mag. 18, 1–25Google Scholar
Proust, J. L. (1805) Sur une Pierre meteorique tombée aux environs de Sigena, en Aragon, dans l'annee 1773. Jr. Physique 60, 185–204; see also Jr. Nat. Philos. (Nicholson's) 4, 3–5Google Scholar
Radomsky, P. M. and Hewins, R. H. (1987) Dynamic crystallization experiments on an average type I (MgO-rich) chondrule composition. Lunar Planet. Science XVIII, 8–0Google Scholar
Radomsky, P. M. and Hewins, R. H. (1988) Chondrule texture/composition relations revisited; Constraints on the thermal conditions in the chondrule forming region. Meteoritics 23, 2–9Google Scholar
Radomsky, P. M. and Hewins, R. H. (1990) Formation conditions of pyroxene–olivine and magnesian–olivine chondrules. Geochim. Cosmochim. Acta 54, 3475–90CrossRefGoogle Scholar
Radomsky, P. M., Turrin, R. P. and Hewins, R. H. (1986) Dynamic crystallization experiments on a pyroxene–olivine chondrule composition. Lunar Planet. Sci. XVII, 6–8Google Scholar
Rambaldi, E. R. (1981) Relict grains in chondrules. Nature 293, 558–61CrossRefGoogle Scholar
Rambaldi, E. R. and Wasson, J. T. (1981) Metal and associated phases in Bishunpur, a highly unequilibrated ordinary chondrite. Geochim. Cosmochim. Acta 45, 1001–15CrossRefGoogle Scholar
Rambaldi, E. R. and Wasson, J. T. (1982) Fine, nickel-poor Fe–Ni grains in the olivine of unequilibrated ordinary chondrites. Geochim. Cosmochim. Acta 46, 929–39CrossRefGoogle Scholar
Rambaldi, E. R. and Wasson, J. T. (1984) Metal and associated phases in the highly unequilibrated ordinary chondrites Krymka and Chainpur. Geochim. Cosmochim. Acta 48, 1885–97CrossRefGoogle Scholar
Rao, M. N., Garrison, D. H., Bogard, D. D., Badhwar, G. and Murali, A. V. (1991) Composition of solar flare noble gases preserved in meteorite parent body regolith. Jr. Geophys. Res. 96, 19321–30CrossRefGoogle ScholarPubMed
Rasmussen K. L. and Wasson I. T. (1982). A new lightning model for chondrule formation (abstract). In Papers Presented to the Conference on Chondrules and Their Origins. Lunar and Planetary Institute, p. 53
Reichenbach, K. L. (1860) Meteoriten in Meteoriten. Ann. Phys. 111, 353–86CrossRefGoogle Scholar
Ringwood, A. E. (1959) On the evolution and densities of the planets. Geochim. Cosmochim. Acta 15, 257–83CrossRefGoogle Scholar
Robert, F., Javoy, M., Halbout, J., Dimon, B. and Merlivat, L. (1987) Hydrogen isotope abundances in the solar system. Part I: Unequilibrated chondrites. Geochim. Cosmochim. Acta 51, 1–7Google Scholar
Robinson, M. S., Thomas, P. C., Veverka, J., Murchie, S. L. and Wilcox, B. B. (2002) The geology of Eros. Meteorit. Planet. Sci. 37, 1651–84CrossRefGoogle Scholar
Roedder E. (1971) Natural and laboratory crystallization of lunar glasses from Apollo 11. Min. Soc. Japan Spec. Paper 1, Proc. IMA-IAGOD Mtg., 1970, IMA vol, pp. 5–12
Roedder E. and Weiblen P. W. (1977) Petrographic features and petrologic significance of melt inclusions in Apollo 14 and Apollo 15. Proc. 8th Lunar Sci. Conf. Lunar and Planetary Institute, pp. 2641–54
Roedder, P. L. and Emslie, R. F. (1970) Olivine–liquid equilibrium. Contrib. Mineral. Petrol. 29, 275–89CrossRefGoogle Scholar
Rowe, P. N., Nienow, A. W. and Agbim, A. J. (1972) The mechanisms by which particles segregate in gas fluidised beds: Binary systems of near-spherical particles. Trans. Inst. Chem. Engrs. 50, 324–33Google Scholar
Rubin, A. E. (1980) Kamacite and olivine in ordinary chondrites: Intergroup and intragroup relationships. Geochim. Cosmochim. Acta 54, 1217–32CrossRefGoogle Scholar
Rubin, A. E. (1983) The Adhi Kot breccia and implications for the origin of chondrules and silica-rich clasts in enstatite chondrites. Earth Planet. Sci. Lett. 64, 201–12CrossRefGoogle Scholar
Rubin, A. E. (1984a) The Blithfield meteorite and the origin of sulfide-rich, metal-poor clasts and inclusions in brecciated enstatite chondrites. Earth Planet. Sci. Lett. 67, 273–83CrossRefGoogle Scholar
Rubin, A. E. (1984b) Coarse-grained chondrule rims in type 3 chondrites. Geochim. Cosmochim. Acta 48, 1779–89CrossRefGoogle Scholar
Rubin, A. E. (1985) Impact melt products of chondritic material. Rev. Geophys. 23, 277–300CrossRefGoogle Scholar
Rubin, A. E. and Grossman, J. N. (1987) Size–frequency distributions of EH3 chondrules. Meteoritics 22, 237–51CrossRefGoogle Scholar
Rubin, A. E. and Keil, K. (1984) Size–distributions of chondrule types in the Inman and Allan Hills A77011 L3 chondrites. Meteoritics 19, 135–43CrossRefGoogle Scholar
Rubin A. E. and Krot A. N. (1996) Multiple heating of chondrules. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 173–80
Rubin, A. E., and Wasson, J. T. (1986) Chondrules in the Murray CM2 meteorite and compositional differences between CM–CO and ordinary chondrite chondrules. Geochim. Cosmochim. Acta 50, 307–15CrossRefGoogle Scholar
Rubin, A. E., and Wasson, J. T. (1987a) Chondrules and matrix in the Ornans CO3 meteorite – possible precursor components. Geochim. Cosmochim. Acta 52, 425–32CrossRefGoogle Scholar
Rubin, A. E., and Wasson, J. T. (1987b) Chondrules, matrix and coarse-grained rims in the Allende meteorite: Origin. Interrelationships and possible precursor components. Geochim. Cosmochim. Acta 51, 1923–37CrossRefGoogle Scholar
Rubin, A. E., Scott, E. R. D. and Keil, K. (1982) Microchondrule-bearing clast in the Piancaldoli LL3 meteorite: A new kind of type 3 chondrite and its relevance to the history of chondrules. Geochim. Cosmochim. Acta 46, 1763–76CrossRefGoogle Scholar
Rubin A. E., Fegley B. and Brett R. (1988) Oxidation state in chondrites. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 488–511
Rubin, A. E., Wasson, J. T., Clayton, R. N. and Mayeda, T. K. (1990) Oxygen isotopes in chondrules and coarse-grained chondrule rims from the Allende meteorite. Earth Planet. Sci. Lett. 96, 247–55CrossRefGoogle Scholar
Russell, H. N. (1929) The composition of the Sun's atmosphere. Astrophys. Jr. 70, 11–82CrossRefGoogle Scholar
Russell, S. S., Srinivasan, G., Huss, G. R., Wasserburg, G. J. and McPherson, G. J. (1996) Evidence for widespread 26Al in the solar nebula and constraints for nebula time scales. Science 273, 757–62CrossRefGoogle ScholarPubMed
Ruzicka, A. (1990) Deformation and thermal histories of chondrules in the Chainpur (LL3.4) chondrite. Meteoritics 25, 101–13CrossRefGoogle Scholar
Ruzicka, A., Snyder, G. A. and Taylor, L. A. (2000) Crystal-bearing lunar spherules: Impact melting of the Moon's crust and implications for the origin of meteoritic chondrules. Meteorit. Planet. Sci. 35, 173–92CrossRefGoogle Scholar
Ruzmaikina, T. V. and Ip, W. H. (1995) Chondrule formation in radiative shock. Icarus 112, 430–47CrossRefGoogle Scholar
Ruzmaikina T. V. and Ip W. H. (1996) Chondrule formation in the accretional shock. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 277–84
Safronov V. S. (1972) Evolution of the Protoplanetary Cloud and Formation of the Earth and the Planets. Nauka. Translated from the Russian, NASA Tech. Trans., F-677
Sanders I. S. (1996) A chondrule-forming scenario involving molten planetesimals. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 327–34
Sauer, P. N. (1993) Centrifugally driven winds from protostellar disks. I. Wind model and thermal structure. Astrophys. J. 408, 115–47Google Scholar
Saxena, S. K. (1976) Two-pyroxene geothermometer: A model with an approximate solution. Am. Mineral. 61, 643–52Google Scholar
Scheeres D. J., Durda D. D. and Geissler P. E. (2002) The fate of asteroid ejecta. In Asteroids III. Ed. W. F. Bottke et al. University of Arizona Press, pp. 527–44
Schmitt, R. A., Goles, G. G. and Smith, R. H. (1972) Elemental abundances in stone meteorites. Meteoritics 7, 131–213CrossRefGoogle Scholar
Schultz, L. and Signer, P. (1977) Noble gases in the St. Mesmin chondrite: Implications for the irradiation history of a brecciated meteorite. Earth Planet. Sci. Lett. 36, 363–71CrossRefGoogle Scholar
Scott, E. R. D. (1988) A new kind of primitive chondrite, Allan Hills 85085. Earth Planet. Sci. Lett. 91, 1–18CrossRefGoogle Scholar
Scott, E. R. D. and Haack, H. (1993) Chemical fractionation in chondrites by aerodynamic sorting of chondritic material. Meteoritics 28, 434Google Scholar
Scott, E. R. D. and Jones, R. H. (1990) Disentangling nebula and asteroidal features of CO3 carbonaceous chondrites. Geochim. Cosmochim. Acta 54, 2–4CrossRefGoogle Scholar
Scott, E. R. D. and Rajan, R. S. (1981) Metallic minerals, thermal histories, and parent bodies of some xenolithic, ordinary chondrites. Geochim. Cosmochim. Acta 45, 53–67CrossRefGoogle Scholar
Scott, E. R. D. and Taylor, G. J. (1983) Chondrules and other components in C, O, and E chondrites; Similarities in their properties and origins. Proc. 14th Lunar Planet. Sci. Conf. J. Geophys. Res. 88, B275–B286CrossRefGoogle Scholar
Scott, E. R. D. and Wasson, J. T. (1975) Classification and properties of iron meteorites. Rev. Geophys. Space Phys. 13, 527–46CrossRefGoogle Scholar
Scott, E. R. D., Rubin, A. E., Taylor, G. J. and Keil, K. (1984) Matrix material in type 3 chondrites – occurrence, heterogeneity and relationship with chondrules. Geochim. Cosmochim. Acta 48, 1741–57CrossRefGoogle Scholar
Scott, E. R. D., Lusby, D. and Keil, K. (1985) Ubiquitous brecciation after metamorphism in equilibrated ordinary chondrites. Proc. 16th Lunar Planet. Sci. Conf. J. Geophys. Res. 91, E115–23CrossRefGoogle Scholar
Scott E. R. D., Barber D. J., Alexander C. M., Hutchison R. and Peck J. A. (1988) Primitive material surviving in chondrites: Matrix. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 718–45
Scott E. R. D., Love S. G. and Krot A. N. (1996) Formation of chondrules and chondrites in the protoplanetary nebula. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 87–96
Sears, D. W. G. (1976) Edward Charles Howard and an early British contribution to meteorites. J. Brit. Astron. Soc. 86, 1–3Google Scholar
Sears D. W. G. (1978a) The Nature and Origin of Meteorites. Adam Hilger
Sears, D. W. G. (1978b) Condensation and the composition of iron meteorites. Earth Planet. Sci. Lett. 41, 128–38CrossRefGoogle Scholar
Sears D. W. G. (1988) Thunderstones: The Meteorites of Arkansas. University of Arkansas Press
Sears, D. W. G. (1998) The rarity of chondrules and CAI in the early solar system and some astrophysical consequences. Astrophys. J. 498, 7–7CrossRefGoogle Scholar
Sears, D. W. G. and Akridge, G. (1998) Nebular or parent body alteration of chondritic material: Neither or both?Meteorit. Planet. Sci. 33, 1157–67CrossRefGoogle Scholar
Sears, D. W. G. and Axon, H. J. (1975) Metal of high cobalt content in LL chondrites. Meteoritics 11, 97–100CrossRefGoogle Scholar
Sears, D. W. G. and Axon, H. J. (1976) Nickel and cobal contents of chondritic meteorites. Nature 260, 34–5CrossRefGoogle Scholar
Sears D. W. G. and Dodd R. T. (1988) Overview and classification of meteorites. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 3–31
Sears, D. W. G. and Hasan, F. A. (1988) Type 3 ordinary chondrites: A Review. Surv. Geophys. 9, 43–97CrossRefGoogle Scholar
Sears, D. W. G. and Weeks, K. S. (1983) Chemical and physical studies of type 3 chondrites-II. Thermoluminescence properties of sixteen type 3 ordinary chondrites and relationships with oxygen isotopes. Proc. 14th Lunar Planet. Sci. Conf. J. Geophy. Res. 88, A791–5Google Scholar
Sears, D. W. G., Grossman, J. N., Melcher, C. L., Ross, L. M. and Mills, A. A. (1980) Measuring metamorphic history of unequilibrated ordinary chondrites. Nature 287, 7–9CrossRefGoogle Scholar
Sears, D. W. G., Grossman, J. N. and Melcher, C. L. (1982a) Chemical and physical studies of type 3 chondrites. I; Metamorphism related studies of Antarctic and other type 3 ordinary chondrites. Geochim. Cosmochim. Acta 46, 2471–81CrossRefGoogle Scholar
Sears, D. W. G., Kallemeyn, G. W. and Wasson, J. T. (1982b) The compositional classification of chondrites: II. The enstatite chondrite groups. Geochim. Cosmochim. Acta 46, 597–608CrossRefGoogle Scholar
Sears, D. W. G., Sparks, M. H. and Rubin, A. E. (1984) Chemical and physical studies of type 3 chondrites. III: Chondrules from the Dhajala H3.8 chondrite. Geochim. Cosmochim. Acta, 48, 1–1CrossRefGoogle Scholar
Sears D. W. G., Batchelor J. D., Lu J. and Keck B. D. (1991) Metamorphism of CO and CO-like chondrites and comparisons with type 3 ordinary chondrites. Proceedings of the NIPR Symposium Antarctic Meteorites, volume 4. National Institute of Polar Research, pp. 319–43
Sears, D. W. G., Lu, J., Benoit, P. H., DeHart, J. M. and Lofgren, G. E. (1992) A compositional classification scheme for meteoritic chondrules. Nature 357, 207–11CrossRefGoogle Scholar
Sears, D. W. G., Benoit, P. H. and Lu, J. (1993) Two chondrule groups each with distinctive rims in Murchison recognized by cathodoluminescence. Meteoritics 28, 669–75CrossRefGoogle Scholar
Sears, D. W. G., Huang, S. and Benoit, P. H. (1995a) The formation of chondrules (abstract). Lunar Planet. Sci. XXVI, 1–2Google Scholar
Sears, D. W. G., Huang, S. and Benoit, P. H. (1995b) Chondrule formation, metamorphism, brecciation, a new primary chondrule group, and the classification of chondrules. Earth Planet. Sci. Lett. 131, 27–39CrossRefGoogle Scholar
Sears, D. W. G., Huang, S. and Benoit, P. H. (1995c) Chondrules from the Earth and Moon: A review (abstract). Meteoritics 30, 577Google Scholar
Sears, D. W. G., Morse, A. D., Hutchison, R., et al. (1995d) Metamorphism and aqueous alteration in low petrographic type ordinary chondrites. Meteoritics 30, 169–81CrossRefGoogle Scholar
Sears D. W. G., Huang S. and Benoit P. H. (1996a) Open-system behaviour during chondrule formation. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 221–31
Sears, D. W. G., Huang, S., Akridge, G. and Benoit, P. H. (1996b) Glassy spherules in suevite from the Ries Crater, Germany, with implications for the formation of meteoritic chondrules. Lunar Planet. Sci. XXVII, 1–1Google Scholar
Sears, D. W. G., Huang, S., Benoit, P. H., et al. (1997) Oxygen isotope data for classified Semarkona chondrules (abstract). Meteorit. Planet. Sci. 32, A118–19Google Scholar
Sears, D. W. G., Lyon, I., Saxton, J. and Turner, G. (1998) The oxygen isotopic properties of olivines in the Semarkona ordinary chondrite. Meteorit. Planet. Sci. 33, 1029–32CrossRefGoogle Scholar
Sears, D. W. G., Lyon, I. C., Saxton, J. M., Symes, S. and Turner, G. (1999a) Oxygen isotope heterogeneity in the mesostasis of a Semarkona group A1 chondrules. Lunar Planet. Sci. XXX, CD-ROM #1406Google Scholar
Sears, D. W. G., Huebner, W. F. and Kochan, H. W. (1999b) Laboratory simulation of the physical processes occurring on and near the surfaces of comet nuclei. Meteorit. Planet. Sci. 34, 497–525CrossRefGoogle Scholar
Sears D. W. G., Allen C. C., Britt D. T., et al. (2002) Near-Earth Asteroid Sample Return. In The Future of Solar System Exploration (2003–2013) – Community Contributions to the NRC Solar System Exploration Decadal Survey (ASP Conference Proceedings 272). Ed. M. V. Sykes. Astronomical Society of the Pacific, pp. 111–40
Sheng, Y. J., Hutcheon, I. D. and Wasserburg, G. J. (1991) Origin of plagioclase–olivine inclusions in carbonaceous chondrites. Geochim. Cosmochim. Acta 55, 581–99CrossRefGoogle Scholar
Shimaoka T. and Nakamura N. (1989) Vaporization of sodium from a partially molten chondritic material. Proceedings of the NIPR Symposium on Antartic Meteorites, volume 2. National Institute of Polar Research, pp. 252–67
Shu, F. H., Adams, F. C. and Lizano, S. (1987) Star formation and molecular clouds. Observations and theory. Ann. Rev. Astron. Astrophys. 256, 23–81CrossRefGoogle Scholar
Shu F. H., Najita J., Galli D., Ostriker E. and Lizano S. (1993) The collapse of clouds and the formation and evolution of stars and disks. In Protostars and Planets III. Ed. E. H. Levy and J. I. Lunine. University of Arizona Press, pp. 3–45
Shu, F. H., Sheng, H. and Lee, T. (1996) Toward an astrophysical theory of chondrites. Science 271, 1545–52CrossRefGoogle Scholar
Simon S. B. and Haggerty S. E. (1980) Bulk compositions of chondrules in the Allende meteorite. Proc. 11th Lunar Planet. Sci. Conf. Lunar and Planetary Institute, pp. 901–27
Skinner, W. R. (1990) Bipolar outflows and a new model of the early Solar System. Part II: the origins of chondrules. Lunar Planet. Sci. XⅪ, 1–1Google Scholar
Skinner, W. R. and Leenhouts, J. H. (1993) The size distribution and aerodynamic equivalence of metal chondrules and silicate chondrules in Acfer 059. Lunar Planet. Sci. XXIV, 1315–16Google Scholar
Smales, A. A., Mapper, D. and Wood, A. J. (1957) The determination by radioactiviation of small quantities of nickel, cobalt, and copper in rocks, marine sediments and meteorites. Analyst 82, 75CrossRefGoogle Scholar
Smith, J. V. (1982) Heterogeneous growth of meteorites and planets, especially the earth and moon. J. Geol. 90, 1–48CrossRefGoogle Scholar
Sonett, C. P. (1979) On the origin of chondrules. Geophys. Res. Lett. 6, 677–80CrossRefGoogle Scholar
Sorby, H. C. (1864) On the microscopical structure of meteorites. Phil. Mag. 28, 1–5Google Scholar
Sorby, H. C. (1877) On the structure and origin of meteorites. Nature 15, 4–9Google Scholar
Space Studies Board (2002) New Frontiers in the Solar System: An Integrated Exploration Strategy. National Research Council
Srinivasan, G., Huss, G. R. and Wasserburg, G. J. (2000) A petrographic, chemical, and isotopic study of calcium–aluminum-rich inclusions and aluminum-rich chondrules from the Axtell (CV3) chondrite. Meteorit. Planet. Sci. 35, 1333–54CrossRefGoogle Scholar
Steele, I. M. (1985) Compositions and textures of relic forsterite in carbonaceous and unequilibrated ordinary chondrites. Geochim. Cosmochim. Acta 50, 1379–95CrossRefGoogle Scholar
Steele I. M. (1988) Primitive material surviving in chondrites: Mineral grains. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 808–18
Stepinski, T. F. and Reyes-Ruiz, M. (1993) Magnetically controlled solar nebula. Lunar Planet. Sci. XXIV, 1–3Google Scholar
Stöffler D., Bischoff A., Buchwald V. and Rubin A. E. (1988) Shocke effects in meteorites. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 165–202
Suess H. E. and Thompson W. B. (1983) Can chondrules form from a gas of solar composition? In Chondrules and Their Origins. Ed. E. A. King. Lunar and Planetary Institute, pp. 243–5
Sugiura, N. and Strangway, D. W. (1985) NRM directions around a centimeter sized dark inclusion in Allende. Proc. 15th Lunar Planet. Sci. Conf. J. Geophys. Res. 90, C729–38CrossRefGoogle Scholar
Sugiura N. and Strangway D. W. (1988) Magnetic studies of meteorites. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 595–615
Sugiura, N., Lanoix, M. and Strangway, D. W. (1979) Magnetic fields of the solar nebula as recorded in chondrules from the Allende meteorite. Phys. Earth Planet. Int. 20, 3–4CrossRefGoogle Scholar
Sullivan, R., Grelley, R., Pappalardo, R., et al. (1996) Geology of 243 Ida. Icarus 142, 89–96Google Scholar
Swindle T. D. (1988) Trapped noble gases in meteorites. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 535–64
Swindle, T. D. and Grossman, J. N. (1987) I–Xe studies of Semarkona Chondrules: Dating alteration (abstract). Lunar Planet. Sci. XVIII, 9–8Google Scholar
Swindle T. D. and Podosek F. A. (1988) Iodine–xenon dating. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 1127–46
Swindle T. D., Caffee M. W. and Hohenberg C. M. (1983a) Radiometric ages of chondrules. In Chondrules and Their Origins. Ed. E. A. King. Lunar and Planetary Institute, pp. 246–61
Swindle, T. D., Caffee, M. W., Hohenberg, C. M. and Lindstrom, M. M. (1983b) I–Xe studies of individual Allende Chondrules. Geochim. Cosmochim. Acta 47, 2157–77CrossRefGoogle Scholar
Swindle, T. D., Caffee, M. W. and Hohenberg, C. M. (1986) I–Xe and 40Ar–39Ar ages of Chainpur chondrules (abstract). Lunar Planet. Sci. XVII, 8–5Google Scholar
Swindle, T. D., Grossman, J. N., Olinger, C. T. and Garrison, D. H. (1991) Iodine–xenon, chemical, and petrographic studies of Semarkona chondrules – Evidence for the timing of aqueous alteration. Geochim. Cosmochim. Acta 55, 3723–34CrossRefGoogle Scholar
Swindle T. D., Davis A. M., Hohenberg C. M., MacPherson G. J. and Nyquist L. E. (1996) Formation times of chondrules and Ca–Al-rich inclusions: Constraints from short-lived radionuclides. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 77–86
Symes, S. J. K., Sears, D. W. G., Akridge, D. G., Huang, S. and Benoit, P. H. (1998) The crystalline lunar spherules: Their formation and implications for the origin of meteoritic chondrules. Meteorit. Planet. Sci. 33, 13–29CrossRefGoogle Scholar
Takahashi, H., Janssens, M. J-., Morgan, J. W. and Anders, E. (1978a) Further studies of trace elements in C3 chondrites. Geochim. Cosmochim. Acta 42, 97–107CrossRefGoogle Scholar
Takahashi, H., Gros, J., Higuchi, H., Morgan, J. W. and Anders, E. (1978b) Volatile elements in chondrites: metamorphism or nebular?Geochim. Cosmochim. Acta 42, 1859–69CrossRefGoogle Scholar
Tatsumoto, M., Unmh, D. M. and Desborough, G. A. (1976) U–Th–Pb and Rb–Sr systematics of Allende and U–Th–Pb systematics of Orgueil. Geochim. Cosmochim. Acta 40, 617–34CrossRefGoogle Scholar
Taylor G. J., Scott E. R. D. and Keil K. (1983) Cosmic setting for chondrule formation. In Chondrules and Their Origins. Ed. E. A. King. Lunar and Planetary Institute, pp. 262–78
Taylor, G. J., Scott, E. R. D., Keil, K., et al. (1984) Primitive nature of ordinary chondrite matrix materials. Lunar Planet. Sci. XV, 8–4Google Scholar
Taylor, G. J., Maggiore, P., Scott, E. R. D., Rubin, A. E. and Keil, K. (1987) Original structures, and fragmentation and reassembly histories of asteroids: Evidence from meteorites. Icarus 69, 1–13CrossRefGoogle Scholar
Taylor, L. A. and Cirlin, E. H. (1986) Olivine/melt Fe/Mg Kd's <: Rapid cooling of olivine-rich chondrules. Lunar Planet. Sci. XVII, 879–80Google Scholar
Thiemens M. H. (1988) Heterogeneity in the nebula: Evidence from stable isotopes. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 899–923
Thiemens M. H. (1996) Mass-independent isotopic effects in chondrites: The role of chemical processes. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 107–18
Thomas, P., Adinolfi, D., Helfenstein, P., Simonelli, D. and Veverka, J. (1996) The surface of Diemos: Contribution of materials and processes to its unique appearance. Icarus 123, 536–56CrossRefGoogle Scholar
Thomas, P. C., Veverka, J., Bell, J. F., et al. (1999) Mathilde, size, shape and geology. Icarus 140, 17–27CrossRefGoogle Scholar
Thomas, P. C., Veverka, J., Sullivan, R., et al. (2000) Phobos: Regolith and ejecta blocks investigated with Mars orbiter camera images. J. Geophys. Res. 105, 15091–106CrossRefGoogle Scholar
Thomas, P. C., Joseph, J., Robinson, M., et al. (2002) Shape, slopes, and slope processes on Eros. Icarus 155, 18–37CrossRefGoogle Scholar
Tilton G. R. (1988a) Age of the solar system. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 259–75
Tilton G. R. (1988b) Principles of radiometric dating. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 249–58
Tissandier, L., Libourel, G. and Robert, F. (2002) Gas–melt interactions and their bearing on chondrule formation. Meteorit. Planet. Sci. 37, 1377–89CrossRefGoogle Scholar
Tomeoka, K. (1990) Phyllosilicate veins in the Yamato-82162 CI carbonaceous chondrite: Evidence for post-accretionary aqueous alteration (abstract). Meteoritics 25, 415Google Scholar
Tomeoka, K. and Buseck, P. R. (1982) Intergrown mica and montmorillonite in the Allende carbonaceous chondrite. Nature 299, 3–2CrossRefGoogle Scholar
Tomeoka K., McSween H. Y. and Buseck P. R. (1989) Mineralogical alteration of CM carbonaceous chondrites: A review. Proceedings of the NIPR Symposium on Antarctic Meteorites, volume 2. National Institute of Polar Research, pp. 221–34
Trieloff, M., Jessberger, E. K., Herrwerth, I., et al. (2003) Structure and thermal history of the H-chondrite parent asteroid revealed by thermochronometry. Nature 422, 5–0CrossRefGoogle ScholarPubMed
Tschermak, G. (1883) Beitrag zur Classification der Meteoriten. Sitzber. Akad. Wiss. Wien, Math. -Naturw. Cl. 85 (1), 347–71Google Scholar
Tschermak, G. (1885) Die mikroskopische Beschaffenheit der Meteoriten. Smithson. Contrib. Astrophys. 4, 138–234 (1964, translated by J. A. Wood and E. M. Wood)CrossRefGoogle Scholar
Tsuchiyama, A. and Nagahara, H. (1981) Effects of precooling thermal history and cooling rate on the texture of chondrules; A preliminary report. Mem. Natl Inst. Polar Res., Special Issue 20, 175–92Google Scholar
Tsuchiyama, A., Nagahara, H. and Kushiro, I. (1980) Experimental reproduction of textures of chondrules. Earth Planet. Sci. Lett. 48, 155–65CrossRefGoogle Scholar
Tsuchiyama, A., Nagahara, H. and Kushiro, I. (1981) Volatilization of sodium from silicate melt spheres and its application to the formation of chondrules. Geochim. Cosmochim. Acta, 45, 1357–67CrossRefGoogle Scholar
Turner G. (1988) Dating of secondary events. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 276–88
Urey H. C. (1952) The Planets. Yale University Press
Urey, H. C. (1956) Diamonds, meteorites, and the origin of the solar system. Astrophys. J. 124, 623–37CrossRefGoogle Scholar
Urey, H. C. (1958) The early history of the solar system as indicated by the meteorites. Proc. Chem. Soc. (March), 67–78Google Scholar
Urey, H. C. (1961) Criticism of Dr. B. Mason's paper on the ‘The Origin of Meteorites’. J. Geophys. Res. 66, 1988–91CrossRefGoogle Scholar
Urey, H. C. (1962) Evidence regarding the origin of the earth. Geochim. Cosmochim. Acta 26, 1–13CrossRefGoogle Scholar
Urey, H. C. (1967) Parent bodies of meteorites and the origin of chondrules. Icarus 7, 3–5CrossRefGoogle Scholar
Urey, H. C. and Craig, H. (1953) The composition of the stone meteorites and the origin of the meteorites. Geochim. Cosmochim. Acta 4, 36–82CrossRefGoogle Scholar
Urey, H. C. and Donn, B. (1956) Chemical heating for meteorites. Astrophys. J. 124, 307–10CrossRefGoogle Scholar
Valentine, G. A. and Fisher, R. V. (1993) Glowing avalanches: New research on volcanic density currents. Science 259, 1–1CrossRefGoogle ScholarPubMed
Schmus, W. R. (1969) The mineralogy and petrology of chondritic meteorites. Earth Sci. Rev. 5, 145–84CrossRefGoogle Scholar
Schmus, W. R. and Hayes, J. M. (1974) Chemical and petrographic correlations among carbonaceous chondrites, Geochim. Cosmochim. Acta 38, 47–64CrossRefGoogle Scholar
Schmus, W. R. and Wood, J. A. (1967) A chemical–petrologic classification for the chondritic meteorites. Geochim. Cosmochim. Acta 31, 747–65CrossRefGoogle Scholar
Veverka, J. and Duxbury, T. C. (1977) Viking observations of Phobos and Diemos: Preliminary results. J. Geophys. Res. 82, 4213–23CrossRefGoogle Scholar
Veverka J. and Thomas, P. (1979) Phobos and Deimos: A preview of what asteroids are like. In Asteroids. Ed. T. Gehrels. University of Arizona Press, pp. 628–51
Veverka, J., Robinson, M., Thomas, P., et al. (2000) NEAR at Eros: imaging and spectral results. Science 289, 2088–97CrossRefGoogle ScholarPubMed
Veverka, J., Farquhar, B., Robinson, M., et al. (2001) The landing of the NEAR-Shoemaker spacecraft on asteroid 433 Eros. Nature 413, 3–9CrossRefGoogle ScholarPubMed
Vilas, F. (1994) A cheaper, faster, better way to detect water of hydration on Solar System bodies. Icarus 111, 456–67CrossRefGoogle Scholar
Michaelis, H., Willis, J. P., Erlank, A. J. and Ahrens, L. H. (1969a) The composition of stony meteorites I. Analytical techniques. Earth Planet. Sci. Lett. 5, 3–8Google Scholar
Michaelis, H., Ahrens, L. H. and Willis, J. P. (1969b) The composition of stony meteorites II. The analytical data and an assessmant of their quality. Earth Planet. Sci. Lett. 5, 387–94CrossRefGoogle Scholar
Wahl, W. A. (1910a) Beiträge zur Chemie der Meteoriten. Z. Anorgan. Chem. 69, 52–96CrossRefGoogle Scholar
Wahl, W. A. (1910b) The brecciated stony meteorites and meteorites containing foreign fragments. Geochim. Cosmochim. Acta 2, 91–117CrossRefGoogle Scholar
Wai, C. M. and Wasson, J. T. (1977) Nebular condensation of moderately volatile elements and their abundances in ordinary chondrites. Earth Planet. Sci. Lett. 36, 1–13CrossRefGoogle Scholar
Walter, L. S. and Dodd, R. T. (1972) Evidence for vapor fractionation in the origin of chondrules. Meteoritics 7, 341–52CrossRefGoogle Scholar
Wark, D. A. and Lovering, J. F. (1982) Evolution of Ca–Al-rich bodies in the earliest solar system: Growth by incorporation. Geochim. Cosmochim. Acta 46, 2–5CrossRefGoogle Scholar
Wark, D. A., Boynton, W. V., Keays, R. R. and Palme, H. (1987) Trace element clues to the formation of forsterite-bearing inclusions in the Allende meteorite. Geochim. Cosmochim. Acta 51, 607–22CrossRefGoogle Scholar
Warren P. H., Jerde E. A. and Kallemeyn G. W. (1990) Pristine moon rocks: An alkali anorthosite with coarse augite exsolution from plagioclase, a magnesian harzburgite, and other oddities. Proc. 20th Lunar Planet. Sci. Conf. Lunar and Planetary Institute, pp. 2641–54
Wasserburg G. J. (1985) Short-lived nuclei in the early solar system. In Protostars and Planets II. Ed. D. C. Black and M. S. Matthews. University of Arizona Press, pp. 703–37
Wasson, J. T. (1972) Formation of ordinary chondrites. Rev. Geophys. Space Phys. 10, 711–59CrossRefGoogle Scholar
Wasson J. T. (1974) Meteorites. Springer-Verlag
Wasson J. T. (1985) Meteorites: Their Record of Early Solar-System History. W. H. Freeman
Wasson, J. T. (1993) Constraints on chondrule origins. Meteoritics 28, 14–28CrossRefGoogle Scholar
Wasson J. T. (1996) Chondrule formation: Energetics and length scales. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 45–54
Wasson, J. T. and Chou, C. L. (1974) Fraction of moderately volatile elements in ordinary chondrites. Meteoritics 9, 69–84CrossRefGoogle Scholar
Wasson J. T. and Rasmussen K. L. (1994) The fine nebula dust component: A key to chondrule formation by lightning (abstract). Papers Presented to the Conference on Chondrules and the Protoplanetary Disk. 43. Lunar and Planetary Institute
Watanabe, S., Kitamura, M. and Morimoto, N. (1984) Analytical electron microscopy of a chondrule with relict olivine in the ALH-77015 chondrite (L3). Mem. Natl Inst. Polar Res., Special Issue 35, 2–0Google Scholar
Watanabe S., Kitamura M. and Morimoto N. (1986) Oscillatory zoning of pyroxenes in ALH-77214 (L3) (abstract). Proceedings of 11th Symposium on Antarctic Meteorites. National Institute of Polar Research, pp. 25–7
Wdowiak T. J. (1983) Experimental investigation of electrical discharge formation of chondrules. In Chondrules and Their Origins. Ed. E. A. King. Lunar and Planetary Institute, pp. 279–83
Weidenschilling, S. J. (1977) Aerodynamics of solid bodies in the solar nebula. Mon. Not. Roy. Astron. Soc. 180, 57–70CrossRefGoogle Scholar
Weidenschilling S. J. (1988) Formation processes and time scales for meteorite parent bodies. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 348–71
Weidenschilling, S. J. and Ruzmaikina, T V. (1994) Coagulation of grains in static and collapsing protostellar clouds. Astrophys. J. 430, 713–26CrossRefGoogle Scholar
Weidenschilling, S. J., Marzari, F. and Hood, L. L. (1998) The origin of chondrules at Jovian resonances. Science 279, 6–8CrossRefGoogle ScholarPubMed
Weinbruch, S., Buettner, H., Holzheid, A., Rosenhauer, M. and Hewins, R. H. (1998) On the lower limit of chondrule cooling rates: The significance of iron loss in dynamic crystallization experiments. Meteorit. Planet. Sci. 33, 65–74CrossRefGoogle Scholar
Weinbruch, S., Müller, W. F. and Hewins, R. H. (2001) A transmission electron microscope study of exsolution and coarsening in iron-bearing clinopyroxene from synthetic analogues of chondrules. Meteorit. Planet. Sci. 36, 1237–48CrossRefGoogle Scholar
Weisberg M. K. and Prinz M. (1996) Agglomeratic chondrules, chondrule precursors, and incomplete melting. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 119–27
Weisberg, M. K., Nehru, C. E. and Prinz, M. (1988) Petrology of ALH85085 – a chondrite with unique characteristics. Earth Planet. Sci. Lett. 91, 19–32CrossRefGoogle Scholar
Weisberg, M. K., Prinz, M., Kojima, H., et al. (1991) The Carlisle Lake-type chondrites: A new grouplet with high δ17O and evidence for nebular oxidation. Geochim. Cosmochim. Acta 55, 2657–69CrossRefGoogle Scholar
Weisberg, M. K., Prinz, M., Clayton, R. N. and Mayeda, T. (1993) The CR (Renazzo-type) carbonaceous chondrite group and its implications. Geochim. Cosmochim. Acta 55, 2657–69CrossRefGoogle Scholar
Weisberg, M. K., Prinz, M., Clayton, R. N., et al. (1996) The K (Kakangari) chondrite grouplet. Geochim. Cosmochim. Acta 60, 4253–63CrossRefGoogle Scholar
Wetherill, G. W. (1985) Asteroidal source of ordinary chondrites. Meteoritics 20, 1–22CrossRefGoogle Scholar
Wetherill G. W. and Chapman C. R. (1988) Asteroids and meteorites. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 35–67
Whipple, F. L. (1966) Chondrules: Suggestions concerning their origin. Science 153, 54–6CrossRefGoogle ScholarPubMed
Whipple F. L. (1972a) Accumulation of chondrules on asteroids. In Physical Studies of Minor Planets. NASA Special Publication 267, pp. 251–62
Whipple F. L. (1972b) On certain aerodynamic processes for asteroids and comets. In From Plasma to Planet, Nobel Symposium 21. Ed. A. Elvius. John Wiley, pp. 211–32
Wieneke B. and Clayton D. D. (1983) Aggregation of grains in a turbulent pre-solar disk. In Chondrules and Their Origins. Ed. E. A. King. Lunar and Planetary Institute, pp. 284–95
Wiik, H. B. (1969) On regular discontinuities in the composition of meteorites. Comm. Phys. Math. 34, 135–45Google Scholar
Wilkening, L. L., Boynton, W. V. and Hill, D. H. (1984) Trace elements in rims and interiors of Chainpur chondrules. Geochim. Cosmochim. Acta 48, 1071–80CrossRefGoogle Scholar
Wilson, C. J. N. (1980) The role of fluidization in the emplacement of pyroclastic flows: An experimental approach. J. Volcanol. Geotherm. Res. 8, 231–49CrossRefGoogle Scholar
Winzer S. R., Nava D. F., Meyerhoff M., et al. (1977) The petrology and geochemistry of impact melts, granulites, and hornfeldses from consortium breccia 61175. Proc. 8th Lunar Sci. Conf. Lunar and Planetary Institute, pp. 1943–66
Wisdom, J. (1985) Meteorites follow a chaotic route to Earth. Nature 315, 7–3CrossRefGoogle Scholar
Wlotzka F. (1969) On the formation of chondrules and metal particles by shock melting. In Meteorite Research. Ed. P. M. Millman. D. Reidel, pp. 174–83CrossRef
Wlotzka F. (1983) Composition of chondrules, fragments and matrix in the unequilibrated ordinary chondrites Tieschitz and Sharps. In Chondrules and Their Origins. Ed. E. A. King. Lunar and Planetary Institute, pp. 296–318
Wolf, R., Richter, G. R., Woodrow, A. B. and Anders, E. (1980) Chemical fractionations in meteorites – Ⅺ. C2 chondrites. Geochim. Cosmochim. Acta 44, 711–17CrossRefGoogle Scholar
Wood, J. A. (1962) Metamorphism in chondrites. Geochim. Cosmochim. Acta 26, 739–49CrossRefGoogle Scholar
Wood, J. A. (1963) The origin of chondrules and chondrites. Icarus 2, 152–80CrossRefGoogle Scholar
Wood, J. A. (1964) The cooling rates and parent planets of several iron meteorites. Icarus 3, 429–59CrossRefGoogle Scholar
Wood, J. A. (1967a) Chondrites: Their metallic minerals, thermal histories and parent planets. Icarus 6, 1–7CrossRefGoogle Scholar
Wood, J. A. (1967b) Olivine and pyroxene compositions in type II carbonaceous chondrites. Geochim. Cosmochim. Acta 31, 2–0CrossRefGoogle Scholar
Wood J. A. (1968) Meteorites and the Origin of the Planets. McGraw-Hill
Wood J. A. (1979) Review of metallographic cooling rates of meteorites and a new model for the planetesimals in which they formed. In Asteroids. Ed. T. Gehrels. University of Arizona Press, pp. 849–91
Wood, J. A. (1983) Formation of chondrules and CAI's from interstellar grains accreting to the solar nebula. Mem. Natl. Inst. Polar Res., Special Issue 30, 84–92Google Scholar
Wood, J. A. (1984) On the formation of meteoritic chondrules by aerodynamic drag heating in the solar nebula. Earth Planet. Sci. Lett. 70, 11–26CrossRefGoogle Scholar
Wood J. A. (1985) Meteoritic constraints on processes in the solar nebula. In Protostars and Planets II. Ed. D. C. Black and M. S. Matthews. University of Arizona Press, pp. 687–702
Wood, J. A. (1986) High temperatures and chondrule formation in a turbulent shear zone beneath the nebula surface. Lunar Planet. Science XVIII, 456–957Google Scholar
Wood, J. A. (1988) Chondritic meteorites and the solar nebula. Ann. Rev. Earth Planet. Sci. 16, 53–72CrossRefGoogle Scholar
Wood J. A. (1996) Unresolved issues in the formation of chondrules and chondrites. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 55–69
Wood J. A. (2001) Chondrites: Tight-lipped witnesses to the beginning. Unpublished article widely distributed by author
Wood J. A. and Chang S., Eds. (1985) The Cosmic History of the Biogenic Elements and Compounds. NASA SP-476
Wood, J. A. and Hashimoto, A. (1988) The condensation sequence under non-classic conditions (P<10–3 atm, non-cosmic compositions). Lunar Planet. Sci XIX, 1–2Google Scholar
Wood, J. A. and Hashimoto, A. (1993) Mineral equilibrium in fractionated nebular systems. Geochim. Cosmochim. Acta 57, 2377–88CrossRefGoogle Scholar
Wood J. A. and McSween H. Y. Jr (1976) Chondrules as condensation products. In Comets, Asteroids, Meteorites: Interrelations, Evolution, and Origins. Ed. A. H. Delsemme. University of Toledo, pp. 65–373
Wood J. A. and Morfill G. E. (1988) A review of solar nebula models. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 329–47
Woolum D. S. (1988) Solar system abundances and processes of nucleosynthesis. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 995–1020
Young, E. D. and Russell, S. S. (1998) Oxygen reservoirs in the early solar nebula inferred from an Allende CAI. Science 282, 4–5CrossRefGoogle ScholarPubMed
Young, J. (1926) The crystal structure of meteoric iron as determined by X-ray analysis. Proc. Roy. Soc. London A112, 630–41CrossRefGoogle Scholar
Yu, Y., Hewins, R. H., Clayton, R. N. and Mayeda, T. K. (1995) Experimental study of high temperature oxygen isotope exchange during chondrule formation. Geochim. Cosmochim. Acta 59, 2–0CrossRefGoogle Scholar
Yu Y., Hewins R. H. and Zanda B. (1996) Sodium and sulfur in chondrules: Heating time and cooling curves. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 213–19
Zbik M. and Lang B. (1983) Morphological features of pore spaces in chondrules. In Chondrules and Their Origins. Ed. E. A. King. Lunar and Planetary Institute, pp. 319–29
Zhang, Y., Benoit, P. H. and Sears, D. W. G. (1995) The classification and complex thermal history of the enstatite chondrites. J. Geophys. Res. 100, 9417–38CrossRefGoogle Scholar
Zinner E. (1988) Interstellar cloud material in meteorites. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 956–83
Zolensky M. and McSween H. Y. Jr (1988) Aqueous alteration. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 114–43
Zook, H. A. (1980) A new impact theory for the generation of ordinary chondrites. Meteoritics 15, 3–9Google Scholar
Zook, H. A. (1981) On a new theory for the generation of chondrules. Lunar Planet. Sci. XII, 1–2Google Scholar
Afiattalab, F. and Wasson, J. T. (1980) Composition of the metal phases in ordinary chondrites: implications regarding classification and metamorphism. Geochim. Cosmochim. Acta 44, 431–46CrossRefGoogle Scholar
Ahrens, L. H. (1965) Observations on the Fe–Si–Mg relationship in chondrites. Geochim. Cosmochim. Acta 29, 801–6CrossRefGoogle Scholar
Ahrens, L. H. (1970) The composition of stony meteorites (VII): Observations on fractionation between the L and H chondrites. Earth Planet. Sci. Lett. 9, 345–7CrossRefGoogle Scholar
Ahrens, L. H. and Michaelis, H. (1969) The composition of stony meteorites III. Some inter-element relationships. Earth Planet. Sci. Lett. 5, 395–400CrossRefGoogle Scholar
Ahrens T. J., O'Keefe J. D. and Lange M. A. (1989) Formation of atmospheres during accretion of the terrestrial planets. In Origin and Evolution of Planetary and Satellite Atmospheres. Ed. S. K. Atreya, J. B. Pollack and M. S. Matthews. University of Arizona Press, pp. 328–85
Akridge, G., Benoit, P. H. and Sears, D. W. G. (1998) Regolith and megaregolith formation of H-chondrites: Thermal constraints on the parent body. Icarus 132, 185–95CrossRefGoogle Scholar
Alexander, C. M. O'D. (1994) Trace element distributions within ordinary chondrite chondrules: Implications for chondrule formation conditions and precursors. Geochim. Cosmochim. Acta 58, 3451–67CrossRefGoogle Scholar
Alexander C. M. O'D. (1996) Recycling and volatile loss in chondrule formation. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 233–41
Alexander, C. M. O'D and Wang, J. (2001) Iron isotopes in chondrules: Implications for the role of evaporation during chondrule formation. Meteorit. Planet. Sci. 36, 419–28CrossRefGoogle Scholar
Alexander, C. M. O'D., Hutchison, R. and Barber, D. J. (1989) Origin of chondrule rims and interchondrule matrices in unequilibrated ordinary chondrites. Earth Planet. Sci. Lett. 95, 187–207CrossRefGoogle Scholar
Alexander, C. M. O'D., Grossman, J. N., Wang, J., et al. (2000) The lack of potassium-isotopic fractionation in Bishunpur chondrules. Meteorit. Planet. Sci. 35, 859–68CrossRefGoogle Scholar
Allen, I. S., Nozette, S. and Wilkening, L. L. (1980) A study of chondrule rims and chondrule irradiation records in unequilibrated ordinary chondrites. Geochim. Cosmochim. Acta 44, 1161–75CrossRefGoogle Scholar
Anders, E. (1964) Origin, age and composition of meteorites. Space Sci. Rev. 3, 583–714CrossRefGoogle Scholar
Anders, E. (1977) Critique of “Nebular condensation of moderately volatile elements and their abundances in ordinary chondrites” by C. M. Wai and J. T. Wasson. Earth Planet. Sci. Lett. 36, 14–20CrossRefGoogle Scholar
Anders E. (1988) Circumstellar material in meteorites: noble gases, carbon and nitrogen. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 927–55
Anders, E., Higuchi, H., Ganapathy, R. and Morgan, J. W. (1976) Chemical fractionations in meteorites – X. C3 chondrites. Geochim. Cosmochim. Acta 40, 1131–9CrossRefGoogle Scholar
Ashworth, J. R. (1977) Matrix textures in unequilibrated ordinary chondrites. Earth Planet. Sci. Lett. 35, 25–34CrossRefGoogle Scholar
Asphaug, E. and Nolan, M. C. (1992) Analytical and numerical predictions for regolith thickness on asteroids (abstract). Lunar Planet. Sci. XⅫI, 43–4Google Scholar
Baldwin, B. and Shaeffer, Y. (1971) Ablation and breakup of large meteoroids during atmospheric entry. J. Geophys. Res. 76, 4653–68CrossRefGoogle Scholar
Ball R. S. (1910) The Story of the Heavens. Cassell and Co
Batchelor, J. D., Symes, S. J. K., Benoit, P. H. and Sears, D. W. G. (1997) Constraints on the thermal and mixing history of lunar surface materials and comparisons with basaltic meteorites. J. Geophys. Res. 102, 19321–35CrossRefGoogle Scholar
Bell J. F. and Keil K. (1988) Spectral alteration effects in chondritic gas-rich breccias: Implication for S-class and Q-class asteroids. Proc. 18th Lunar Planet. Sci. Conf. Lunar and Planetary Institute, pp. 573–80
Bell J. F., Davis D. R., Hartmann W. K. and Gaffey M. J. (1989) Asteroids: The big picture. In Asteroids II. Ed. R. P. Binzel, T. Gehrels and M. S. Matthews. University of Arizona Press, pp. 921–45
Belton, M. J. S., Veverka, J., Thomas, P., et al. (1992) Galileo encounter with 951 Gaspra – First pictures of an asteroid. Science 257, 1647–52CrossRefGoogle ScholarPubMed
Bennett, M. E. and McSween, H. Y. (1996) Revised model calculations for the thermal histories for ordinary chondrite parent bodies. Meteorit. Planet. Sci. 31, 783–92CrossRefGoogle Scholar
Benoit, P. H. and Sears, D. W. G. (1992) The breakup of a meteorite parent body and the delivery of meteorites to Earth. Science 255, 1685–7CrossRefGoogle Scholar
Benoit, P. H. and Sears, D. W. G. (1993) A recent meteorite shower in Antarctica with an unusual orbital history. Earth Planet. Sci. Lett. 120, 463–71CrossRefGoogle Scholar
Benoit, P. H. and Sears, D. W. G. (1996) Rapid changes in the nature of the H chondrites falling to Earth. Meteorit. Planet. Sci. 31, 81–6CrossRefGoogle Scholar
Berwerth, F. M. (1901) Centralblatt Min. 21, 641–7. (Cited in Merrill, 1920.)
Berzelius, J. J. (1834) Uber Meteorstein. Annal. Physik 33, 1–32, 113–48Google Scholar
Bhandari N., Goswami J. N., Gupta S. K., et al. (1972) Collision controlled radiation history of the lunar regolith. Proc. 3rd Lunar Sci. Conf. Lunar and Planetary Institute, pp. 2811–29
Binzel R. P., Gehrels T. and Matthews M. S., Eds. (1989) Asteroids II. University of Arizona Press
Binzel, R. P., Schelte, J. B., Burbine, T. H. and Sunshine, J. M. (1996) Spectral properties of near-Earth asteroids: Evidence for sources of ordinary chondrite meteorites. Science 273, 946–8CrossRefGoogle ScholarPubMed
Birck, J.-L. and Allegre, C. J. (1985) Evidence for the presence of 53Mn in the early solar system. Geophys. Res. Lett. 12, 745–8CrossRefGoogle Scholar
Bischoff, A. (1998) Aqueous alteration of carbonaceous chondrites: Evidence for preaccretionary alteration – a review. Meteorit. Planet. Sci. 33, 1113–22CrossRefGoogle Scholar
Bischoff, A. and Keil, K. (1983) Ca–Al-rich chondrules and inclusions in ordinary chondrites. Nature 303, 588–92CrossRefGoogle Scholar
Bischoff, A., Palme, H., Weber, H. W., et al. (1987) Petrography, shock history, chemical composition and noble gas content of the lunar meteorites Yamato-82192 and -82193. Mem. Natl. Inst. Polar Res., Spec. Issue 46, 21–42Google Scholar
Bischoff, A., Palme, H., Ash, R. D., et al. (1993a) Paired Renazzo-type (CR) carbonaceous chondrites from the Sahara. Geochim. Cosmochim. Acta 57, 1587–603CrossRefGoogle Scholar
Bischoff, A., Palme, H., Schultz, L., et al. (1993b) ACFER 182 and paired samples, an iron-rich carbonaceous chondrite – Similarities with ALH85085 and relationship to CR chondrites. Geochim. Cosmochim. Acta 57, 2631–48CrossRefGoogle Scholar
Blander, M. (1975) Critical comments on a proposed cosmothermometer. Geochim. Cosmochim. Acta 39, 1315–20CrossRefGoogle Scholar
Blander M. (1983) Condensation of chondrules. In Chondrules and Their Origins. Ed. E. A. King. Lunar and Planetary Institute, pp. 1–9
Blander, M. and Katz, J. L. (1967) Condensation of primordial dust. Geochim. Cosmochim. Acta 31, 1025–34CrossRefGoogle Scholar
Bogard, D. D. (1994) Impact ages of meteorites: A synthesis. Meteoritics 30, 244–68CrossRefGoogle Scholar
Bogard, D. D. (1995) 39Ar–40Ar ages of two shocked L chondrites (abstract). Lunar Planet. Sci. XXVI, 1–4Google Scholar
Borg J., Chaumont J., Jouret C., Langevin Y. and Maurette M. (1980) Solar wind radiation damage in lunar dust grains and the characteristics of the ancient solar wind. In Proceedings of a Conference on the Ancient Sun. Ed. R. O. Pepin, J. A. Eddy and R. B. Merrill. Pergamon, pp. 431–61
Borgstrom, L. H. (1904) The Shelburne meteorite. Trans. Roy. Astron. Soc. Canada pp. 69–94Google Scholar
Boss, A. P. (1988) High temperatures in the early solar nebula. Science 241, 5–6CrossRefGoogle ScholarPubMed
Boss, A. P. (1993) Evolution of the solar nebula. II. Thermal structure during nebula formation. Astrophys. J. 417, 351–67CrossRefGoogle Scholar
Boss A. P. (1996a) Large scale processes in the solar nebula. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 29–34
Boss A. P. (1996b) A concise guide to chondrule formation models. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 257–63
Boss, A. P. and Graham, J. A. (1993) Clumpy disk accretion and chondrule formation. Icarus 106, 168–78CrossRefGoogle Scholar
Boynton, W. V. (1975) Fractionation in the solar nebula – Condensation of yttrium and the rare earth elements. Geochim. Cosmochim. Acta 39, 569–84CrossRefGoogle Scholar
Bradley J. P., Sandford S. A. and Walker R. M. (1988) Interplanetary dust particles. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 861–95
Brearley, A. J. (1993) Matrix and fine-grained rims in the unequilibrated CO3 chondrite, ALHA77307 – Origins and evidence for diverse, primitive nebular dust components. Geochim. Cosmochim. Acta 57, 1521–50CrossRefGoogle Scholar
Brearley A. J. (1996) Nature of matrix in unequilibrated chondrites and its possible relationship to chondrules. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 137–51
Brearley, A. J. and Geiger, T. (1991) Mineralogical and chemical studies bearing on the origin of accretionary rims in the Murchison CM2 carbonaceous chondrite. Meteoritics 26, 323Google Scholar
Brearley, A. J., Scott, E. R. D., Keil, K., et al. (1989) Chemical, isotopic and mineralogical evidence for the origin of matrix in ordinary chondrites. Geochim. Cosmochim. Acta 53, 2081–93CrossRefGoogle Scholar
Brezina A. (1885) Die Meteoritiensammlung des k. k. mineralogischen Hofkabinetes in Wein am 1 Mai 1885. Alfred Hölder
Bridges, J. C. (1999). Mineralogical controls on the oxygen isotopic compositions of UOCs. Geochim. Cosmochim. Acta 63, 945–51CrossRefGoogle Scholar
Bridges, J. C., Franchi, I. A., Hutchsion, R., Sexton, A. S. and Pillinger, C. T. (1997) Mineralogical and oxygen isotopic constraints on the formation of Chainpur (LL3) and Parnallee (LL3) chondrules (abstract). Lunar Planet. Sci. XXVIII, 1–5Google Scholar
Bridges, J. C., Franchi, I. A., Hutchsion, R., Sexton, A. S. and Pillinger, C. T. (1998) Correlated mineralogy, chemical compositions, oxygen isotopic composition and sizes of chondrules. Earth Planet. Sci. Lett. 155, 183–96CrossRefGoogle Scholar
Brigham, C. A., Yabuki, H., Ouyang, Z., et al. (1986) Silica-bearing chondrules and clasts in ordinary chondrites. Geochim. Cosmochim. Acta 50, 1655–66CrossRefGoogle Scholar
Britt D. T. and Consolmagno G. (2002) Stony meteorite porosities and densities: A review of data through 2001. Unpublished paper
Britt, D. T. and Pieters, C. M. (1991) Darkening in gas-rich ordinary chondrites: Spectral modeling and implications for the regoliths of ordinary chondrite parent bodies (abstract). Lunar Planet. Sci. XⅫ, 1–4Google Scholar
Britt D. T., Yeomans D., Housen K. and Consolmagno G. (2002) Asteroid density, porosity and structure. In Asteroids III. Ed. W. F. Bottke, A. Cellino, P. Paolicchi and R. P. Binzel. University of Arizona Press, pp. 485–500
Browning, L. B., McSween, H. Y. and Zolensky, M. E. (1996) Correlated alteration effects in CM carbonaceous chondrites. Geochim. Cosmochim. Acta 60, 2621–33CrossRefGoogle Scholar
Brownlee, D. E. and Rajan, R. S. (1973) Micrometeorite craters discovered on chondrule-like objects from the Kapoeta meteorite. Science 182, 1341–4CrossRefGoogle ScholarPubMed
Brownlee D. E., Bates B. and Beauchamp R. H. (1983) Meteor ablation spherules as chondrule analogs. In Chondrules and Their Origins. Ed. E. A. King. Lunar and Planetary Institute, pp. 10–25
Brownlee, D. E., Bates, B. and Schramm, L. (1997) The elemental composition of stony cosmic spherules. Meteoritics 32, 157–75CrossRefGoogle Scholar
Buchwald V. F. (1975) Handbook of Iron Meteorites, Their History, Composition and Structure. University of California Press
Buchwald V. F. (1992) Meteoritter – nøglen til Jordens fortid. GlydendaL
Bunch, T. E. and Chang, S. (1980) Carbonaceous chondrites–II. Carbonaceous chondrite phyllosilicates and light element geochemistry as indicators of parent body processes and surface conditions. Geochim. Cosmochim. Acta 44, 1543–77CrossRefGoogle Scholar
Bunch T. E. and Rajan R. S. (1988) Meteorite regolithic breccias. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 144–64
Bunch, T. E., Quaide, W., Prinz, M., Keil, K. and Dowty, E. (1972) Lunar ultramafic glasses, chondrules and rocks. Nat. Phys. Sci. 239, 57–9CrossRefGoogle Scholar
Bunch, T. E., Chang, S., Cassen, P., Reynolds, R. and Lissauer, J. (1985) Non-nebula origin for CAI rims (abstract). Lunar Planet. Sci. XVI, 97–8Google Scholar
Burbage, E. M., Burbage, G. R., Fowler, W. A. and Hoyle, F. (1957) Synthesis of the elements in stars. Rev. Mod. Phys. 29, 547–640CrossRefGoogle Scholar
Burbine T. H., McCoy T. J., Meibom A., Gladman B. and Keil K. (2003) Meteorite parent bodies: Their number and identification. In Asteroids III. Ed. W. F. Bottke, A. Cellino, P. Paolicchi and R. P. Binzel. University of Arizona Press, pp. 653–67
Burke J. G. (1986) Cosmic debris: Meteorites in History. University of California Press
Butler, R. F. (1972) Natural remanent magnetization and thermomagnetic properties of the Allende meteorite. Earth Planet. Sci. Lett. 17, 1–2CrossRefGoogle Scholar
Caffee M. W. and Macdougall J. D. (1988) Compaction ages. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 289–98
Caffee, M. W., Hohenberg, C. M., Swindle, T. D. and Goswami, J. N. (1987) Evidence in meteorites for an active early Sun. Astrophys. J. 313, L31–5CrossRefGoogle Scholar
Caffee M. W., Goswami J. N., Hohenberg C. M., Marti K. and Reedy R. C. (1988) Irradiation records in meteorites. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 205–45
Cameron, A. G. W. (1966) The accumulation of chondritic material. Earth Planet. Sci. Lett. 1, 93–6CrossRefGoogle Scholar
Cameron, A. G. W. (1995) The first ten million years in the solar nebula. Meteoritics 30, 133–61CrossRefGoogle Scholar
Cameron, A. G. W. and Fegley, M. B. (1982) Nucleation and condensation in the primitive solar nebula. Icarus 52, 1–13CrossRefGoogle Scholar
Carr, M. H., Kirk, R., McEwen, A., et al. (1994) The geology of Gaspra. Icarus 107, 61–71CrossRefGoogle Scholar
Cassen, P. (1994) Utilitarian models of the solar nebula. Icarus 112, 405–29CrossRefGoogle Scholar
Cassen P. (1996a) Overview of models of the solar nebula: Potential chondrule-forming environments. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 21–8
Cassen, P. (1996b) Models for the fractionation of moderately volatile elements in the solar nebula. Meteoritics 31, 793–806CrossRefGoogle Scholar
Cassen, P. (2001) Nebular thermal evolution and the properties of primitive planetary materials. Meteorit. Planet. Sci. 36, 671–700CrossRefGoogle Scholar
Cassen P. and Boss A. P. (1988) Protostellar collapse, dust grains and solar system formation. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 304–28
Castaing, R. (1952) Application des sondes electronique a une methode d'analyse ponctuelle chimique et crystallographique. Office Nat. d'Études Res. Aéronaut. 55, 27–31Google Scholar
Chambers, J. E. and Cassen, P. (2002) The effects of nebula surface density profile and giant-planet eccentricities on planetary accretion in the inner solar system. Meteorit. Planet. Sci. 37, 1523–40CrossRefGoogle Scholar
Chambers, J. E. and Wetherill, G. W. (1998) Making the terrestrial planets: N-body integrations of planetary embryos in three dimensions. Icarus 136, 304–27CrossRefGoogle Scholar
Chapman, C. R. (1976) Asteroids as meteorite parent-bodies: The astronomical perspective. Geochim. Cosmochim. Acta 40, 701–19CrossRefGoogle Scholar
Chapman, C. R. (1996) S-type asteroids, ordinary chondrites, and space weathering: The evidence from Galileo's fly-bys of Gaspra and Ida. Meteoritics 31, 699–725CrossRefGoogle Scholar
Chapman, C. R. (2001) Eros at very high resolution: Meteoritical implications. Meteorit. Planet. Sci. 36, Supplement, A39Google Scholar
Chapman, C. R., Veverka, J., Thomas, P. C., et al. (1995) Discovery and physical properties of Dactyl A satellite of asteroid 243 Ida. Nature 374, 7–8CrossRefGoogle Scholar
Chapman, C. R., Ryan, E. V., Merline, W. J., et al. (1996a) Cratering on Ida. Icarus 120, 77–86CrossRefGoogle Scholar
Chapman, C. R., Veverka, J., Belton, M. J. S., Neukum, G. and Morrison, D. (1996b) Cratering on Gaspra. Icarus 120, 231–45CrossRefGoogle Scholar
Chapman, C. R., Merline, W. J. and Thomas, P. (1999) Cratering on Mathilde. Icarus 140, 28–33CrossRefGoogle Scholar
Chapman, C. R., Merline, W. J., Thomas, P. C., et al. (2002) Impact history of Eros: craters and boulders. Icarus 155, 104–18CrossRefGoogle Scholar
Chladni E. F. F. (1794) Ueber den Orsprung der von Pallas gefunden und anderer ihr ähnlicher Eisenmassen. J. F. Hartknoch
Christophe-Michel-Lévy, M. (1976) La matrice noire et blanche de la chondrite de Tieschitz (H3). Earth Planet. Sci. Lett. 30, 143–50CrossRefGoogle Scholar
Christophe-Michel-Lévy, M. (1981) Some clues to the history of H-group chondrites. Earth Planet. Sci. Lett. 54, 67–80CrossRefGoogle Scholar
Christophe-Michel-Lévy, M. (1987) Microchondrules in the Mezö-Madaras and Krymka unequilibrated chondrites (abstract). Meteoritics 22, 3–5Google Scholar
Cirlin, E.-H., Taylor, L. A. and Lofgren, G. E. (1985) Fe/Mg KD for olivine/liquid in chondrules: Effects of cooling rate (abstract). Lunar Planet. Sci. XVI, 1–3Google Scholar
Clarke, C. L., Lin, D. N. C. and Pringle, J. E. (1990) Pre-conditions for discgenerated FU Orionis outbursts. Mon. Nat. Roy. Astron. Soc. 242, 439–46CrossRefGoogle Scholar
Clayton, D. D. (1980a) Chemical and isotopic fractionation by grain size separation. Earth Planet. Sci. Lett. 47, 199–210CrossRefGoogle Scholar
Clayton, D. D. (1980b) Chemical energy in cold-cloud aggregates: The origin of meteoritic chondrules. Astrophys. J.. 239, L37–41CrossRefGoogle Scholar
Clayton D. D. (1983) Chemical state of pre-solar matter. In Chondrules and Their Origins. Ed. E. A. King. Lunar and Planetary Institute, pp. 26–36
Clayton D. D. (1988) Stellar nucleosynthesis and chemical evolution of the solar neighborhood. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 1021–62
Clayton, R. N. (1993) Oxygen isotopes in meteorites. Ann. Rev. Earth Planet. Sci. 21, 115–49CrossRefGoogle Scholar
Clayton, R. N. and Mayeda, T. K. (1984) The oxygen isotope record in Murchison and other carbonaceous chondrites. Earth Planet. Sci. Lett. 67, 151–61CrossRefGoogle Scholar
Clayton, R. N. and Mayeda, T. K. (1985) Oxygen isotopes in chondrules from enstatite chondrites: Possible identification of a major nebular reservoir (abstract). Lunar Planet. Sci. XVI, 142–3Google Scholar
Clayton, R. N. and Mayeda, T. K. (1999) Links among CI and CM chondrites. Lunar Planet. Sci. XXX, abstract no. 1795Google Scholar
Clayton, R. N., Mayeda, T. K., Gooding, J. L., Keil, K. and Olsen, E. J. (1981) Redox processes in chondrules and chondrites (abstract). Lunar Planet. Sci. , 1–5Google Scholar
Clayton R. N., Onuma N., Ikeda Y., et al. (1983) Oxygen isotopic compositions of chondrules in Allende and ordinary chondrites. In Chondrules and Their Origins. Ed. E. A. King. Lunar and Planetary Institute, pp. 37–43
Clayton R. N., Mayeda T. K. and Molini-Velsko C. A. (1985) Isotopic variations in solar system material – Evaporation and condensation of silicates. In Protostars and Planets II. Ed. D. C. Black and M. S. Matthews. University of Arizona Press, pp. 755–71
Clayton, R. N., Mayeda, T. K., Rubin, A. E. and Wasson, J. T. (1987) Oxygen isotopes in Allende chondrules and coarse-grained rims (abstract). Lunar Planet. Sci. XVIII, 1–8Google Scholar
Clayton, R. N., Mayeda, T. K., Goswami, J. N. and Olsen, E. J. (1991) Oxygen isotopes studies of ordinary chondrites. Geochim. Cosmochim. Acta 55, 2317–37CrossRefGoogle Scholar
Clayton, R. N., Mayeda, T. K. and Nagahara, H. (1992) Oxygen isotope relationship among primitive achondrites (abstract). Lunar Planet. Sci. XⅫI, 2–3Google Scholar
Colson, R. O., Taylor, L. A. and McKay, G. A. (1986) Predictive thermodynamic modeling for trace element partitioning in magmatic systems (abstract.). Lunar Planet. Sci. XVII, 1–4Google Scholar
Colson, R. O., McKay, G. A. and Taylor, L. A. (1988) Temperature and composition dependencies of trace element partitioning: Olivine/melt and low-Ca pyroxene/melt. Geochim. Cosmochim. Acta 52, 539–53CrossRefGoogle Scholar
Connolly H. C. Jr and Hewins R. H. (1996) Constraints on chondrule precursors from experimental data. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 129–35
Connolly, H. C. Jr, Radomsky, P. M. and Hewins, R. H. (1988) Chondrule texture: The influence of bulk composition and heating time for uniform thermal conditions (abstract). Lunar Planet. Sci. XIX, 2–0Google Scholar
Connolly, H. C. Jr, Hewins, R. H. and Lofgren, G. E. (1993) Flash melting of chondrule precursors in excess of 1600 °C. Series I: Type II (B1) chondrule composition experiments (abstract). Lunar Planet. Sci. XⅪV, 329–30Google Scholar
Craig H. (1964) Petrological and compositional relationships in meteorites. In Isotopic and Cosmic Chemistry. Ed. H. Craig, S. L. Miller and G. J. Wasserburg. North-Holland, pp. 401–51
Cronin J. R., Pizzarello S. and Cruikshank D. P. (1988) Organic matter in carbonaceous chondrites, planetary satellites, asteroids and comets. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 819–57
Cuzzi, J. N., Dobrovolskis, A. R. and Champney, J. M. (1993) Particle–gas dynamics in the midplane of a protoplanetary nebula. Icarus 106, 102–34CrossRefGoogle Scholar
Cuzzi J. N., Dobrovolskis A. R. and Hogan R. C. (1996) Turbulence, chondrules, and planetesimals. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 35–43
Daubree G. A. (1879) Études Synthétiques de Geologic Expérimentale. Dunod, p. 530
Davis, A. M. and MacPherson, G. J. (1988) Further isotopic and chemical investigations of an isotopically heterogeneous Vigarano inclusion. Meteoritics 23, 2–6Google Scholar
Davis A. M. and MacPherson G. J. (1996) Thermal processing in the solar nebula: Constraints from refractory inclusions. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 71–6
Davis, A. M., Hashimoto, A., Clayton, R. N. and Mayeda, T. K. (1990) Isotope mass fractionation during evaporation of Mg2SiO4. Nature 347, 6–5CrossRefGoogle Scholar
Davis D. R., Chapman C. R., Greenberg R., Weidenschilling S. and Harris A. W. (1979) Collisional evolution of asteroids: Populations, rotations, and velocities. In Asteroids. Ed. T. Gehrels. University of Arizona Press, pp. 528–57
DeHart, J. M., Lofgren, G. E., Lu, J., Benoit, P. H. and Sears, D. W. G. (1992) Chemical and physical studies of chondrites X: Cathodoluminescence studies of metamorphism and nebular processes in type 3 ordinary chondrites. Geochim. Cosmochim. Acta 56, 3791–807CrossRefGoogle Scholar
Delano, J. W. (1986) Pristine lunar glasses: Criteria, data and implications. Proc. 16th Lunar Planet. Sci. Conf., part 2. J. Geophys. Res. 91, D201–13CrossRefGoogle Scholar
Delano, J. W. (1991) Geochemical comparison of impact glasses from lunar meteorites ALHA81004 and MAC 88105 and Apollo 16 regolith 64001. Geochim. Cosmochim. Acta 55, 3019–29CrossRefGoogle Scholar
Dence M. R. and Plant A. G. (1972) Analysis of Fra Mauro and the origin of the Imbrium Basin. Proc. 3rd Lunar Sci. Conf. Lunar and Planetary Institute, pp. 379–99
Desch, S. J. and Connolly, H. C. Jr (2002) A model of the thermal processing of particles in solar nebula shocks: Application to the cooling rates of chondrules. Meteorit. Planet. Sci. 37, 183–207CrossRefGoogle Scholar
Dodd, R. T. (1967) Particle sizes in and composition of unequilibrated ordinary chondrites (abstract). Trans. AGU 48, 159Google Scholar
Dodd, R. T. (1969) Metamorphism of ordinary chondrites: a review. Geochim. Cosmochim. Acta 33, 161–203CrossRefGoogle Scholar
Dodd, R. T. (1971) The petrology of chondrules in the Sharps meteorite. Contrib. Mineral. Petrol. 31, 201–27CrossRefGoogle Scholar
Dodd, R. T. (1973) Minor element abundances in olivines in the Sharps (H-3) chondrite. Contrib. Mineral. Petrol. 42, 159–67CrossRefGoogle Scholar
Dodd, R. T. (1974) The petrology of chondrules in the Hallingeberg meteorite. Contrib. Mineral. Petrol. 47, 97–112CrossRefGoogle Scholar
Dodd, R. T. (1976) Accretion of the ordinary chondrites. Earth Planet. Sci. Lett. 28, 479–84CrossRefGoogle Scholar
Dodd, R. T. (1978a) The composition and origin of large microporphyritic chondrules in the Manych (L-3) chondrite. Earth Planet. Sci. Lett. 39, 52–66CrossRefGoogle Scholar
Dodd, R. T. (1978b) Compositions of droplet chondrules in the Manych (L-3) chondrite and the origin of chondrules. Earth Planet. Sci. Lett. 40, 71–82CrossRefGoogle Scholar
Dodd R. T. (1981) Meteorites: A Petrologic–Chemical Synthesis. Cambridge University Press
Dodd R. T. (1986) Thunderstones and Shooting Stars. Cambridge University Press
Dodd, R. T. and Teleky, L. S. (1967) Preferred orientation of olivine crystals in porphyritic chondrules. Icarus 6, 407–16CrossRefGoogle Scholar
Dodd, R. T. and Schmus, W. R. (1971) Dark-zoned chondrules. Chem. Erde 30, 59–69Google Scholar
Dodd R. T. and Walter L. S. (1972) Chemical constraints on the origin of chondrules in ordinary chondrites. In On the Origin of the Solar System. Ed. H. Reeves. Centre National de la Recherche Scientifique, pp. 293–300
Dodd, R. T., Schmus, W. R. and Koffman, D. M. (1967) A survey of the unequilibrated ordinary chondrites. Geochim. Cosmochim. Acta 31, 921–51CrossRefGoogle Scholar
Donaldson, C. H. (1979) Composition changes in a basalt melt contained in a wire loop of Pt80 Rh20: Effects of temperature, time, and oxygen fugacity. Mineral. Mag. 43, 115–19Google Scholar
Donn, B. and Sears, D. G. W. (1963) Planets and comets: Role of crystal growth in their formation. Science 140, 1208–11CrossRefGoogle ScholarPubMed
Dubmile, B., Morrill, G. and Sterzik, M. (1995) The dust subdisk in the protoplanetary nebula. Icarus 114, 237–46Google Scholar
Dunn, T. (1987) Partitioning of Hf, Lu, Ti and Mn between olivine, clinopyroxene and basaltic liquid. Contrib. Mineral. Petrol. 96, 476–84CrossRefGoogle Scholar
Eisenhour, D. and Buseck, P. R. (1993) Primordial lighting: evidence preserved in chondrites (abstract). Lunar Planet. Sci. XⅪV, 4–3Google Scholar
Eisenhour, D. and Buseck, P. R. (1995) Radiative heating and the size distribution of pre-chondrule aggregates of dust (abstract). Lunar Planet. Sci. XXVI, 365–6Google Scholar
Eisenhour, D. D., Daulton, T. L. and Buseck, P. R. (1994) Electromagnetic heating in the early solar nebula and the formation of chondrules. Science 265, 1067–70CrossRefGoogle ScholarPubMed
Evensen, N. M., Carter, S. R., Hamilton, P. J., O'Nions, R. K. and Ridley, W. I. (1979) A combined chemical–petrological study of separated chondrules from the Richardton meteorite. Earth Planet. Sci. Lett. 42, 223–36CrossRefGoogle Scholar
Farinella, P., Paollicchi, P. and Zappalà, V. (1982) The asteroids as outcomes of catastrophic collisions. Icarus 52, 409–33CrossRefGoogle Scholar
Farinella, P., Vokrouhlicky, D. and Hartmann, W. K. (1998) Meteorite delivery via Yarkovsky orbital drift. Icarus 132, 378–87CrossRefGoogle Scholar
Farrington O. C. (1905) Meteorites: Their Structure, Composition and Terrestrial relations. Published by the author in Chicago
Fegley, B. Jr and Palme, H. (1985) Evidence for oxidizing conditions in the solar nebula from Mo and W depletions in refractory inclusions in carbonaceous chondrites. Earth Planet. Sci. Lett. 75, 311–26CrossRefGoogle Scholar
Fermor, L. L. (1938) Garnets and their role in nature. Indian Assoc. Adv. Sci. Spec. Publ. 6, 87–91Google Scholar
Ferraris, C., Folco, L. and Mellini, M. (2002) Chondrule thermal history from unequilibrated H chondrites: A transmission and analytical electron microscopy study. Meteorit. Planet. Sci. 37, 1–2CrossRefGoogle Scholar
Fisher, R. V., Smith, A. L. and Roobol, M. J. (1980) Destruction of St. Pierre, Martinique, by ash-cloud surges, May 8 and 20, 1902. Geology 8, 4–72.0.CO;2>CrossRefGoogle Scholar
Fleck, R. C. Jr (1990) Comment on ‘Magnetic reconnection flares in the protoplanetary nebula and the possible origin of meteorite chondrules’. Icarus 87, 2–4. Reply, 2–4CrossRefGoogle Scholar
Ford, C. E., Russell, D. G., Craven, J. A. and Fisk, M. R. (1983) Olivine–liquid equilibria: Temperature, pressure and compositional dependence of the crystal/liquid cation partition coefficients for Mg, Ca and Mn. J. Petrol. 24, 256–65CrossRefGoogle Scholar
Fougeroux, A. D., Cadet, L. C. and Lavoisier, A. (1772) Rapport fait a l'Academie Royale des Science, d'une observation communique par M. L'Abbe Bachelay, sur une Pierre qu'on prètend etre tombèe cu Ciel pendant un orage. Observations sur la physique, sur l'histoire naturelle, et sur les ArtsJ. Physique 2, 2–5 (printed and dated 1777)Google Scholar
Franzen, M. A. and Sears, D. W. G. (2003) The Hera near-Earth asteroid sample return mission: An overview (abstract). Lunar Planet. Sci. XXⅪV, abstract no. 1032Google Scholar
Fredriksson, K. (1963) Chondrules and the meteorite parent bodies. Trans. N. Y. Acad. Sci. 25, 756–69CrossRefGoogle Scholar
Fredriksson K. (1983) Crystallinity, recrystallization, equilibration, and metamorphism in chondrites. In Chondrules and Their Origins. Ed. E. A. King. Lunar and Planetary Institute, pp. 44–52
Fredriksson, K. and Ringwood, A. E. (1963) Origin of meteoritic chondrules. Geochim. Cosmochim. Acta 27, 639–41CrossRefGoogle Scholar
Fredriksson K., Nelen J. and Fredriksson B. J. (1968) The LL-group chondrites. In Origin and Distribution of the Elements. Ed. L. H. Ahrens. Pergamon, pp. 457–66CrossRef
Fredriksson, K., Jarosewich, E. and Nelen, J. (1969) The Sharps chondrite – New evidence on the origin of chondrules and chondrites. In Meteorite Research. Ed. P. M. Millman. Reidel, pp. 155–65CrossRef
Fredriksson, K., Nelen, J., Melson, W. G., Henderson, E. P. and Anderson, C. A. (1970) Lunar glasses and micro-breccias: Properties and origin. Science 167, 6–6CrossRefGoogle ScholarPubMed
Fredriksson, K., Noonan, A. and Nelen, J. (1973) Meteoritic, lunar, and lunar impact chondrules. Moon 7, 475–82CrossRefGoogle Scholar
Fruland, R. M., King, E. A. and McKay, D. S. (1978) Allende dark inclusions. Lunar Planet. Sci. IX, 1305–29Google Scholar
Fujii N. and Miyamoto M. (1983) Constraints on the heating and cooling processes of chondrule formation. In Chondrules and Their Origins. Ed. E. A. King. Lunar and Planetary Institute, pp. 53–60
Fujimaki H., Matsu-ura M., Sunagawa I. and Aoki K. (1981) Chemical compositions of Chondrules and matrices in the ALH-77015 chondrite (L3). Proceedings of the Sixth Symposium on Antarctic Meteorites. National Institute of Polar Research, pp. 161–74
Funaki, M., Nagata, R. and Momose, K. (1981) Natural remanent magnetizations of chondrules, metallic grains and matrix of an Antarctic chondrite, ALH-769. Mem. Natl. Inst. Polar Res. Special Issue 20, 300–15Google Scholar
Gaffey, M. J. and Gilbert, S. L. (1998) Asteroid 6 Hebe: The probable parent body of the H-Type ordinary chondrites and the IIE iron meteorites. Meteorit. Planet. Sci. 33, 1281–95CrossRefGoogle Scholar
Gaffey, M. J., Burbine, T. H. and Binzel, R. P. (1993a) Asteroid spectroscopy: Progress and perspective. Meteoritics 28, 161–87CrossRefGoogle Scholar
Gaffey, M. J., Bell, J. F., Brown, R. H., et al. (1993b) Mineralogical variations within the S-type asteroids class. Icarus 106, 573–602CrossRefGoogle Scholar
Georges, P., Libourel, G. and Deloule, E. (2000) Experimental constraints on alkali condensation in chondrule formation. Meteorit. Planet. Sci. 35, 1–1CrossRefGoogle Scholar
Gibbard S. G. and Levy E. H. (1994) On the possibility of precipitation induced vertical lightning in the protoplanetary nebula (abstract). Chondrules and the Protoplanetary Disk, LPI Contrib. 844. Lunar and Planetary Institute, p. 9
Gilmour, J. D., Whitby, J. A., Turner, G., Bridges, J. C. and Hutchison, R. (2000) The iodine–xenon system in clasts and chondrules from ordinary chondrites: Implications for early solar system chronology. Meteorit. Planet. Sci. 35, 445–56CrossRefGoogle Scholar
Goldstein, J. I. and Short, J. M. (1967) The iron meteorites, their thermal history and parent bodies. Geochim. Cosmochim. Acta 31, 1733–70CrossRefGoogle Scholar
Gooding J. L. (1983) Survey of chondrule average properties in H-, L-, and LL-group chondrites: Are chondrules the same in all unequilibrated ordinary chondrites? In Chondrules and Their Origins. Ed. E. A. King. Lunar and Planetary Institute, pp. 61–87
Gooding, J. L. and Keil, K. (1981) Relative abundances of chondrule primary textural types in ordinary chondrites and their bearing on conditions of chondrule formation. Meteoritics 16, 17–43CrossRefGoogle Scholar
Gooding, J. L. and Muenow, D. W. (1976) Activated release of alkalis during the vesiculation of molten basalts under high vacuum: Implications for lunar volcanism. Geochim. Cosmochim. Acta 40, 675–86CrossRefGoogle Scholar
Gooding, J. L. and Muenow, D. W. (1977) Experimental vaporization of the Holbrook chondrite. Meteoritics 12, 4–0CrossRefGoogle Scholar
Gooding, J. L., Keil, K., Fukuoka, T. and Schmitt, R. A. (1980) Elemental abundances in chondrules from unequilibrated chondrites: Evidence for chondrule origin by melting of preexisting materials. Earth Planet. Sci. Lett. 50, 171–80CrossRefGoogle Scholar
Gooding, J. L., Mayeda, T. K., Clayton, R. N., et al. (1982) Oxygen isotopic compositions of chondrules in unequilibrated chondrites: Further petrological interpretations (abstract). Lunar Planet. Sci. ⅫI, 2–7Google Scholar
Gooding, J. L., Mayeda, T. K., Clayton, R. N. and Fukuoka, T. (1983) Oxygen isotopic heterogeneities, their petrological correlations and implicatons for melt origins of chondrules in unequilibrated ordinary chondrites. Earth Planet. Sci. Lett. 65, 209–24CrossRefGoogle Scholar
Göpel, C., Manhes, G. and Allegre, C. J. (1994) U–Pb systematics of phosphates from equilibrated ordinary chondrites. Earth Planet. Sci. Lett. 121, 153–71CrossRefGoogle Scholar
Goswami, J. N., Sahijpal, S., Kehm, K., et al. (1998) In situ determination of iodine content and I–Xe systematics in silicates and troilite phases in chondrules from the LL3 chondrite Semarkona. Meteorit. Planet. Sci. 33, 527–34CrossRefGoogle Scholar
Grabb, J. and Schultz, L. (1981) Cosmic-ray exposure ages of ordinary chondrites and their significance for parent body stratigraphy, Geochim. Cosmochim. Acta 45, 2151–60Google Scholar
Graup, G. (1981) Terrestrial chondrules, glass spherules and accretionary lapilli from the suevite, Ries Crater, Germany. Earth Planet. Sci. Lett. 55, 407–18CrossRefGoogle Scholar
Gray, C. M. and Papanastassiou, D. A. (1973) The identification of early condensates from the solar nebula. Icarus 20, 213–39CrossRefGoogle Scholar
Greenberg, J. M. (1976) Radical formation, chemical processing, and explosion of interstellar grains. Astrophys. Space Sci. 39, 9–18CrossRefGoogle Scholar
Greenberg, R. and Chapman, C. R. (1983) Asteroids and meteorites: Parent bodies and delivered samples. Icarus 55, 455–81CrossRefGoogle Scholar
Greenberg R. and Nolan M. C. (1989) Delivery of asteroids and meteorites to the inner solar system. In Asteroids II. Ed. R. P Binzel, T. Gehrels and M. S. Matthews. University of Arizona Press, pp. 779–804
Greenwood J. P. and Hess P C. (1996) Congruent melting kinetics: Constraints on chondrule formation. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 205–11
Grimm, R. E. and McSween, H. Y. Jr (1989) Water and thermal evolution of carbonaceous chondrite parent bodies. Icarus 82, 244–80CrossRefGoogle Scholar
Grimm, R. E. and McSween, H. Y. Jr (1993) Heliocentric zoning of the asteroid belt by aluminum-26 heating. Science 259, 6–5Google Scholar
Grossman, J. N. (1985) Chemical evolution of the matrix of Semarkona (abstract). Lunar Planet. Sci. XVI, 3–0Google Scholar
Grossman J. N. (1988) Formation of chondrules. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 680–96
Grossman, J. N. (1996a) The redistribution of sodium in Semarkona chondrules by secondary processes (abstract). Lunar Planet. Sci. XVII, 4–6Google Scholar
Grossman J. N. (1996b) Chemical fractionations of chondrites: Signatures of events before chondrule formation. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 243–53
Grossman, J. N. and Rubin, A. E. (1986) The origin of chondrules and clasts bearing calcic plagioclase in ordinary chondrites (abstract). Lunar Planet. Sci. XVIII, 2–9Google Scholar
Grossman, J. N. and Wasson, J. T. (1982) Evidence for primitive nebular components in chondrules from Chainpur chondrite. Geochim. Cosmochim. Acta 46, 1081–99CrossRefGoogle Scholar
Grossman, J. N. and Wasson, J. T. (1983a) Refractory precursor components of Semarkona chondrules and the fractionation of refractory elements among chondrites. Geochim. Cosmochim. Acta 47, 759–71CrossRefGoogle Scholar
Grossman J. N. (1983b) The compositions of chondrules in unequilibrated chondrites: An evaluation of models for the formation of chondrules and their precursor materials. In Chondrules and Their Origins. Ed. E. A. King. Lunar and Planetary Institute, pp. 88–121
Grossman, J. N. (1985) The origin and history of the metal and sulfide components of chondrules. Geochim. Cosmochim. Acta 49, 925–39CrossRefGoogle Scholar
Grossman, J. N. (1987) Compositional evidence regarding the origins of rims on Semarkona chondrules. Geochim. Cosmochim. Acta 51, 3003–11CrossRefGoogle Scholar
Grossman, J. N., Kracher, A. and Wasson, J. T. (1979) Volatiles in Chainpur chondrules. Geophys. Res. Lett. 6, 597–600CrossRefGoogle Scholar
Grossman, J. N., Rubin, A. E., Rambaldi, E. R., Rajan, R. S. and Wasson, J. T. (1985) Chondrules in the Qingzhen type-3 enstatite chondrite: Possible precursor components and comparison to ordinary chondrite chondrules. Geochim. Cosmochim. Acta 49, 1781–95CrossRefGoogle Scholar
Grossman J. N., Rubin A. E., Nagahara H. and King E. A. (1988a) Properties of chondrules. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 619–59
Grossman, J. N., Rubin, A. E. and MacPherson, G. J. (1988b) ALH85085 – A unique volatile-poor carbonaceous chondrite with possible implications for nebular fractionation processes. Earth Planet. Sci. Lett. 91, 33–54CrossRefGoogle Scholar
Grossman, J. N., Alexander, C. M. O'D., Wang, Jianhua and Brearley, A. J. (2000) Bleached chondrules: Evidence for widespread aqueous processes on the parent asteroids of ordinary chondrites. Meteorit. Planet. Sci. 35, 467–86CrossRefGoogle Scholar
Grossman, J. N., Alexander, C. O'D., Wang, Jianhua and Brearley, A. J. (2002) Zoned chondrules in Semarkona: Evidence for high-and low-temperature processing. Meteorit. Planet. Sci. 37, 49–73CrossRefGoogle Scholar
Grossman, L. (1972) Condensation in the primitive solar nebula. Geochim. Cosmochim. Acta 36, 597–619CrossRefGoogle Scholar
Grossman, L. and Larimer, J. W. (1974) Early chemical history of the solar system. Rev. Geophys. Space Phys. 12, 71–101CrossRefGoogle Scholar
Guimon, R. K., Keck, B. D., Weeks, K. S., DeHart, J. and Sears, D. W. G. (1985) Chemical and physical studies of type 3 chondrites-IV: Annealing studies of a type 3.4 ordinary chondrite and the metamorphic history of meteorites. Geochim. Cosmochim. Acta 49, 1515–24CrossRefGoogle Scholar
Guimon, R. K., Symes, S. J. K., Sears, D. W. G. and Benoit, P. H. (1995) Chemical and physical studies of type 3 chondrites Ⅻ: The metamorphic history of CV chondrites and their components. Meteoritics 30, 704–14CrossRefGoogle Scholar
Haack, H., Rasmussen, K. L. and Warren, P. H. (1990) Effects of regolith/megaregolith insulation on the cooling histories of different asteroids, J. Geophys. Res. 95, 5111–24CrossRefGoogle Scholar
Haidinger W. K. (1867) Die Meteoriten des k. k. Hof-Mineraliencabinetes am 1 Juli 1867, und der Fortshritte set 7 Jänuar 1859. Sitz. Kaiserlichen königlichen. Akad. Wiss. Wien.
Hamilton, P. J., Evensen, N. M. and O'Nions, R. K. (1979) Chronology and chemistry of Parnallee (LL-3) chondrules (abstract). Lunar Planet. Sci. X, 4–9Google Scholar
Harris, P. G. and Tozer, D. C. (1967) Fractionation of iron in the solar system. Nature 215, 1449–51CrossRefGoogle Scholar
Hartmann L. (1996) Astronomical observations of phenomena in protostellar disks. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 13–20
Hartmann, L. and Kenyon, S. J. (1985) On the nature of FU Orionis objects. Astrophys. J. 299, 462–78CrossRefGoogle Scholar
Hartmann W. K., Philips R. J. and Taylor G. J. (1986) Origin of the Moon. Lunar and Planetary Institute
Hashimoto, A. (1983) Evaporation metamorphism in the early solar nebula – evaporation experiments on the melt FeO–MgO–SiO2–CaO–Al2O3 and chemical fractions of primitive material. Geochim. J. 17, 111–45CrossRefGoogle Scholar
Hashimoto, A., Kumazawa, M. and Onuma, N. (1979) Evaporation metamorphism of primitive dust material in the early solar nebula. Earth Planet. Sci. Lett. 43, 13–21CrossRefGoogle Scholar
Hashimoto, A., Davis, A. M., Clayton, R. N. and Mayeda, T. K. (1989) Correlated isotopic mass fractionation of oxygen, magnesium and silicon in forsterite evaporation residues (abstract). Meteoritics 24, 275Google Scholar
Heide F. and Wlotzka F. (1995) Meteorites: Messengers from Space. Springer-Verlag
Heiken G. H., Vaniman D. T. and French B. M., Eds. (1991) Lunar Sourcebook: A User's Guide to the Moon. Cambridge University Press
Herbig G. H. (1978) Some aspects of early stellar evolution that may be relevent to the origin of the solar system. In The Origin of the Solar System. Ed. S. F. Dermott. John Wiley, pp. 219–35
Herndon, J. M. and Herndon, M. A. (1977) Aluminum-26 as a planetoid heat source in the early solar system. Meteoritics 12, 459–65CrossRefGoogle Scholar
Herzberg, C. T. (1979) The solubility of olivine in basaltic liquid: An ionic model. Geochim. Cosmochim. Acta 43, 1241–51CrossRefGoogle Scholar
Hewins R. H. (1983) Dynamic crystallization experiments as constraints on chondrule genesis. In Chondrules and Their Origins. Ed. E. A. King. Lunar and Planetary Institute, pp. 122–33
Hewins R. H. (1988) Experimental studies of chondrules. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 660–79
Hewins R. H. (1989) The evolution of chondrules. Proc. NIPR Symp Antarctic Meteorites 2. National Institute of Polar Research, pp. 200–20
Hewins, R. H. (1991) Retention of sodium during chondrule formation. Geochim. Cosmochim. Acta 55, 935–42CrossRefGoogle Scholar
Hewins R. H. (1996) Chondrules and the protoplanetary disk: An overview. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 3–9
Hewins R. H. and Connolly H. C. Jr (1996) Peak temperatures of flash-melted chondrules. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 197–204
Hewins R. H. and Newsom H. E. (1988) Igneous activity in the early solar system. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 73–101
Hewins, R. H. and Radomsky, P. M. (1990) Temperature conditions of chondrule formation. Meteoritics 25, 309–18CrossRefGoogle Scholar
Hewins, R. H., Klein, L. C. and Fasano, B. V. (1981) Conditions of formation of pyroxene excentroradial chondrules. Lunar Planet. Sci. XII, 1123–33Google Scholar
Hewins R. H., Jones R. H. and Scott E. R. D., Eds. (1996) Chondrules and the Protoplanetary Disk. Cambridge University Press
Heymann, D. (1967) On the origin of hypersthene chondrites: Ages and shock effects of black chondrites. Icarus 6, 189–221CrossRefGoogle Scholar
Hinton, R. W., Long, J. V. P., Fallick, A. E. and Pillinger, C. T. (1983) Ion microprobe measurement of D/H ratios in meteorites (abstract). Lunar Planet. Sci. XIV, 313–14Google Scholar
Holder, J. and Ryder, G. (1995) Unique glass particles from 68001 lunar core thin sections. Lunar News 58, 7Google Scholar
Hood, L. L. and Horányi, M. (1991) Gas dynamic heating of chondrule precursor grains in the solar nebula. Icarus 93, 259–69CrossRefGoogle Scholar
Hood, L. L. and Horányi, M. (1993) The nebular shock wave model for chondrule formation: one-dimensional calculations. Icarus 106, 179–89CrossRefGoogle Scholar
Hood L. L. and Kring D. A. (1996) Models for multiple heating mechanisms. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 265–76
Hoppe, P., Goswami, J. N., Krähenbühl, U. and Marti, K. (2001) Boron in Chondrules. Meteorit. Planet. Sci. 36, 1331–43CrossRefGoogle Scholar
Horányi M. and Robertson S. (1996) Chondrule formation in lightning discharges: Status of theory and experiments. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 303–10
Horányi, M., Morrill, G., Goertz, C. K. and Levy, E. H. (1985) Chondrule formation in lightning discharges. Icarus 114, 174–85CrossRefGoogle Scholar
Hörz, F. and Cintala, M. (1997) Impact experiments related to the evolution of planetary regoliths. Meteorit. Planet. Sci. 32, 179–209CrossRefGoogle Scholar
Hörz, F. and Schaal, R. B. (1981) Asteroid agglutinate formation and implications for asteroid surfaces. Icarus 46, 337–53CrossRefGoogle Scholar
Hörz F., Grieve R., Heiken G., Spudis P. and Binder A. (1991) Lunar surface processes. In Lunar Sourcebook. Ed. G. H. Heiken, D. T. Vaniman and B. M. French. Lunar and Planetary Institute, pp. 61–120
Housen, K. R. (1992) Crater ejecta velocities for impacts on rocky bodies (abstract). Lunar Planet Sci. XXIII, 5–5Google Scholar
Housen, K. R., Wilkening, L. L., Chapman, C. R. and Greenberg, R. (1979) Asteroidal regoliths. Icarus 39, 317–51CrossRefGoogle Scholar
Housley R. M. and Cirlin E. H. (1983) On the alteration of Allende chondrules and the formation of matrix. In Chondrules and Their Origins. Ed. E. A. King. Lunar and Planetary Institute, pp. 145–61
Howard, E. C. (1802) Experiments and observations on certain stony substances, which at different times are said to have fallen on the Earth; also on various kinds of native iron. Phil. Trans. 92, 168–212CrossRefGoogle Scholar
Hua, X., Adam, J., Palme, H. and El Goresy, A. (1988) Fayalite-rich rims, veins, and halos around and in forsteritic olivines in CAIs and chondrules in carbonaceous chondrites: types, compositional profiles and constraints on their formation. Geochim. Cosmochim. Acta 52, 1–3CrossRefGoogle Scholar
Huang, S., Benoit, P. H. and Sears, D. W. G. (1993a) Metal and sulfide in Semarkona chondrules and rims: Evidence for reduction, evaporation and recondensation during chondrule formation (abstract). Meteoritics 28, 3–6Google Scholar
Huang, S., Benoit, P. H. and Sears, D. W. G. (1993b) The group A3 chondrules of Krymka: Further evidence for major evaporative loss during the formation of chondrules (abstract). Lunar Planet. Sci. XXIV, 6–8Google Scholar
Huang, S., Benoit, P. H. and Sears, D. W. G. (1994) Group A5 chondrules in ordinary chondrites: their formation and metamorphism (abstract)Lunar Planet. Sci. XXV, 5–7Google Scholar
Huang, S., Akridge, G. and Sears, D. W. G. (1996a) Metal–silicate fractionation in the surface dust layers of accreting planetesimals: Implications for the formation of ordinary chondrites and the nature of asteroid surfaces. J. Geophys. Res. (Planets) 101, 29373–85CrossRefGoogle Scholar
Huang, S., Lu, J., Prinz, M., Weisberg, M. K., Benoit, P. H. and Sears, D. W. G. (1996b) Chondrules: Their diversity and the role of open-system processes during their formation. Icarus 122, 316–46CrossRefGoogle Scholar
Hughes, D. W. (1978) A disaggregation and thin section analysis of size and mass distributions of the chondrules in the Bjurböle and Chainpur meteorites. Earth Planet. Sci. Lett. 38, 391–400CrossRefGoogle Scholar
Humboldt A. V. (1849) Cosmos: A sketch of a Physical Description of the Universe 1. H. G. Bohn, pp. 97–212
Huss, G. R. (1988) The role of presolar dust in the formation of the solar system. Earth, Moon, Planets 40, 165–211CrossRefGoogle Scholar
Huss, G. R., Keil, K. and Taylor, G. J. (1981) The matrices of unequilibrated ordinary chondrites: Implications for the origin and history of chondrites. Geochim. Cosmochim. Acta 45, 33–51CrossRefGoogle Scholar
Huss, G. R., MacPherson, G. J., Wasserburg, G. J., Russell, S. S. and Srinivasan, G. (2001) 26Al in CAIs and chondrules from unequilibrated ordinary chondrites. Meteorit. Planet. Sci. 36, 975–97CrossRefGoogle Scholar
Hutcheon, I. D., Hutchison, R. and Wasserburg, G. J. (1989) Evidence from the Semarkona ordinary chondrite for 26Al heating of small planets, Nature 237, 238–41CrossRefGoogle Scholar
Hutcheon, I. D., Hutchison, R. and Wasserburg, G. J. (1982) Meteorites – Evidence for the interrelationships of materials in the solar system 4.55 Ga ago. Earth Planet. Sci. Lett. 29, 199–208CrossRefGoogle Scholar
Hutchison R. (1983) The Search for our Beginning. British Museum (Natural History)/Oxford University Press, p. 39
Hutchison, R. (1992) New evidence for the origin of white matrix in Tieschitz (abstract). Meteoritics 27, 2–3Google Scholar
Hutchison R. (1996). Chondrules and their associates in ordinary chondrites: A planetary connection? In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 311–18
Hutchison R. and Bevan A. W. R. (1983) Conditions and time of chondrule accretion. In Chondrules and Their Origins. Ed. E. A. King. Lunar and Planetary Institute, pp. 162–79
Hutchison, R., Bevan, A. W. R., Agrell, S. O. and Ashworth, J. R. (1979) Accretion temperature of the Tieschitz, H3, chondritic meteorite. Nature 280, 116–19CrossRefGoogle Scholar
Hutchison, R., Alexander, C. M. O. and Barber, D. J. (1987) The Semarkona meteorite: First recorded occurrence of semecite in an ordinary chondrite, and its implications. Geochim. Cosmochim. Acta 51, 1875–82CrossRefGoogle Scholar
Hutchison, R., Alexander, C. M. O. and Barber, D. J. (1988). Chondrules: Chemical, mineralogical and isotopic constraints on theories of their origin. Phil. Trans. Roy. Soc. (London) A325, 445–58CrossRefGoogle Scholar
Ihinger, P. D. and Stolper, E. (1986) The color of meteoritic hibonite: An indicator of oxygen fungacity. Earth Planet. Sci. Lett. 78, 67–79CrossRefGoogle Scholar
Ikeda, Y. (1983) Major element compositions and chemical types of chondrules in unequilibrated E, O, and C chondrites from Antarctica. Mem. Natl. Inst. Polar Res., Spec. Issue 30, 122–45Google Scholar
Ikeda Y. (1989) Petrochemical study of the Yamato-691 enstatite chondrite (E3) V: Comparison of major element chemistries of chondrules and inclusions in Y-691 with those in ordinary and carbonaceous chondrites. Proceedings of the NIPR Symp. Antarctic Meteorites 2. National Institute of Polar Research, pp. 147–65
Ikeda, Y. and Kimura, M. (1985) Na–Ca zoning of chondrules in Allende and ALHA-77003 carbonaceous chondrites. Meteoritics 20, 6–7Google Scholar
Irving, A. J. (1978) A review of experimental studies of crystal/liquid trace element partitioning. Geochim. Cosmochim. Acta 42, 743–70CrossRefGoogle Scholar
Ishii, T., Miyamoto, M. and Takeda, H. (1976) Pyroxene geothermometry and crystallization-, subsolidus equilibration-temperatures of lunar and achondritic pyroxenes. Lunar Sci. VII, 408–10Google Scholar
Ivanov, A. V., Zolensky, M. E., Brandstätter, F., Kurat, G. and Kononkova, N. N. (1994) A phyllosilicate–sulfide vein in Kaidun (abstract). Meteoritics 29, 477Google Scholar
Jarosewich, E. (1990) Chemical analyses of meteorites: A compilation of stony and iron meteorite analyses. Meteoritics 25, 323–37CrossRefGoogle Scholar
Jarosewich, E. and Dodd, R. T. (1981) Chemical variations among L-chondrites – II: Chemical distinctions between L3 and LL3 chondrites. Meteoritics 16, 83–91CrossRefGoogle Scholar
Jarosewich, E. and Dodd, R. T. (1985) Chemical variations among L-chondrites – IV: Analyses, with petrographic notes, of 13 L-group and 3-LL group chondrites. Meteoritics 20, 23–36CrossRefGoogle Scholar
Johannes, W. (1968) Experimental investigation of the reaction forsterite + H2O = serpentine + brucite, Contrib. Mineral. Petrol. 19, 309–15CrossRefGoogle Scholar
Johnson, C. A., Prinz, M., Weisberg, M. K., Clayton, R. N. and Mayeda, T. K. (1990) Dark inclusions in Allende, Leoville, and Vigarano – Evidence for nebular oxidation of CV3 constituents. Geochim. Cosmochim. Acta 54, 819–30CrossRefGoogle Scholar
Johnson, M. C. (1986) The solar nebula redox state as recorded by the most reduced chondrules of five primitive chondrites. Geochim. Cosmochim. Acta 50, 1–4CrossRefGoogle Scholar
Jones, R. H. (1990) Petrology and mineralogy of type II chondrules in Semarkona (LL3.0): Origin of closed-system fractional crystallization, with evidence for supercooling. Geochim. Cosmochim. Acta 54, 1–7CrossRefGoogle Scholar
Jones, R. H. (1992) On the relationship between isolated and chondrule olivine grains in the carbonaceous chondrite ALHA77307. Geochim. Cosmochim. Acta 56, 467–82CrossRefGoogle Scholar
Jones, R. H. (1994) Petrology of FeO-poor, porphyritic pyroxene chondrules in the Semarkona chondrite. Geochim. Cosmochim. Acta 58, 5325–40CrossRefGoogle Scholar
Jones R. H. (1996) Relict grains in chondrules: Evidence for chondrule recycling. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 163–72
Jones, R. H. and Danielson, L. R. (1997) A chondrule origin for dusty relict olivine in unequilibrated chondrites. Meteorit. Planet. Sci. 32, 753–60CrossRefGoogle Scholar
Jones, R. H. and Lofgren, G. E. (1993) A comparison of FeO-rich, porphyritic olivine chondrules in unequilibrated chondrites and experimental analogues. Meteoritics 28, 213–21CrossRefGoogle Scholar
Jones R. H. and Scott E. R. D. (1989) Petrology and thermal history of type IA chondrules in the Semarkona (LL3.0) chondrite. Proc. 19th Lunar Planet. Sci. Conf. Lunar and Planetary Institute, pp. 523–36
Jurewicz, A. J. G. and Watson, E. B. (1988) Cations in olivine part I: Calcium partitioning and calcium–magnesium distribution between olivines and coexisting melts, with petrologic applications. Contrib. Mineral. Petrol. 99, 176–85CrossRefGoogle Scholar
Kallemeyn, G. W. (1988) Elemental variations in bulk chondrites: A brief review. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 390–3
Kallemeyn, G. W. and Wasson, J. T. (1982a). The compositional classification of chondrites: III. Ungrouped carbonaceous chondrites. Geochim. Cosmochim. Acta. 49, 2217–28CrossRefGoogle Scholar
Kallemeyn, G. W. and Wasson, J. T. (1982b). The compositional classification of chondrites: IV. Ungrouped chondritic meteorites and clasts. Geochim. Cosmochim. Acta. 49, 261–70CrossRefGoogle Scholar
Kallemeyn, G. W., Rubin, A. E. and Wasson, J. T. (1991) The compositional classification of chondrites: V. The Karoonda (CK) group carbonaceous chondrites. Geochim. Cosmochim. Acta 55, 881–92CrossRefGoogle Scholar
Kallemeyn, G. W., Rubin, A. E. and Wasson, J. T. (1994) The compositional classification of chondrites: VI. The CR carbonaceous chondrite group. Geochim. Cosmochim. Acta. 58, 2873–88CrossRefGoogle Scholar
Kallemeyn, G. W., Rubin, A. E. and Wasson, J. T. (1996) The compositional classification of chondrites: VII. The R chondrite group. Geochim. Cosmochim. Acta. 60, 2243–56CrossRefGoogle Scholar
Kaula, W. M. (1979) Thermal evolution of Earth and Moon growing by planetesimal impacts. J. Geophys. Res. 84, 999–1008CrossRefGoogle Scholar
Kaushal, S. K. and Wetherill, G. W. (1969) Rb87–Sr87 age of bronzite (H group) chondrites. J. Geophys. Res. 74, 2717–26CrossRefGoogle Scholar
Keil, K. (1968) Mineralogical and chemical relationships among enstatite chondrites. J. Geophys. Res. 73, 6945–76CrossRefGoogle Scholar
Keil K. (1982) Composition and origin of chondritic breccias. In Workshop on Lunar Breccias and Soil and Their Meteoritic Analogs. Ed. G. J. Taylor and L. L. Wilkening. LPI Tech. Report 82–02. Lunar and Planetary Institute, pp. 65–83
Keil, K. (1989) Enstatite meteorites and their parent bodies. Meteoritics 24, 195–208CrossRefGoogle Scholar
Keil, K. and Fredriksson, K. (1964) The iron, magnesium, and calcium distribution in coexisting olivines and rhombic pyroxenes of chondrites. J. Geophys. Res. 69, 3–4CrossRefGoogle Scholar
Keil, K., Kurat, G., Prinz, M. and Green, J. A. (1972) Lithic fragments, glasses and chondrules from Luna 16 finds. Earth Planet. Sci. Lett. 13, 243–56CrossRefGoogle Scholar
Keil K., Prinz M., Planner H. N., et al. (1973) A qualitative comparison of textures in lunar chondrules and CO2 laser-formed synthetic chondrule-like spherules. Institution of Meteoritics Special Publication No. 7. University of New Mexico
Keller, L. P. and Buseck, P. R. (1990) Matrix mineralogy of Lance CO3 carbonaceous chondrite: A transmission electron microscope study. Geochim. Cosmochim. Acta 54, 1155–63CrossRefGoogle Scholar
Kelly, W. R. and Larimer, J. W. (1977) Chemical fractionations in meteorites. VIII. Iron meteorites and the cosmochemical history of the metal phase. Geochim. Cosmochim. Acta 41, 93–111CrossRefGoogle Scholar
Kerridge, J. F. (1964) Low-temperature minerals from the fine-grained matrix of some carbonaceous chondrites. Ann. N. Y. Acad. Sci. 119, 41–53CrossRefGoogle Scholar
Kerridge, J. F. (1993) What can meteorites tell us about nebular conditions and processes during planetesimal accretion?Icarus 106, 135–50CrossRefGoogle ScholarPubMed
Kerridge J. F. and Bunch T. E. (1979) Aqueous activity on asteroids: Evidence from carbonaceous chondrites. In Asteroids. Ed. T. Gehrels. University of Arizona Press, pp. 745–64
Kerridge, J. F. and Kieffer, S. W. (1977). A constraint on impact theories of chondrule formation. Earth Planet. Sci. Lett. 35, 35–42CrossRefGoogle Scholar
Kerridge J. F. and Matthews M. S. (1988) Meteorites and the Early Solar System. University of Arizona Press
Kieffer, S. W. (1975). Droplet chondrules. Science 189, 333–40CrossRefGoogle ScholarPubMed
Kimura, M. and Watanabe, S. (1986). Adhesive growth and abrasion of chondrules during the accretion process. Mem. Natl. Inst. Polar Res., Spec. Issue 41, 222–34Google Scholar
Kimura, M. and Yagi, K. (1980) Crystallization of chondrules in ordinary chondrites. Geochim. Cosmochim. Acta 44, 589–602CrossRefGoogle Scholar
King, E. A. (1982). Refractory residues, condensates and chondrules from solar furnace experiments. Proc. 13th Lunar Planet. Sci. Conf. J. Geophys. Res. 87, A429–34CrossRefGoogle Scholar
King E. A. (Ed.) (1983a) Chondrules and Their Origins. Lunar and Planetary Institute
King E. A. (1983b) Reduction, partial evaporation, and spattering: Possible chemical and physical processes in fluid drop chondrule formation. In Chondrules and Their Origins. Ed. E. A. King. Lunar and Planetary Institute, pp. 180–7
King, E. A., Carman, M. F. and Butler, J. C. (1972a) Chondrules in Apollo 14 samples: Implications for the origin of chondritic meteorites. Science 195, 59–60CrossRefGoogle Scholar
King E. A., Carman M. F. and Butler J. C. (1972b) Chondrules in Apollo 14 samples and size analyses of Apollo 14 and 15 finds. Proc. III Lunar Sci. Conf. Lunar and Planetary Institute, pp. 673–86
King, T. V. V. and King, E. A. (1978) Grain size and petrography of C2 and C3 carbonaceous chondrites. Meteoritics 13, 47–72CrossRefGoogle Scholar
King, T. V. V. and King, E. A. (1979) Size–frequency distributions of fluid drop chondrules in ordinary chondrites. Meteoritics 14, 91–6CrossRefGoogle Scholar
King, T. V. V. and King, E. A. (1981) Accretionary dark rims in unequilibrated ordinary chondrites. Icarus 48, 460–72CrossRefGoogle Scholar
Kitamura M. and Tsuchiyama A. (1996) Collision of icy and slightly differentiated bodies as an origin for unequilibrated ordinary chondrites. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 319–26
Klein C. (1906) Studien uber Meteoriten, p. 35. (Cited in Merrill, 1920.)
Koeberl, C., Kurat, G. and Brandstätter, F. (1991) MAC 88105 – A regolith breccia from the lunar highlands: Mineralogical, petrological, and geochemical studies. Geochim. Cosmochim. Acta 55, 3073–87CrossRefGoogle Scholar
Kozul, J. M., Ulmer, G. C. and Hewins, R. H. (1988) Intrinsic oxygen fugacity measurements of some Allende type B inclusions. Geochim. Cosmochim. Acta 52, 2107–16CrossRefGoogle Scholar
Kracher, A., Scott, E. R. D. and Keil, K. (1984) Relict and other anomalous grains in chondrules; Implications for chondrule formation. Proc. XIV Lunar Planet. Sci. Conf. J. Geophys. Res. 89, B559–66CrossRefGoogle Scholar
Kring, D. A. (1986) O/H in the solar nebula gas in the zones of the C2, C3, and UOC chondrule formation (abstract). Lunar Planet. Sci. XVII, 4–5Google Scholar
Kring, D. A. (1987) Fe, Ca-rich rims around magnesian chondrules in the Kainsaz (CO3) chondrite (abstract). Lunar Planet. Sci. XVIII, 517–18Google Scholar
Kring, D. A. and Wood, J. A. (1987) Fe, Ca-rich and Mg-rich chondrule rims in the Kainsaz (CO3) chondrite: Evidence of fluctuating nebular conditions (abstract). Meteoritics 22, 432Google Scholar
Krot, A. N. and Keil, K. (2002) Anorthite-rich chondrules in CR and CH carbonaceous chondrites: Genetic link between Ca, Al-rich inclusions and ferromagnesian chondrules. Meteorit. Planet. Sci. 37, 91–111CrossRefGoogle Scholar
Krot A. N. and Rubin A. E. (1996) Microchondrule-bearing chondrule rims: Constraints on chondrule formation. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 173–84
Krot, A. N., Petaev, M. I., Scott, E. R. D., et al. (1998) Progressive alteration in CV3 chondrites: More evidence for asteroid alteration. Meteorit. Planet. Sci. 33, 1033–40CrossRefGoogle Scholar
Krot, A. N., Ulyanov, A. A., Meibom, A. and Keil, K. (2001) Forsterite-rich accretionary rims around Ca, Al-rich inclusions from the reduced CV3 chondrite Efremovka. Meteorit. Planet. Sci. 36, 611–28CrossRefGoogle Scholar
Krot, A. N., Hutcheon, I. D. and Keil, K. (2002) Plagioclase-rich chondrules in the reduced CV chondrites: Evidence for complex formation history and genetic links between calcium–aluminum-rich inclusions and ferromagnesian chondrules. Meteorit. Planet. Sci. 37, 155–82CrossRefGoogle Scholar
Kunii D. and Levenspiel O. (1991) Fluidization Engineering, 2nd edn. Butterworth and Heinemann
Kurat G., Keil K., Prinz M. and Nehru C. E. (1972) Chondrules of lunar origin. Proc. 3rd Lunar Sci. Conf. part 1. Lunar and Planetary Institute, pp. 707–21
Kurat, G., Keil, K. and Prinz, M. (1974) Rock 14318: a polymict lunar breccia with chondritic texture. Geochim. Cosmochim. Acta 38, 1133–46CrossRefGoogle Scholar
Lange, D. E. and Larimer, J. W. (1973) Chondrules: an origin by impacts between dust grains. Science 182, 9–2CrossRefGoogle ScholarPubMed
Lange, M. A. and Ahrens, T. J. (1982) The evolution of an impact-generated atmosphere. Icarus 51, 96–120CrossRefGoogle Scholar
Langevin, Y. and Maurette, M. (1980) A model for small body regolith evolution: the critical parameters (abstract). Lunar Planet. Sci. , 6–0Google Scholar
Lanoix, M., Strangway, D. W. and Pearce, G. W. (1977) Anomalous acquisition of thermoremanence at 130 °C in iron and paleointensity of the Allende meteorite. Lunar Planet. Sci. VIII, 689–701Google Scholar
Lanoix, M., Strangway, D. W. and Pearce, G. W. (1978) The primordial magnetic field preserved in chondrules of the Allende meteorite. Geophys. Res. Lett. 5, 73–6CrossRefGoogle Scholar
Larimer, J. W. (1967) Chemical fractionations in meteorites, I. Condensation of the elements. Geochim. Cosmochim. Acta 37, 1603–23CrossRefGoogle Scholar
Larimer J. W. (1988) The cosmochemical classification of the elements. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 375–89
Larimer, J. W. and Anders, E. (1967) Chemical fractionation in meteorites-II. Abundance patterns and their intrepretation. Geochim. Cosmochim. Acta 31, 1239–70CrossRefGoogle Scholar
Larimer, J. W. and Anders, E. (1970) Chemical fractionation in meteorites-III. Major element fractions in chondrites. Geochim. Cosmochim. Acta 34, 367–87CrossRefGoogle Scholar
Larimer, J. W. and Bartholomay, M. (1979) The role of carbon and oxygen in cosmic gases – Some applications to the chemistry and mineralogy of enstatite chondrites. Geochim. Cosmochim. Acta 43, 1455–66CrossRefGoogle Scholar
Larimer J. W. and Wasson J. T. (1988a) Refractory lithophile elements. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 394–415
Larimer J. W. and Wasson J. T. (1988b) Siderophile element fractionation. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 416–35
Larson H. P. and Veeder G. J. (1979) Infrared spectral reflectances of asteroid surfaces. In Asteroids. Ed. T. Gehrels. University of Arizona Press, pp. 724–44
Laul, J. C., Ganapathy, R., Anders, E. and Morgan, J. W. (1973) Chemical fractionations in meteorites – VI. Accretion temperatures of H-, LL- and E-chondrites from abundance of volatile trace elements. Geochim. Cosmochim. Acta 36, 329–57CrossRefGoogle Scholar
Lavoisier, A. (1772) Sur un effect singular de tonnerre. Observations sur la physics, sur la histoire naturelle, et sur les Arts. J. Physique 2, 310–12 (printed and dated 1777)Google Scholar
Lebofsky L. A., Jones T. D. and Herbert E. (1989) Asteroid volatile inventories. In Origin and Evolution of Planetary and Satellite Atmospheres. Ed. S. K. Atreya, J. B. Pollack and M. S. Matthews. University of Arizona Press, pp. 192–229
Lee T. (1988) Implications of isotopic anomalies for nucleosynthesis. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 1063–89
Lee, T., Papanastassiou, D. A. and Wasserburg, G. J. (1976) Demonstration of 26Mg excession in Allende and evidence for 26Al. Geophys. Res. Lett. 3, 41–4CrossRefGoogle Scholar
Lee, T., Mayeda, T. and Clayton, R. N. (1980) Oxygen isotopic anomalies in Allende inclusion HAL. Geophys. Res. Lett. 7, 4–9CrossRefGoogle Scholar
Leitch, C. A. and Smith, J. V. (1982) Petrography, mineral chemistry and origin of type I enstatite chondrites. Geochim. Cosmochim. Acta. 46, 2083–96CrossRefGoogle Scholar
Levy E. H. (1988) Energetics of chondrule formation. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 697–711
Levy, E. H. and Araki, S. (1989) Magnetic reconnection flares in the protoplanetary nebula and the possible origin of meteorite chondrules. Icarus 81, 74–91CrossRefGoogle Scholar
Levy E. H. and Sonett C. P. (1978) Meteorite magnetism and early solar system magnetic fields. In Protostars and Planets Ed. T. Gehrels. University of Arizona Press, pp. 516–32
Lewis, J. S. (1976a) Low-temperature condensation from the solar nebula. Icarus 16, 241–52CrossRefGoogle Scholar
Lewis, J. S. (1976b) Metal/silicate fractionation in the solar system. Earth Planet. Sci. Lett. 15, 286–90CrossRefGoogle Scholar
Lewis, R. D., Lofgren, G. E., Franzen, H. F. and Windom, K. E. (1993) The effect of Na vapor on the Na content of chondrules. Meteoritics 28, 6–2CrossRefGoogle Scholar
Li, Chunlai, Bridges, J. C., Hutchison, R., et al. (2000). Bo Xian (LL3.9): Oxygen-isotopic and mineralogical characterisation of separated chondrules. Meteorit. Planet. Sci. 35, 5–6CrossRefGoogle Scholar
Liffman, K. (1992) The formation of chondrules via ablation. Icarus 100, 608–20CrossRefGoogle Scholar
Liffman K. and Brown M. J. I. (1996) The protostellar jet model of chondrule formation. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 285–302
Lipschutz M. E. and Woolum D. S. (1988) Highly labile elements. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 462–87
Lipschutz M. E., Gaffey M. J. and Pellas P. (1989) Meteoritic parent bodies – Nature, number, size and relation to present-day asteroids. In Asteroids II. Ed. R. P Binzel, T. Gehrels and M. S. Matthews. University of Arizona Press, pp. 740–77
Lofgren, G. E. (1989) Dynamic crystallization of chondrule melts of porphyritic olivine composition; textures experimental and natural. Geochim. Cosmochim. Acta 53, 461–70CrossRefGoogle Scholar
Lofgren G. E. (1996) A dynamic crystallization model for chondrule melts. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 187–96
Lofgren, G. and Russell, W. J. (1986) Dynamic crystallization of chondrule melts of porphyritic and radial pyroxene composition. Geochim. Cosmochim. Acta 50, 1715–26CrossRefGoogle Scholar
Lord, H. C. (1965) Molecular equilibrium and condensation in a solar nebula and cool stellar atmospheres. Icarus 4, 279–88CrossRefGoogle Scholar
Love S. G., Keil K. and Scott E. R. D. (1994) Formation of chondrules by electrical discharge heating. In Papers Presented to Chondrules and the Protoplanetary Disk, LPI Contrib. 844. Lunar and Planetary Institute, p. 21
Loveland, W., Schmitt, R. A. and Fisher, D. E. (1969) Aluminum abundances in stony meteorites. Geochim. Cosmochim. Acta 33, 375–85CrossRefGoogle Scholar
Lovering, J. F. F., Nichiporuk, W., Chodos, A. and Brown, H. (1957) The distribution of gallium, germaniuun, cobalt, chromium, and copper in iron and stony-iron meteorites in relation to nickel content and structure. Geochim. Cosmochim Acta 11, 263–78CrossRefGoogle Scholar
Lu J. (1992) The physical and chemical studies of chondrules from the type 3 ordinary chondrites. Ph.D. Thesis, University of Arkansas, Fayetteville, AR
Lu, J., Sears, D. W. G., Keck, B., Prinz, M., Grossman, J. N. and Clayton, R. N. (1990) Semarkona type I chondrules compared with similar chondrules in other classes (abstract). Lunar Planet. Sci. XXI, 7–2Google Scholar
Lu, J., Sears, D. W. G., Benoit, P. H., Prinz, M. and Weisberg, M. K. (1992) The four primitive chondrule groups and the formation of chondrules (abstract). Lunar Planet. Sci. XXIII, 813–14Google Scholar
Lux, G., Keil, K. and Taylor, G. J. (1980) Metamorphism of the H-group chondrites: Implications from compositional and textural trends in chondrules. Geochim. Cosmochim. Acta 44, 841–55CrossRefGoogle Scholar
Lux, G., Keil, K. and Taylor, G. J. (1981) Chondrules in H3 chondrites: Textures, compositions and origins. Geochim. Cosmochim. Acta 45, 675–85CrossRefGoogle Scholar
Macdougall, J. D. and Kothari, B. K. (1976) Formation chronology for C2 meteorites. Earth Planet. Sci. Lett. 33, 33–44CrossRefGoogle Scholar
MacPherson, G. J., Hashimoto, A. and Grossman, L. (1985) Accretionary rims on inclusions in the Allende meteorite. Geochim. Cosmochim. Acta 49, 2267–79CrossRefGoogle Scholar
MacPherson G. J., Wark D. A. and Armstrong J. T. (1988) Primitive material surviving in chondrites: Refractory inclusions. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 746–807
MacPherson, G. J., Davis, A. M. and Zinner, E. K. (1995) The distribution of aluminum-26 in the early Solar System – a reappraisal. Meteoritics 30, 365–86CrossRefGoogle Scholar
Marti, K. and Graf, T. (1992) Cosmic-ray exposure history of ordinary chondrites. Ann. Rev. Earth Planet. Sci. 30, 244–68Google Scholar
Martin, P. M. and Mills, A. A. (1976) Size and shape of chondrules in the Bjurbole and Chainpur meteorites. Earth and Planet. Sci. Lett. 33, 239–48CrossRefGoogle Scholar
Martin, P. M. and Mills, A. A. (1978) Size and shape of near-spherical Allegan chondrules. Earth Planet. Sci. Lett. 38, 385–90CrossRefGoogle Scholar
Martin, P. M. and Mills, A. A. (1980) Preferred chondrule orientations in meteorites. Earth Planet. Sci. Lett. 51, 18–25CrossRefGoogle Scholar
Martin, P. M., Mills, A. A. and Walker, E. (1975) Preferential orientation in four C3 chondritic meteorites. Nature 257, 37–8CrossRefGoogle Scholar
Marvin, U. B. (1996) Ernst florens Friedrich Chladni (1756–1827) and the origins of modern meteorite research. Meteoritics 31, 545–88CrossRefGoogle Scholar
Marvin, U. B., Wood, J. A. and Dickey, J. S. (1970) Ca-Al rich phases in the Allende meteorite. Earth Planet. Sci. Lett. 7, 346–50CrossRefGoogle Scholar
Mason, B. (1960) Origin of chondrules and chondritic meteorites. Nature 186, 2–3CrossRefGoogle Scholar
Mason B. (1962) Meteorites. John Wiley
Mason, B. and Taylor, S. R. (1982) Inclusions in the Allende meteorite. Smithsonian Contrib. Earth Sci. 25, 1–30Google Scholar
Masursky, H., Batson, R. M., Melauley, J. F., et al. (1972) Mariner 9 television reconnaissance of Mars and its satellites. Science 175, 294–305CrossRefGoogle ScholarPubMed
Matsui, T. and Osaka, M. (1979) Thermal property measurement of Yamato meteorites. Mem. Nat. Inst. Polar Res. Spec. Issue 15, 243–52Google Scholar
Matsunami, S. (1984) The chemical compositions and textures of matrices and chondrule rims of eight unequilibrated ordinary chondrites; A preliminary report. Mem. Nat. Inst. Polar Res. Spec. Issue 35, 126–45Google Scholar
Matsunami, S., Ninagawa, K., Nishimura, S., et al. (1993) Thermoluminescence and compositional zoning in the mesostasis of a Semarkona group A1 chondrule and new insights into the chondrule-forming process. Geochim. Cosmochim. Acta 57, 2102–10CrossRefGoogle Scholar
Matza, S. D. and Lipschutz, M. E. (1977) Volatile/mobile trace elements in Karoonda (C4) chondrite. Geochim. Cosmochim. Acta 41, 1–3CrossRefGoogle Scholar
Maurette M. (1993) Hunting for Stars. McGraw-Hill
Mayeda, T. K., Clayton, R. N. and Sodonis, A. (1989) Internal oxygen isotope variations in two unequilibrated chondrites (abstract). Meteoritics 24, 301Google Scholar
McCall G. J. H. (1973) Meteorites and Their Origins. David and Charles
McCord, T. B., Adams, J. B. and Johnson, T. V. (1970) Asteroid Vesta: Spectral reflectivity and compositional implications. Science 168, 1–4CrossRefGoogle ScholarPubMed
McCoy, T. J., Scott, E. R. D., Jones, R. H., Keil, K. and Taylor, G. J. (1991) Composition of chondrule silicates in LL3–5 chondrites and implications for their nebular history and parent body metamorphism, Geochim. Cosmochim. Acta 55, 601–19CrossRefGoogle Scholar
McCoy, T. J., Keil, K., Mayeda, T. K. and Clayton, R. N. (1992) Monument Draw and the formation of the Acapulcoites. Lunar Planet. Sci. XXIII, 8–7Google Scholar
McCoy, T. J., Keil, K., Ash, R. D., et al. (1993). Roosevelt County 075: A petrologic chemical and isotopic study of the most unequilibrated known H chondrite. Meteoritics 28, 681–91CrossRefGoogle Scholar
McKay D. S., Swindle T. D. and Greenberg R. (1989) Asteroidal regoliths – What we do not know. In Asteroids II. Ed. R. P Binzel, T. Gehrels and M. S. Matthews. University of Arizona Press, pp. 921–45
McKay D. S., Heiken G., Basu A., et al. (1991) The lunar regolith. In Lunar Sourcebook: A User's Guide to the Moon. Ed. G. H. Heiken, D. T. Vaniman and B. M. French. Cambridge University Press, pp. 285–356
McMahon B. M. and Haggerty S. E. (1980) Experimental studies bearing on the magnetite alloy-sulfide association in the Allende meteorite: Constraints on the conditions of chondrule formation. Proc. 11th Lunar Planet. Sci. Conf. Lunar and Planetary Institute, pp. 1003–25
McSween, H. Y. Jr (1977a) Carbonaceous chondrites of the Ornans type: a metamorphic sequence. Geochim. Cosmochim. Acta 41, 477–91CrossRefGoogle Scholar
McSween, H. Y. Jr (1977b) Chemical and petrographic constraints on the origin of chondrules and inclusions in carbonaceous chondrites. Geochim. Cosmochim. Acta 41, 1843–60CrossRefGoogle Scholar
McSween, H. Y. Jr (1977c) Petrographic variations among carbonaceous chondrites of the Vigarano type. Geochim. Cosmochim. Acta 41, 477–91CrossRefGoogle Scholar
McSween H. Y. Jr (1977d) Chemical analyses of chondrules and inclusions in chondrite meteorites. Harvard/Smithsonian Center for Astrophysics Report, Cambridge, MA
McSween H. Y. Jr (1978) Chemical analyses of chondrules and inclusions in chondritic meteorites. Unpublished document available from the author
McSween, H. Y. Jr (1979a) Are carbonaceous chondrites primitive or processed? A review. J. Geophys. Space Phys. 17, 1059–78CrossRefGoogle Scholar
McSween, H. Y. Jr (1979b) Alteration in CM carbonaceous chondrites inferred from modal and chemical variations in matrix. Geochim. Cosmochim. Acta 43, 1761–70CrossRefGoogle Scholar
McSween, H. Y. Jr (1985) Constraints on chondrule origin from petrology of isotopically characterized chondrules in the Allende meteorite. Meteoritics 20, 523–40CrossRefGoogle Scholar
McSween H. Y. Jr (1987) Meteorites and Their Parent Planets. Cambridge University Press
McSween, H. Y. Jr and Richardson, S. M. (1977) The compositions of carbonaceous chondrite matrix. Geochim. Cosmochim. Acta 41, 1145–61CrossRefGoogle Scholar
McSween H. Y. Jr, Fronabarger A. K. and Driese S. G. (1983) Ferromagnesian chondrules in carbonaceous chondrites. In Chondrules and Their Origins Ed. E. A. King. Lunar and Planetary Institute, pp. 195–210
McSween H. Y. Jr, Sears D. W. G. and Dodd R. T. (1988) Thermal metamorphism. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 102–13
Meibom, A. and Clark, B. E. (1999) Evidence for the insignificance of ordinary chondritic material in the asteroid belt. Meteorit. Planet. Sci. 34, 7–24CrossRefGoogle Scholar
Melosh H. J. (1989) Impact Cratering, A Geologic Process. Oxford University Press
Merrill, G. P. (1920) On chondrules and chondritic structure in meteorites. Proc. Natl. Acad. Sci. 6, 449–72CrossRefGoogle ScholarPubMed
Merrill, G. P. (1921) On metamorphism in meteorites. Geol. Soc. Araer. Bull. 32, 395–414CrossRefGoogle Scholar
Metzler K. and Bischoff A. (1996) Constraints on chondrite agglomeration from fine-grained chondrule rims. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 153–61
Metzler, K., Bischoff, A. and Stöffler, D. (1992) Accretionary dust mantles on CM chondrites: Evidence for solar nebula processes. Geochim. Cosmochim. Acta 56, 2873–97CrossRefGoogle Scholar
Meunier, S. (1883) C. R. Paris Acad. Sci. 96. (Cited in Merrill, 1920.)
Minster, P. M. and Allégre, C. J. (1979) 87Rb–87Sr dating of L chondrites: Effects of shock and brecciation. Meteoritics 14, 235–48CrossRefGoogle Scholar
Misawa, K. and Fujita, T. (2000) Magnesium isotopic fractionations in barred olivine chondrules from the Allende meteorite. Meteorit. Planet. Sci. 35, 85–94CrossRefGoogle Scholar
Misawa, K. and Nakamura, N. (1988) Highly fractionated rare-earth elements in ferromagnesian chondrules from the Felix (CO3) meteorite. Nature 334, 47–50CrossRefGoogle Scholar
Misawa K. and Nakamura N. (1996) Origin of refractory precursor components of chondrules from carbonaceous chondrites. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 99–105
Miyamoto M., Fujii N. and Takeda H. (1981) Ordinary chondrite parent body: An internal heating model, Proc. 12th Lunar Planet. Sci. Conf. Lunar and Planetary Institute, pp. 1145–52
Miyamoto, M., McKay, D. S., McKay, G. A. and Duke, M. B. (1986) Chemical zoning and homogenization of olivines in ordinary chondrites and implications for thermal histories of chondrules. J. Geophys. Res. 91, 12804–16CrossRefGoogle Scholar
Morfill, G. (1983) Some cosmochemical consequences of a turbulent proto-planetary cloud. Icarus 53, 41–54CrossRefGoogle Scholar
Morfill G., Spruit, H. and Levy E. H. (1993) Physical processes and conditions associated with the formation of protoplanetary disks. In Protostars and Planets III. Ed. E. H. Levy and J. I. Lunine. University of Arizona Press, pp. 939–78
Morfill, G. E., Durisen, R. H. and Turner, G. W. (1998) An accretion rim constraint on chondrule formation theories. Icarus 134, 1–8CrossRefGoogle Scholar
Morse, A. D., Sears, D. W. G., Hutchison, R., et al. (1988) Alteration of type 3 ordinary chondrites (abstract). Meteoritics 23, 291Google Scholar
Mostefaoui, S., Lugmair, G. W., Hoppe, P. and El Goresy, A. (2002) Evidence for Live Iron-60 in Semarkona and Chervony Kut: A NanoSIMS Study (abstract). Lunar Planet. Sci. Abstract no. 1585Google Scholar
Müller, O., Baedecker, P. A. and Wasson, J. T. (1971) Relationship between siderophile element content and oxidation state of ordinary chondrites. Geochim. Cosmochim. Acta 35, 1121–37CrossRefGoogle Scholar
Murchie, S. and Erard, S. (1996) Spectral properties and heterogeneity of Phobos from measurements of Phobos 2. Icarus 123, 63–86CrossRefGoogle Scholar
Myson, B. O. and Kushiro, I. (1988) Condensation, evaporation, melting, and crystallization in the primitive solar nebula; Experimental data in the system MgO–SiO2–H2 to 1.0 × 10–9 bar and 2870 °C with variable oxygen fugacity. Amer. Mineral. 73, 1–19Google Scholar
Nagahara, H. (1981) Evidence for secondary origin of chondrules. Nature 292, 1–3CrossRefGoogle Scholar
Nagahara, H. (1983a) Texture of chondrules. Mem. Natl. Inst. Polar Res. Special Issue 30, 61–83Google Scholar
Nagahara H. (1983b) Chondrules formed through incomplete melting of the pre-existing mineral clusters and the origin of chondrules. In Chondrules and Their Origins. Ed. E. A. King. Lunar and Planetary Institute, pp. 211–22
Nagahara, H. (1984) Matrices of type 3 ordinary chondrites; Primitive nebular records. Geochim. Cosmochim. Acta 48, 2581–95CrossRefGoogle Scholar
Nagahara, H. (1986) Reduction kinetics of olivine and oxygen fugacity environment during chondrule formation. Lunar Planet. Sci. XVII, 5–9Google Scholar
Nagahara, H. and Kushiro, I. (1987) Origin of iron-rich olivine in the matrices of type 3 ordinary chondrites – an experimental study. Earth Planet. Sci. Lett. 85, 537–47CrossRefGoogle Scholar
Nagahara, H. and Kushiro, I. (1989) Vaporization experiments in the system plagioclase–hydrogen. Proceedings of the NIPR Symposium on Antarctic Meteorites, volume 2, pp. 235–51Google Scholar
Nagahara, H., Kushiro, I., Mysen, B. O. and Mori, H. (1989a) Experimental vaporization and condensation of olivine solid solution. Nature 331, 516–18CrossRefGoogle Scholar
Nagahara H., Kushiro I. and Tomeoka K. (1989b) Vaporization experiments in the system plagioclase–hydrogen: 2. Composition of the gas and residue (abstract). 14th Symposium on Antarctic Meteorites. National Institute of Polar Research, p. 84
Nagahara, H., Mysen, B. O. and Kushiro, I. (1994) Evaporation of olivine – low pressure phase relations of the olivine system and its implication for the origin of chondritic components in the solar nebula. Geochim. Cosmochim. Acta 58, 1951–63CrossRefGoogle Scholar
Nagata, T. and Funaki, M. (1983) Paleointensity of the Allende carbonaceous chondrite. Mem. Natl. Inst. Polar Res. Special Issue 30, 403–34Google Scholar
Nakamura, N. (1974) Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochim. Cosmochim. Acta 38, 757–75CrossRefGoogle Scholar
Nakamura, N. and Masuda, A. (1973) Chondrites with peculiar rare-earth patterns. Earth Planet. Sci. Lett. 19, 429–37CrossRefGoogle Scholar
Nakamura N. and Matsuda H. (1989) Further characterization of fractionated and unfractionated REE and alkali metal abundances in the Allende (CV3) chondrules (II) (abstract). 14th Symposium on Antarctic Meteorites. National Institute of Polar Research, pp. 99–100
Neal, C. R., Taylor, L. A., Lui, Y. and Schmitt, R. A. (1991) Paired lunar meteorites MAC 88104 and MAC 88105: A new FAN of lunar petrography. Geochim. Cosmochim. Acta 55, 3037–49CrossRefGoogle Scholar
Nehru, C. E., Prinz, M., Weisburg, M. K., et al. (1992) Brachnites: A new primitive achondrite group (abstract). Meteoritics 27, 267Google Scholar
Nelen J., Noonan A. and Fredriksson K. (1972) Lunar glasses, breccias and chondrules. Proc. 3rd Lunar Sci. Conf. Lunar and Planetary Institute, pp. 723–37
Nelson, L. S., Blander, M., Skaggs, S. R. and Keil, K. (1972) Use of a CO2 laser to prepare chondrule-like spherules from supercooled molten oxide and silicate droplets. Earth Planet. Sci. Lett. 14, 338–44CrossRefGoogle Scholar
Newsom, H. E. (1995) Metal–silicate fractionation in the solar nebula (abstract). Lunar Planet. Sci. XXVI, 1043–44Google Scholar
Nininger H. H. (1952) Out of the Sky. Dover Publications
Noddack, I. and Noddack, W. (1930) Die haufigkeit der chemischen elements. Naturwissenschaften 18, 757–64Google Scholar
Norton O. R. (1994) Rocks from Space. Mountain Press Publishing Co
Nuth J. A. III (1988) Astrophysical implications of presolar grains. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 984–91
Nyquist, L., Lindstrom, D., Mittlefehldt, D., et al. (2001) Manganese–chromium formation intervals for chondrules from the Bishunpur and Chainpur meteorites. Meteorit. Planet. Sci. 36, 911–38CrossRefGoogle Scholar
Olbers, H. W. M. (1803) Letter from Dr. Olbers of Bremen to Baron von Zach on the stones which have fallen from the heavens. Phil. Mag. 15, 289–93Google Scholar
Olmsted, D. (1834) Observations of the meteors of November 13, 1833. Amer. J. Sci. 25, 363–411; 36, 137–74Google Scholar
Olsen E. J. (1983) SiO2-bearing chondrules in the Murchison (C2) meteorite. In Chondrules and Their Origins. Ed. E. A. King. Lunar and Planetary Institute, pp. 223–34
Olsen, E. J. and Bunch, T. E. (1984) Equilibration temperatures of the ordinary chondrites – a new evaluation. Geochim. Cosmochim. Acta 48, 1–3CrossRefGoogle Scholar
Olsen, E. J. and Grossman, L. (1978) On the origin of isolated olivine grains in type 2 carbonaceous chondrites. Earth Planet. Sci. Lett. 41, 111–27CrossRefGoogle Scholar
Olsen, E. J. and Jarosewich, E. (1971) Chondrules: First occurrence in an iron meteorite. Science 174, 5–8CrossRefGoogle Scholar
Olsen, E. J., Fredriksson, K., Rajan, S. and Noonan, A. (1989) Chondrule-like objects and brown glasses in howardites. Meteoritics 25, 187–94CrossRefGoogle Scholar
Orowan, E. (1969) Density of the Moon and nucleation of planets. Nature 222, 867CrossRefGoogle Scholar
Palme, H. L. and Fegley, B. Jr (1987) Formation of FeO-bearing olivines in carbonaceous chondrites by high temperature oxidation in the solar nebula (abstract). Lunar Planet. Sci. XVIII, 7–5Google Scholar
Palme, H. L., Schultz, B., Spettel, H. W., et al. (1981) The Acapulco meteorite: Chemistry, mineralogy, and irradiation effects. Geochim. Cosmochim. Acta 45, 727–52CrossRefGoogle Scholar
Palme H. L., Larimer J. W. and Lipschutz M. E. (1988) Moderately volatile elements. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 436–61
Peck, J. A. and Wood, J. A. (1987) The origin of ferrous zoning in Allende chondrule olivines. Geochim. Cosmochim. Acta 51, 1503–10CrossRefGoogle Scholar
Pejovic B. (1982) Man and Meteorites. Thomas Head
Pellas P. (1973) Irradiation history of grain aggregates in ordinary chondrites: Possible clues to the advanced stages of accretion. In From Plasma to Planet. Ed. A. Elvius. John Wiley, p. 65
Pepin R. O., Eddy J. A. and Merrill R. B., Eds. (1980) The Ancient Sun: Fossil Record in the Earth, Moon and Meteorites; Proceedings of the Conference, Boulder, CO, October 16–19, 1979. Pergamon Press. (Geochim. Cosmochim. Acta, Supplement 13.)
Pieters, C. M., Taylor, L. A., Noble, S. K., et al. (2000) Space weathering on airless bodies: Resolving a mystery with lunar samples. Meteorit. Planet. Sci. 35, 1–1CrossRefGoogle Scholar
Podolak, M. and Cameron, A. G. W. (1974) Possible formation of meteoritic chondrules and inclusions in the precollapse Jovian protoplanetary atmosphere. Icarus 23, 326–33CrossRefGoogle Scholar
Podolak, M., Prialnik, D., Bunch, D. E., Cassen, P. and Reynolds, P. (1993) Secondary processing of chondrules and refractory inclusions (CAIs) by geodynamic heating. Icarus 104, 97–107CrossRefGoogle Scholar
Podosek, F. A. (1970) Dating of meteorites by the high-temperature release of iodine-correlated 129Xe. Geochim. Cosmochim. Acta 34, 341–65CrossRefGoogle Scholar
Podosek, F. A. and Cassen, P. (1994) Theoretical, observational, and isotopic estimates of the lifetime of the solar nebula. Meteoritics 29, 6–25CrossRefGoogle Scholar
Podosek F. A. and Swindle T. D. (1988a) Extinct radionuclides. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 1093–113
Podosek F. A. and Swindle T. D. (1988b) Nucleocosmochronology. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 1114–26
Poisson, S. D. (1803) Sur les substances minérals qu l'en suppose tombées du ciel sur la terre. Bulle. Sci. Soc. Philomat. 3, 1–8Google Scholar
Prior, G. T. (1916) The meteoritic stones of Launton, Warbreccan, Cronstad, Daniel's Kuil, Khairpur, and Soko Banja. Mineral. Mag. 18, 1–25Google Scholar
Proust, J. L. (1805) Sur une Pierre meteorique tombée aux environs de Sigena, en Aragon, dans l'annee 1773. Jr. Physique 60, 185–204; see also Jr. Nat. Philos. (Nicholson's) 4, 3–5Google Scholar
Radomsky, P. M. and Hewins, R. H. (1987) Dynamic crystallization experiments on an average type I (MgO-rich) chondrule composition. Lunar Planet. Science XVIII, 8–0Google Scholar
Radomsky, P. M. and Hewins, R. H. (1988) Chondrule texture/composition relations revisited; Constraints on the thermal conditions in the chondrule forming region. Meteoritics 23, 2–9Google Scholar
Radomsky, P. M. and Hewins, R. H. (1990) Formation conditions of pyroxene–olivine and magnesian–olivine chondrules. Geochim. Cosmochim. Acta 54, 3475–90CrossRefGoogle Scholar
Radomsky, P. M., Turrin, R. P. and Hewins, R. H. (1986) Dynamic crystallization experiments on a pyroxene–olivine chondrule composition. Lunar Planet. Sci. XVII, 6–8Google Scholar
Rambaldi, E. R. (1981) Relict grains in chondrules. Nature 293, 558–61CrossRefGoogle Scholar
Rambaldi, E. R. and Wasson, J. T. (1981) Metal and associated phases in Bishunpur, a highly unequilibrated ordinary chondrite. Geochim. Cosmochim. Acta 45, 1001–15CrossRefGoogle Scholar
Rambaldi, E. R. and Wasson, J. T. (1982) Fine, nickel-poor Fe–Ni grains in the olivine of unequilibrated ordinary chondrites. Geochim. Cosmochim. Acta 46, 929–39CrossRefGoogle Scholar
Rambaldi, E. R. and Wasson, J. T. (1984) Metal and associated phases in the highly unequilibrated ordinary chondrites Krymka and Chainpur. Geochim. Cosmochim. Acta 48, 1885–97CrossRefGoogle Scholar
Rao, M. N., Garrison, D. H., Bogard, D. D., Badhwar, G. and Murali, A. V. (1991) Composition of solar flare noble gases preserved in meteorite parent body regolith. Jr. Geophys. Res. 96, 19321–30CrossRefGoogle ScholarPubMed
Rasmussen K. L. and Wasson I. T. (1982). A new lightning model for chondrule formation (abstract). In Papers Presented to the Conference on Chondrules and Their Origins. Lunar and Planetary Institute, p. 53
Reichenbach, K. L. (1860) Meteoriten in Meteoriten. Ann. Phys. 111, 353–86CrossRefGoogle Scholar
Ringwood, A. E. (1959) On the evolution and densities of the planets. Geochim. Cosmochim. Acta 15, 257–83CrossRefGoogle Scholar
Robert, F., Javoy, M., Halbout, J., Dimon, B. and Merlivat, L. (1987) Hydrogen isotope abundances in the solar system. Part I: Unequilibrated chondrites. Geochim. Cosmochim. Acta 51, 1–7Google Scholar
Robinson, M. S., Thomas, P. C., Veverka, J., Murchie, S. L. and Wilcox, B. B. (2002) The geology of Eros. Meteorit. Planet. Sci. 37, 1651–84CrossRefGoogle Scholar
Roedder E. (1971) Natural and laboratory crystallization of lunar glasses from Apollo 11. Min. Soc. Japan Spec. Paper 1, Proc. IMA-IAGOD Mtg., 1970, IMA vol, pp. 5–12
Roedder E. and Weiblen P. W. (1977) Petrographic features and petrologic significance of melt inclusions in Apollo 14 and Apollo 15. Proc. 8th Lunar Sci. Conf. Lunar and Planetary Institute, pp. 2641–54
Roedder, P. L. and Emslie, R. F. (1970) Olivine–liquid equilibrium. Contrib. Mineral. Petrol. 29, 275–89CrossRefGoogle Scholar
Rowe, P. N., Nienow, A. W. and Agbim, A. J. (1972) The mechanisms by which particles segregate in gas fluidised beds: Binary systems of near-spherical particles. Trans. Inst. Chem. Engrs. 50, 324–33Google Scholar
Rubin, A. E. (1980) Kamacite and olivine in ordinary chondrites: Intergroup and intragroup relationships. Geochim. Cosmochim. Acta 54, 1217–32CrossRefGoogle Scholar
Rubin, A. E. (1983) The Adhi Kot breccia and implications for the origin of chondrules and silica-rich clasts in enstatite chondrites. Earth Planet. Sci. Lett. 64, 201–12CrossRefGoogle Scholar
Rubin, A. E. (1984a) The Blithfield meteorite and the origin of sulfide-rich, metal-poor clasts and inclusions in brecciated enstatite chondrites. Earth Planet. Sci. Lett. 67, 273–83CrossRefGoogle Scholar
Rubin, A. E. (1984b) Coarse-grained chondrule rims in type 3 chondrites. Geochim. Cosmochim. Acta 48, 1779–89CrossRefGoogle Scholar
Rubin, A. E. (1985) Impact melt products of chondritic material. Rev. Geophys. 23, 277–300CrossRefGoogle Scholar
Rubin, A. E. and Grossman, J. N. (1987) Size–frequency distributions of EH3 chondrules. Meteoritics 22, 237–51CrossRefGoogle Scholar
Rubin, A. E. and Keil, K. (1984) Size–distributions of chondrule types in the Inman and Allan Hills A77011 L3 chondrites. Meteoritics 19, 135–43CrossRefGoogle Scholar
Rubin A. E. and Krot A. N. (1996) Multiple heating of chondrules. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 173–80
Rubin, A. E., and Wasson, J. T. (1986) Chondrules in the Murray CM2 meteorite and compositional differences between CM–CO and ordinary chondrite chondrules. Geochim. Cosmochim. Acta 50, 307–15CrossRefGoogle Scholar
Rubin, A. E., and Wasson, J. T. (1987a) Chondrules and matrix in the Ornans CO3 meteorite – possible precursor components. Geochim. Cosmochim. Acta 52, 425–32CrossRefGoogle Scholar
Rubin, A. E., and Wasson, J. T. (1987b) Chondrules, matrix and coarse-grained rims in the Allende meteorite: Origin. Interrelationships and possible precursor components. Geochim. Cosmochim. Acta 51, 1923–37CrossRefGoogle Scholar
Rubin, A. E., Scott, E. R. D. and Keil, K. (1982) Microchondrule-bearing clast in the Piancaldoli LL3 meteorite: A new kind of type 3 chondrite and its relevance to the history of chondrules. Geochim. Cosmochim. Acta 46, 1763–76CrossRefGoogle Scholar
Rubin A. E., Fegley B. and Brett R. (1988) Oxidation state in chondrites. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 488–511
Rubin, A. E., Wasson, J. T., Clayton, R. N. and Mayeda, T. K. (1990) Oxygen isotopes in chondrules and coarse-grained chondrule rims from the Allende meteorite. Earth Planet. Sci. Lett. 96, 247–55CrossRefGoogle Scholar
Russell, H. N. (1929) The composition of the Sun's atmosphere. Astrophys. Jr. 70, 11–82CrossRefGoogle Scholar
Russell, S. S., Srinivasan, G., Huss, G. R., Wasserburg, G. J. and McPherson, G. J. (1996) Evidence for widespread 26Al in the solar nebula and constraints for nebula time scales. Science 273, 757–62CrossRefGoogle ScholarPubMed
Ruzicka, A. (1990) Deformation and thermal histories of chondrules in the Chainpur (LL3.4) chondrite. Meteoritics 25, 101–13CrossRefGoogle Scholar
Ruzicka, A., Snyder, G. A. and Taylor, L. A. (2000) Crystal-bearing lunar spherules: Impact melting of the Moon's crust and implications for the origin of meteoritic chondrules. Meteorit. Planet. Sci. 35, 173–92CrossRefGoogle Scholar
Ruzmaikina, T. V. and Ip, W. H. (1995) Chondrule formation in radiative shock. Icarus 112, 430–47CrossRefGoogle Scholar
Ruzmaikina T. V. and Ip W. H. (1996) Chondrule formation in the accretional shock. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 277–84
Safronov V. S. (1972) Evolution of the Protoplanetary Cloud and Formation of the Earth and the Planets. Nauka. Translated from the Russian, NASA Tech. Trans., F-677
Sanders I. S. (1996) A chondrule-forming scenario involving molten planetesimals. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 327–34
Sauer, P. N. (1993) Centrifugally driven winds from protostellar disks. I. Wind model and thermal structure. Astrophys. J. 408, 115–47Google Scholar
Saxena, S. K. (1976) Two-pyroxene geothermometer: A model with an approximate solution. Am. Mineral. 61, 643–52Google Scholar
Scheeres D. J., Durda D. D. and Geissler P. E. (2002) The fate of asteroid ejecta. In Asteroids III. Ed. W. F. Bottke et al. University of Arizona Press, pp. 527–44
Schmitt, R. A., Goles, G. G. and Smith, R. H. (1972) Elemental abundances in stone meteorites. Meteoritics 7, 131–213CrossRefGoogle Scholar
Schultz, L. and Signer, P. (1977) Noble gases in the St. Mesmin chondrite: Implications for the irradiation history of a brecciated meteorite. Earth Planet. Sci. Lett. 36, 363–71CrossRefGoogle Scholar
Scott, E. R. D. (1988) A new kind of primitive chondrite, Allan Hills 85085. Earth Planet. Sci. Lett. 91, 1–18CrossRefGoogle Scholar
Scott, E. R. D. and Haack, H. (1993) Chemical fractionation in chondrites by aerodynamic sorting of chondritic material. Meteoritics 28, 434Google Scholar
Scott, E. R. D. and Jones, R. H. (1990) Disentangling nebula and asteroidal features of CO3 carbonaceous chondrites. Geochim. Cosmochim. Acta 54, 2–4CrossRefGoogle Scholar
Scott, E. R. D. and Rajan, R. S. (1981) Metallic minerals, thermal histories, and parent bodies of some xenolithic, ordinary chondrites. Geochim. Cosmochim. Acta 45, 53–67CrossRefGoogle Scholar
Scott, E. R. D. and Taylor, G. J. (1983) Chondrules and other components in C, O, and E chondrites; Similarities in their properties and origins. Proc. 14th Lunar Planet. Sci. Conf. J. Geophys. Res. 88, B275–B286CrossRefGoogle Scholar
Scott, E. R. D. and Wasson, J. T. (1975) Classification and properties of iron meteorites. Rev. Geophys. Space Phys. 13, 527–46CrossRefGoogle Scholar
Scott, E. R. D., Rubin, A. E., Taylor, G. J. and Keil, K. (1984) Matrix material in type 3 chondrites – occurrence, heterogeneity and relationship with chondrules. Geochim. Cosmochim. Acta 48, 1741–57CrossRefGoogle Scholar
Scott, E. R. D., Lusby, D. and Keil, K. (1985) Ubiquitous brecciation after metamorphism in equilibrated ordinary chondrites. Proc. 16th Lunar Planet. Sci. Conf. J. Geophys. Res. 91, E115–23CrossRefGoogle Scholar
Scott E. R. D., Barber D. J., Alexander C. M., Hutchison R. and Peck J. A. (1988) Primitive material surviving in chondrites: Matrix. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 718–45
Scott E. R. D., Love S. G. and Krot A. N. (1996) Formation of chondrules and chondrites in the protoplanetary nebula. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 87–96
Sears, D. W. G. (1976) Edward Charles Howard and an early British contribution to meteorites. J. Brit. Astron. Soc. 86, 1–3Google Scholar
Sears D. W. G. (1978a) The Nature and Origin of Meteorites. Adam Hilger
Sears, D. W. G. (1978b) Condensation and the composition of iron meteorites. Earth Planet. Sci. Lett. 41, 128–38CrossRefGoogle Scholar
Sears D. W. G. (1988) Thunderstones: The Meteorites of Arkansas. University of Arkansas Press
Sears, D. W. G. (1998) The rarity of chondrules and CAI in the early solar system and some astrophysical consequences. Astrophys. J. 498, 7–7CrossRefGoogle Scholar
Sears, D. W. G. and Akridge, G. (1998) Nebular or parent body alteration of chondritic material: Neither or both?Meteorit. Planet. Sci. 33, 1157–67CrossRefGoogle Scholar
Sears, D. W. G. and Axon, H. J. (1975) Metal of high cobalt content in LL chondrites. Meteoritics 11, 97–100CrossRefGoogle Scholar
Sears, D. W. G. and Axon, H. J. (1976) Nickel and cobal contents of chondritic meteorites. Nature 260, 34–5CrossRefGoogle Scholar
Sears D. W. G. and Dodd R. T. (1988) Overview and classification of meteorites. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 3–31
Sears, D. W. G. and Hasan, F. A. (1988) Type 3 ordinary chondrites: A Review. Surv. Geophys. 9, 43–97CrossRefGoogle Scholar
Sears, D. W. G. and Weeks, K. S. (1983) Chemical and physical studies of type 3 chondrites-II. Thermoluminescence properties of sixteen type 3 ordinary chondrites and relationships with oxygen isotopes. Proc. 14th Lunar Planet. Sci. Conf. J. Geophy. Res. 88, A791–5Google Scholar
Sears, D. W. G., Grossman, J. N., Melcher, C. L., Ross, L. M. and Mills, A. A. (1980) Measuring metamorphic history of unequilibrated ordinary chondrites. Nature 287, 7–9CrossRefGoogle Scholar
Sears, D. W. G., Grossman, J. N. and Melcher, C. L. (1982a) Chemical and physical studies of type 3 chondrites. I; Metamorphism related studies of Antarctic and other type 3 ordinary chondrites. Geochim. Cosmochim. Acta 46, 2471–81CrossRefGoogle Scholar
Sears, D. W. G., Kallemeyn, G. W. and Wasson, J. T. (1982b) The compositional classification of chondrites: II. The enstatite chondrite groups. Geochim. Cosmochim. Acta 46, 597–608CrossRefGoogle Scholar
Sears, D. W. G., Sparks, M. H. and Rubin, A. E. (1984) Chemical and physical studies of type 3 chondrites. III: Chondrules from the Dhajala H3.8 chondrite. Geochim. Cosmochim. Acta, 48, 1–1CrossRefGoogle Scholar
Sears D. W. G., Batchelor J. D., Lu J. and Keck B. D. (1991) Metamorphism of CO and CO-like chondrites and comparisons with type 3 ordinary chondrites. Proceedings of the NIPR Symposium Antarctic Meteorites, volume 4. National Institute of Polar Research, pp. 319–43
Sears, D. W. G., Lu, J., Benoit, P. H., DeHart, J. M. and Lofgren, G. E. (1992) A compositional classification scheme for meteoritic chondrules. Nature 357, 207–11CrossRefGoogle Scholar
Sears, D. W. G., Benoit, P. H. and Lu, J. (1993) Two chondrule groups each with distinctive rims in Murchison recognized by cathodoluminescence. Meteoritics 28, 669–75CrossRefGoogle Scholar
Sears, D. W. G., Huang, S. and Benoit, P. H. (1995a) The formation of chondrules (abstract). Lunar Planet. Sci. XXVI, 1–2Google Scholar
Sears, D. W. G., Huang, S. and Benoit, P. H. (1995b) Chondrule formation, metamorphism, brecciation, a new primary chondrule group, and the classification of chondrules. Earth Planet. Sci. Lett. 131, 27–39CrossRefGoogle Scholar
Sears, D. W. G., Huang, S. and Benoit, P. H. (1995c) Chondrules from the Earth and Moon: A review (abstract). Meteoritics 30, 577Google Scholar
Sears, D. W. G., Morse, A. D., Hutchison, R., et al. (1995d) Metamorphism and aqueous alteration in low petrographic type ordinary chondrites. Meteoritics 30, 169–81CrossRefGoogle Scholar
Sears D. W. G., Huang S. and Benoit P. H. (1996a) Open-system behaviour during chondrule formation. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 221–31
Sears, D. W. G., Huang, S., Akridge, G. and Benoit, P. H. (1996b) Glassy spherules in suevite from the Ries Crater, Germany, with implications for the formation of meteoritic chondrules. Lunar Planet. Sci. XXVII, 1–1Google Scholar
Sears, D. W. G., Huang, S., Benoit, P. H., et al. (1997) Oxygen isotope data for classified Semarkona chondrules (abstract). Meteorit. Planet. Sci. 32, A118–19Google Scholar
Sears, D. W. G., Lyon, I., Saxton, J. and Turner, G. (1998) The oxygen isotopic properties of olivines in the Semarkona ordinary chondrite. Meteorit. Planet. Sci. 33, 1029–32CrossRefGoogle Scholar
Sears, D. W. G., Lyon, I. C., Saxton, J. M., Symes, S. and Turner, G. (1999a) Oxygen isotope heterogeneity in the mesostasis of a Semarkona group A1 chondrules. Lunar Planet. Sci. XXX, CD-ROM #1406Google Scholar
Sears, D. W. G., Huebner, W. F. and Kochan, H. W. (1999b) Laboratory simulation of the physical processes occurring on and near the surfaces of comet nuclei. Meteorit. Planet. Sci. 34, 497–525CrossRefGoogle Scholar
Sears D. W. G., Allen C. C., Britt D. T., et al. (2002) Near-Earth Asteroid Sample Return. In The Future of Solar System Exploration (2003–2013) – Community Contributions to the NRC Solar System Exploration Decadal Survey (ASP Conference Proceedings 272). Ed. M. V. Sykes. Astronomical Society of the Pacific, pp. 111–40
Sheng, Y. J., Hutcheon, I. D. and Wasserburg, G. J. (1991) Origin of plagioclase–olivine inclusions in carbonaceous chondrites. Geochim. Cosmochim. Acta 55, 581–99CrossRefGoogle Scholar
Shimaoka T. and Nakamura N. (1989) Vaporization of sodium from a partially molten chondritic material. Proceedings of the NIPR Symposium on Antartic Meteorites, volume 2. National Institute of Polar Research, pp. 252–67
Shu, F. H., Adams, F. C. and Lizano, S. (1987) Star formation and molecular clouds. Observations and theory. Ann. Rev. Astron. Astrophys. 256, 23–81CrossRefGoogle Scholar
Shu F. H., Najita J., Galli D., Ostriker E. and Lizano S. (1993) The collapse of clouds and the formation and evolution of stars and disks. In Protostars and Planets III. Ed. E. H. Levy and J. I. Lunine. University of Arizona Press, pp. 3–45
Shu, F. H., Sheng, H. and Lee, T. (1996) Toward an astrophysical theory of chondrites. Science 271, 1545–52CrossRefGoogle Scholar
Simon S. B. and Haggerty S. E. (1980) Bulk compositions of chondrules in the Allende meteorite. Proc. 11th Lunar Planet. Sci. Conf. Lunar and Planetary Institute, pp. 901–27
Skinner, W. R. (1990) Bipolar outflows and a new model of the early Solar System. Part II: the origins of chondrules. Lunar Planet. Sci. XⅪ, 1–1Google Scholar
Skinner, W. R. and Leenhouts, J. H. (1993) The size distribution and aerodynamic equivalence of metal chondrules and silicate chondrules in Acfer 059. Lunar Planet. Sci. XXIV, 1315–16Google Scholar
Smales, A. A., Mapper, D. and Wood, A. J. (1957) The determination by radioactiviation of small quantities of nickel, cobalt, and copper in rocks, marine sediments and meteorites. Analyst 82, 75CrossRefGoogle Scholar
Smith, J. V. (1982) Heterogeneous growth of meteorites and planets, especially the earth and moon. J. Geol. 90, 1–48CrossRefGoogle Scholar
Sonett, C. P. (1979) On the origin of chondrules. Geophys. Res. Lett. 6, 677–80CrossRefGoogle Scholar
Sorby, H. C. (1864) On the microscopical structure of meteorites. Phil. Mag. 28, 1–5Google Scholar
Sorby, H. C. (1877) On the structure and origin of meteorites. Nature 15, 4–9Google Scholar
Space Studies Board (2002) New Frontiers in the Solar System: An Integrated Exploration Strategy. National Research Council
Srinivasan, G., Huss, G. R. and Wasserburg, G. J. (2000) A petrographic, chemical, and isotopic study of calcium–aluminum-rich inclusions and aluminum-rich chondrules from the Axtell (CV3) chondrite. Meteorit. Planet. Sci. 35, 1333–54CrossRefGoogle Scholar
Steele, I. M. (1985) Compositions and textures of relic forsterite in carbonaceous and unequilibrated ordinary chondrites. Geochim. Cosmochim. Acta 50, 1379–95CrossRefGoogle Scholar
Steele I. M. (1988) Primitive material surviving in chondrites: Mineral grains. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 808–18
Stepinski, T. F. and Reyes-Ruiz, M. (1993) Magnetically controlled solar nebula. Lunar Planet. Sci. XXIV, 1–3Google Scholar
Stöffler D., Bischoff A., Buchwald V. and Rubin A. E. (1988) Shocke effects in meteorites. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 165–202
Suess H. E. and Thompson W. B. (1983) Can chondrules form from a gas of solar composition? In Chondrules and Their Origins. Ed. E. A. King. Lunar and Planetary Institute, pp. 243–5
Sugiura, N. and Strangway, D. W. (1985) NRM directions around a centimeter sized dark inclusion in Allende. Proc. 15th Lunar Planet. Sci. Conf. J. Geophys. Res. 90, C729–38CrossRefGoogle Scholar
Sugiura N. and Strangway D. W. (1988) Magnetic studies of meteorites. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 595–615
Sugiura, N., Lanoix, M. and Strangway, D. W. (1979) Magnetic fields of the solar nebula as recorded in chondrules from the Allende meteorite. Phys. Earth Planet. Int. 20, 3–4CrossRefGoogle Scholar
Sullivan, R., Grelley, R., Pappalardo, R., et al. (1996) Geology of 243 Ida. Icarus 142, 89–96Google Scholar
Swindle T. D. (1988) Trapped noble gases in meteorites. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 535–64
Swindle, T. D. and Grossman, J. N. (1987) I–Xe studies of Semarkona Chondrules: Dating alteration (abstract). Lunar Planet. Sci. XVIII, 9–8Google Scholar
Swindle T. D. and Podosek F. A. (1988) Iodine–xenon dating. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 1127–46
Swindle T. D., Caffee M. W. and Hohenberg C. M. (1983a) Radiometric ages of chondrules. In Chondrules and Their Origins. Ed. E. A. King. Lunar and Planetary Institute, pp. 246–61
Swindle, T. D., Caffee, M. W., Hohenberg, C. M. and Lindstrom, M. M. (1983b) I–Xe studies of individual Allende Chondrules. Geochim. Cosmochim. Acta 47, 2157–77CrossRefGoogle Scholar
Swindle, T. D., Caffee, M. W. and Hohenberg, C. M. (1986) I–Xe and 40Ar–39Ar ages of Chainpur chondrules (abstract). Lunar Planet. Sci. XVII, 8–5Google Scholar
Swindle, T. D., Grossman, J. N., Olinger, C. T. and Garrison, D. H. (1991) Iodine–xenon, chemical, and petrographic studies of Semarkona chondrules – Evidence for the timing of aqueous alteration. Geochim. Cosmochim. Acta 55, 3723–34CrossRefGoogle Scholar
Swindle T. D., Davis A. M., Hohenberg C. M., MacPherson G. J. and Nyquist L. E. (1996) Formation times of chondrules and Ca–Al-rich inclusions: Constraints from short-lived radionuclides. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 77–86
Symes, S. J. K., Sears, D. W. G., Akridge, D. G., Huang, S. and Benoit, P. H. (1998) The crystalline lunar spherules: Their formation and implications for the origin of meteoritic chondrules. Meteorit. Planet. Sci. 33, 13–29CrossRefGoogle Scholar
Takahashi, H., Janssens, M. J-., Morgan, J. W. and Anders, E. (1978a) Further studies of trace elements in C3 chondrites. Geochim. Cosmochim. Acta 42, 97–107CrossRefGoogle Scholar
Takahashi, H., Gros, J., Higuchi, H., Morgan, J. W. and Anders, E. (1978b) Volatile elements in chondrites: metamorphism or nebular?Geochim. Cosmochim. Acta 42, 1859–69CrossRefGoogle Scholar
Tatsumoto, M., Unmh, D. M. and Desborough, G. A. (1976) U–Th–Pb and Rb–Sr systematics of Allende and U–Th–Pb systematics of Orgueil. Geochim. Cosmochim. Acta 40, 617–34CrossRefGoogle Scholar
Taylor G. J., Scott E. R. D. and Keil K. (1983) Cosmic setting for chondrule formation. In Chondrules and Their Origins. Ed. E. A. King. Lunar and Planetary Institute, pp. 262–78
Taylor, G. J., Scott, E. R. D., Keil, K., et al. (1984) Primitive nature of ordinary chondrite matrix materials. Lunar Planet. Sci. XV, 8–4Google Scholar
Taylor, G. J., Maggiore, P., Scott, E. R. D., Rubin, A. E. and Keil, K. (1987) Original structures, and fragmentation and reassembly histories of asteroids: Evidence from meteorites. Icarus 69, 1–13CrossRefGoogle Scholar
Taylor, L. A. and Cirlin, E. H. (1986) Olivine/melt Fe/Mg Kd's <: Rapid cooling of olivine-rich chondrules. Lunar Planet. Sci. XVII, 879–80Google Scholar
Thiemens M. H. (1988) Heterogeneity in the nebula: Evidence from stable isotopes. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 899–923
Thiemens M. H. (1996) Mass-independent isotopic effects in chondrites: The role of chemical processes. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 107–18
Thomas, P., Adinolfi, D., Helfenstein, P., Simonelli, D. and Veverka, J. (1996) The surface of Diemos: Contribution of materials and processes to its unique appearance. Icarus 123, 536–56CrossRefGoogle Scholar
Thomas, P. C., Veverka, J., Bell, J. F., et al. (1999) Mathilde, size, shape and geology. Icarus 140, 17–27CrossRefGoogle Scholar
Thomas, P. C., Veverka, J., Sullivan, R., et al. (2000) Phobos: Regolith and ejecta blocks investigated with Mars orbiter camera images. J. Geophys. Res. 105, 15091–106CrossRefGoogle Scholar
Thomas, P. C., Joseph, J., Robinson, M., et al. (2002) Shape, slopes, and slope processes on Eros. Icarus 155, 18–37CrossRefGoogle Scholar
Tilton G. R. (1988a) Age of the solar system. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 259–75
Tilton G. R. (1988b) Principles of radiometric dating. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 249–58
Tissandier, L., Libourel, G. and Robert, F. (2002) Gas–melt interactions and their bearing on chondrule formation. Meteorit. Planet. Sci. 37, 1377–89CrossRefGoogle Scholar
Tomeoka, K. (1990) Phyllosilicate veins in the Yamato-82162 CI carbonaceous chondrite: Evidence for post-accretionary aqueous alteration (abstract). Meteoritics 25, 415Google Scholar
Tomeoka, K. and Buseck, P. R. (1982) Intergrown mica and montmorillonite in the Allende carbonaceous chondrite. Nature 299, 3–2CrossRefGoogle Scholar
Tomeoka K., McSween H. Y. and Buseck P. R. (1989) Mineralogical alteration of CM carbonaceous chondrites: A review. Proceedings of the NIPR Symposium on Antarctic Meteorites, volume 2. National Institute of Polar Research, pp. 221–34
Trieloff, M., Jessberger, E. K., Herrwerth, I., et al. (2003) Structure and thermal history of the H-chondrite parent asteroid revealed by thermochronometry. Nature 422, 5–0CrossRefGoogle ScholarPubMed
Tschermak, G. (1883) Beitrag zur Classification der Meteoriten. Sitzber. Akad. Wiss. Wien, Math. -Naturw. Cl. 85 (1), 347–71Google Scholar
Tschermak, G. (1885) Die mikroskopische Beschaffenheit der Meteoriten. Smithson. Contrib. Astrophys. 4, 138–234 (1964, translated by J. A. Wood and E. M. Wood)CrossRefGoogle Scholar
Tsuchiyama, A. and Nagahara, H. (1981) Effects of precooling thermal history and cooling rate on the texture of chondrules; A preliminary report. Mem. Natl Inst. Polar Res., Special Issue 20, 175–92Google Scholar
Tsuchiyama, A., Nagahara, H. and Kushiro, I. (1980) Experimental reproduction of textures of chondrules. Earth Planet. Sci. Lett. 48, 155–65CrossRefGoogle Scholar
Tsuchiyama, A., Nagahara, H. and Kushiro, I. (1981) Volatilization of sodium from silicate melt spheres and its application to the formation of chondrules. Geochim. Cosmochim. Acta, 45, 1357–67CrossRefGoogle Scholar
Turner G. (1988) Dating of secondary events. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 276–88
Urey H. C. (1952) The Planets. Yale University Press
Urey, H. C. (1956) Diamonds, meteorites, and the origin of the solar system. Astrophys. J. 124, 623–37CrossRefGoogle Scholar
Urey, H. C. (1958) The early history of the solar system as indicated by the meteorites. Proc. Chem. Soc. (March), 67–78Google Scholar
Urey, H. C. (1961) Criticism of Dr. B. Mason's paper on the ‘The Origin of Meteorites’. J. Geophys. Res. 66, 1988–91CrossRefGoogle Scholar
Urey, H. C. (1962) Evidence regarding the origin of the earth. Geochim. Cosmochim. Acta 26, 1–13CrossRefGoogle Scholar
Urey, H. C. (1967) Parent bodies of meteorites and the origin of chondrules. Icarus 7, 3–5CrossRefGoogle Scholar
Urey, H. C. and Craig, H. (1953) The composition of the stone meteorites and the origin of the meteorites. Geochim. Cosmochim. Acta 4, 36–82CrossRefGoogle Scholar
Urey, H. C. and Donn, B. (1956) Chemical heating for meteorites. Astrophys. J. 124, 307–10CrossRefGoogle Scholar
Valentine, G. A. and Fisher, R. V. (1993) Glowing avalanches: New research on volcanic density currents. Science 259, 1–1CrossRefGoogle ScholarPubMed
Schmus, W. R. (1969) The mineralogy and petrology of chondritic meteorites. Earth Sci. Rev. 5, 145–84CrossRefGoogle Scholar
Schmus, W. R. and Hayes, J. M. (1974) Chemical and petrographic correlations among carbonaceous chondrites, Geochim. Cosmochim. Acta 38, 47–64CrossRefGoogle Scholar
Schmus, W. R. and Wood, J. A. (1967) A chemical–petrologic classification for the chondritic meteorites. Geochim. Cosmochim. Acta 31, 747–65CrossRefGoogle Scholar
Veverka, J. and Duxbury, T. C. (1977) Viking observations of Phobos and Diemos: Preliminary results. J. Geophys. Res. 82, 4213–23CrossRefGoogle Scholar
Veverka J. and Thomas, P. (1979) Phobos and Deimos: A preview of what asteroids are like. In Asteroids. Ed. T. Gehrels. University of Arizona Press, pp. 628–51
Veverka, J., Robinson, M., Thomas, P., et al. (2000) NEAR at Eros: imaging and spectral results. Science 289, 2088–97CrossRefGoogle ScholarPubMed
Veverka, J., Farquhar, B., Robinson, M., et al. (2001) The landing of the NEAR-Shoemaker spacecraft on asteroid 433 Eros. Nature 413, 3–9CrossRefGoogle ScholarPubMed
Vilas, F. (1994) A cheaper, faster, better way to detect water of hydration on Solar System bodies. Icarus 111, 456–67CrossRefGoogle Scholar
Michaelis, H., Willis, J. P., Erlank, A. J. and Ahrens, L. H. (1969a) The composition of stony meteorites I. Analytical techniques. Earth Planet. Sci. Lett. 5, 3–8Google Scholar
Michaelis, H., Ahrens, L. H. and Willis, J. P. (1969b) The composition of stony meteorites II. The analytical data and an assessmant of their quality. Earth Planet. Sci. Lett. 5, 387–94CrossRefGoogle Scholar
Wahl, W. A. (1910a) Beiträge zur Chemie der Meteoriten. Z. Anorgan. Chem. 69, 52–96CrossRefGoogle Scholar
Wahl, W. A. (1910b) The brecciated stony meteorites and meteorites containing foreign fragments. Geochim. Cosmochim. Acta 2, 91–117CrossRefGoogle Scholar
Wai, C. M. and Wasson, J. T. (1977) Nebular condensation of moderately volatile elements and their abundances in ordinary chondrites. Earth Planet. Sci. Lett. 36, 1–13CrossRefGoogle Scholar
Walter, L. S. and Dodd, R. T. (1972) Evidence for vapor fractionation in the origin of chondrules. Meteoritics 7, 341–52CrossRefGoogle Scholar
Wark, D. A. and Lovering, J. F. (1982) Evolution of Ca–Al-rich bodies in the earliest solar system: Growth by incorporation. Geochim. Cosmochim. Acta 46, 2–5CrossRefGoogle Scholar
Wark, D. A., Boynton, W. V., Keays, R. R. and Palme, H. (1987) Trace element clues to the formation of forsterite-bearing inclusions in the Allende meteorite. Geochim. Cosmochim. Acta 51, 607–22CrossRefGoogle Scholar
Warren P. H., Jerde E. A. and Kallemeyn G. W. (1990) Pristine moon rocks: An alkali anorthosite with coarse augite exsolution from plagioclase, a magnesian harzburgite, and other oddities. Proc. 20th Lunar Planet. Sci. Conf. Lunar and Planetary Institute, pp. 2641–54
Wasserburg G. J. (1985) Short-lived nuclei in the early solar system. In Protostars and Planets II. Ed. D. C. Black and M. S. Matthews. University of Arizona Press, pp. 703–37
Wasson, J. T. (1972) Formation of ordinary chondrites. Rev. Geophys. Space Phys. 10, 711–59CrossRefGoogle Scholar
Wasson J. T. (1974) Meteorites. Springer-Verlag
Wasson J. T. (1985) Meteorites: Their Record of Early Solar-System History. W. H. Freeman
Wasson, J. T. (1993) Constraints on chondrule origins. Meteoritics 28, 14–28CrossRefGoogle Scholar
Wasson J. T. (1996) Chondrule formation: Energetics and length scales. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 45–54
Wasson, J. T. and Chou, C. L. (1974) Fraction of moderately volatile elements in ordinary chondrites. Meteoritics 9, 69–84CrossRefGoogle Scholar
Wasson J. T. and Rasmussen K. L. (1994) The fine nebula dust component: A key to chondrule formation by lightning (abstract). Papers Presented to the Conference on Chondrules and the Protoplanetary Disk. 43. Lunar and Planetary Institute
Watanabe, S., Kitamura, M. and Morimoto, N. (1984) Analytical electron microscopy of a chondrule with relict olivine in the ALH-77015 chondrite (L3). Mem. Natl Inst. Polar Res., Special Issue 35, 2–0Google Scholar
Watanabe S., Kitamura M. and Morimoto N. (1986) Oscillatory zoning of pyroxenes in ALH-77214 (L3) (abstract). Proceedings of 11th Symposium on Antarctic Meteorites. National Institute of Polar Research, pp. 25–7
Wdowiak T. J. (1983) Experimental investigation of electrical discharge formation of chondrules. In Chondrules and Their Origins. Ed. E. A. King. Lunar and Planetary Institute, pp. 279–83
Weidenschilling, S. J. (1977) Aerodynamics of solid bodies in the solar nebula. Mon. Not. Roy. Astron. Soc. 180, 57–70CrossRefGoogle Scholar
Weidenschilling S. J. (1988) Formation processes and time scales for meteorite parent bodies. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 348–71
Weidenschilling, S. J. and Ruzmaikina, T V. (1994) Coagulation of grains in static and collapsing protostellar clouds. Astrophys. J. 430, 713–26CrossRefGoogle Scholar
Weidenschilling, S. J., Marzari, F. and Hood, L. L. (1998) The origin of chondrules at Jovian resonances. Science 279, 6–8CrossRefGoogle ScholarPubMed
Weinbruch, S., Buettner, H., Holzheid, A., Rosenhauer, M. and Hewins, R. H. (1998) On the lower limit of chondrule cooling rates: The significance of iron loss in dynamic crystallization experiments. Meteorit. Planet. Sci. 33, 65–74CrossRefGoogle Scholar
Weinbruch, S., Müller, W. F. and Hewins, R. H. (2001) A transmission electron microscope study of exsolution and coarsening in iron-bearing clinopyroxene from synthetic analogues of chondrules. Meteorit. Planet. Sci. 36, 1237–48CrossRefGoogle Scholar
Weisberg M. K. and Prinz M. (1996) Agglomeratic chondrules, chondrule precursors, and incomplete melting. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 119–27
Weisberg, M. K., Nehru, C. E. and Prinz, M. (1988) Petrology of ALH85085 – a chondrite with unique characteristics. Earth Planet. Sci. Lett. 91, 19–32CrossRefGoogle Scholar
Weisberg, M. K., Prinz, M., Kojima, H., et al. (1991) The Carlisle Lake-type chondrites: A new grouplet with high δ17O and evidence for nebular oxidation. Geochim. Cosmochim. Acta 55, 2657–69CrossRefGoogle Scholar
Weisberg, M. K., Prinz, M., Clayton, R. N. and Mayeda, T. (1993) The CR (Renazzo-type) carbonaceous chondrite group and its implications. Geochim. Cosmochim. Acta 55, 2657–69CrossRefGoogle Scholar
Weisberg, M. K., Prinz, M., Clayton, R. N., et al. (1996) The K (Kakangari) chondrite grouplet. Geochim. Cosmochim. Acta 60, 4253–63CrossRefGoogle Scholar
Wetherill, G. W. (1985) Asteroidal source of ordinary chondrites. Meteoritics 20, 1–22CrossRefGoogle Scholar
Wetherill G. W. and Chapman C. R. (1988) Asteroids and meteorites. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 35–67
Whipple, F. L. (1966) Chondrules: Suggestions concerning their origin. Science 153, 54–6CrossRefGoogle ScholarPubMed
Whipple F. L. (1972a) Accumulation of chondrules on asteroids. In Physical Studies of Minor Planets. NASA Special Publication 267, pp. 251–62
Whipple F. L. (1972b) On certain aerodynamic processes for asteroids and comets. In From Plasma to Planet, Nobel Symposium 21. Ed. A. Elvius. John Wiley, pp. 211–32
Wieneke B. and Clayton D. D. (1983) Aggregation of grains in a turbulent pre-solar disk. In Chondrules and Their Origins. Ed. E. A. King. Lunar and Planetary Institute, pp. 284–95
Wiik, H. B. (1969) On regular discontinuities in the composition of meteorites. Comm. Phys. Math. 34, 135–45Google Scholar
Wilkening, L. L., Boynton, W. V. and Hill, D. H. (1984) Trace elements in rims and interiors of Chainpur chondrules. Geochim. Cosmochim. Acta 48, 1071–80CrossRefGoogle Scholar
Wilson, C. J. N. (1980) The role of fluidization in the emplacement of pyroclastic flows: An experimental approach. J. Volcanol. Geotherm. Res. 8, 231–49CrossRefGoogle Scholar
Winzer S. R., Nava D. F., Meyerhoff M., et al. (1977) The petrology and geochemistry of impact melts, granulites, and hornfeldses from consortium breccia 61175. Proc. 8th Lunar Sci. Conf. Lunar and Planetary Institute, pp. 1943–66
Wisdom, J. (1985) Meteorites follow a chaotic route to Earth. Nature 315, 7–3CrossRefGoogle Scholar
Wlotzka F. (1969) On the formation of chondrules and metal particles by shock melting. In Meteorite Research. Ed. P. M. Millman. D. Reidel, pp. 174–83CrossRef
Wlotzka F. (1983) Composition of chondrules, fragments and matrix in the unequilibrated ordinary chondrites Tieschitz and Sharps. In Chondrules and Their Origins. Ed. E. A. King. Lunar and Planetary Institute, pp. 296–318
Wolf, R., Richter, G. R., Woodrow, A. B. and Anders, E. (1980) Chemical fractionations in meteorites – Ⅺ. C2 chondrites. Geochim. Cosmochim. Acta 44, 711–17CrossRefGoogle Scholar
Wood, J. A. (1962) Metamorphism in chondrites. Geochim. Cosmochim. Acta 26, 739–49CrossRefGoogle Scholar
Wood, J. A. (1963) The origin of chondrules and chondrites. Icarus 2, 152–80CrossRefGoogle Scholar
Wood, J. A. (1964) The cooling rates and parent planets of several iron meteorites. Icarus 3, 429–59CrossRefGoogle Scholar
Wood, J. A. (1967a) Chondrites: Their metallic minerals, thermal histories and parent planets. Icarus 6, 1–7CrossRefGoogle Scholar
Wood, J. A. (1967b) Olivine and pyroxene compositions in type II carbonaceous chondrites. Geochim. Cosmochim. Acta 31, 2–0CrossRefGoogle Scholar
Wood J. A. (1968) Meteorites and the Origin of the Planets. McGraw-Hill
Wood J. A. (1979) Review of metallographic cooling rates of meteorites and a new model for the planetesimals in which they formed. In Asteroids. Ed. T. Gehrels. University of Arizona Press, pp. 849–91
Wood, J. A. (1983) Formation of chondrules and CAI's from interstellar grains accreting to the solar nebula. Mem. Natl. Inst. Polar Res., Special Issue 30, 84–92Google Scholar
Wood, J. A. (1984) On the formation of meteoritic chondrules by aerodynamic drag heating in the solar nebula. Earth Planet. Sci. Lett. 70, 11–26CrossRefGoogle Scholar
Wood J. A. (1985) Meteoritic constraints on processes in the solar nebula. In Protostars and Planets II. Ed. D. C. Black and M. S. Matthews. University of Arizona Press, pp. 687–702
Wood, J. A. (1986) High temperatures and chondrule formation in a turbulent shear zone beneath the nebula surface. Lunar Planet. Science XVIII, 456–957Google Scholar
Wood, J. A. (1988) Chondritic meteorites and the solar nebula. Ann. Rev. Earth Planet. Sci. 16, 53–72CrossRefGoogle Scholar
Wood J. A. (1996) Unresolved issues in the formation of chondrules and chondrites. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 55–69
Wood J. A. (2001) Chondrites: Tight-lipped witnesses to the beginning. Unpublished article widely distributed by author
Wood J. A. and Chang S., Eds. (1985) The Cosmic History of the Biogenic Elements and Compounds. NASA SP-476
Wood, J. A. and Hashimoto, A. (1988) The condensation sequence under non-classic conditions (P<10–3 atm, non-cosmic compositions). Lunar Planet. Sci XIX, 1–2Google Scholar
Wood, J. A. and Hashimoto, A. (1993) Mineral equilibrium in fractionated nebular systems. Geochim. Cosmochim. Acta 57, 2377–88CrossRefGoogle Scholar
Wood J. A. and McSween H. Y. Jr (1976) Chondrules as condensation products. In Comets, Asteroids, Meteorites: Interrelations, Evolution, and Origins. Ed. A. H. Delsemme. University of Toledo, pp. 65–373
Wood J. A. and Morfill G. E. (1988) A review of solar nebula models. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 329–47
Woolum D. S. (1988) Solar system abundances and processes of nucleosynthesis. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 995–1020
Young, E. D. and Russell, S. S. (1998) Oxygen reservoirs in the early solar nebula inferred from an Allende CAI. Science 282, 4–5CrossRefGoogle ScholarPubMed
Young, J. (1926) The crystal structure of meteoric iron as determined by X-ray analysis. Proc. Roy. Soc. London A112, 630–41CrossRefGoogle Scholar
Yu, Y., Hewins, R. H., Clayton, R. N. and Mayeda, T. K. (1995) Experimental study of high temperature oxygen isotope exchange during chondrule formation. Geochim. Cosmochim. Acta 59, 2–0CrossRefGoogle Scholar
Yu Y., Hewins R. H. and Zanda B. (1996) Sodium and sulfur in chondrules: Heating time and cooling curves. In Chondrules and the Protoplanetary Disk. Ed. R. H. Hewins, R. H. Jones and E. R. D. Scott. Cambridge University Press, pp. 213–19
Zbik M. and Lang B. (1983) Morphological features of pore spaces in chondrules. In Chondrules and Their Origins. Ed. E. A. King. Lunar and Planetary Institute, pp. 319–29
Zhang, Y., Benoit, P. H. and Sears, D. W. G. (1995) The classification and complex thermal history of the enstatite chondrites. J. Geophys. Res. 100, 9417–38CrossRefGoogle Scholar
Zinner E. (1988) Interstellar cloud material in meteorites. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 956–83
Zolensky M. and McSween H. Y. Jr (1988) Aqueous alteration. In Meteorites and the Early Solar System. Ed. J. F. Kerridge and M. S. Matthews. University of Arizona Press, pp. 114–43
Zook, H. A. (1980) A new impact theory for the generation of ordinary chondrites. Meteoritics 15, 3–9Google Scholar
Zook, H. A. (1981) On a new theory for the generation of chondrules. Lunar Planet. Sci. XII, 1–2Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Derek W. G. Sears, University of Arkansas
  • Book: The Origin of Chondrules and Chondrites
  • Online publication: 12 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536137.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Derek W. G. Sears, University of Arkansas
  • Book: The Origin of Chondrules and Chondrites
  • Online publication: 12 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536137.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Derek W. G. Sears, University of Arkansas
  • Book: The Origin of Chondrules and Chondrites
  • Online publication: 12 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536137.010
Available formats
×