Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-07-03T08:40:51.015Z Has data issue: false hasContentIssue false

3 - From Connectome to Function: Using Optogenetics to Shed Light on the Caenorhabditis elegans Nervous System

from Part I - Optogenetics in Model Organisms

Published online by Cambridge University Press:  28 April 2017

Krishnarao Appasani
Affiliation:
GeneExpression Systems, Inc., Massachusetts
Get access
Type
Chapter
Information
Optogenetics
From Neuronal Function to Mapping and Disease Biology
, pp. 37 - 54
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akerboom, J. et al. (2013). Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Frontiers in Molecular Neuroscience, 6, 2.CrossRefGoogle ScholarPubMed
Bendesky, A. et al. (2011). Catecholamine receptor polymorphisms affect decision-making in C. elegans. Nature, 472(7343), 313318.CrossRefGoogle ScholarPubMed
Busch, K.E. et al. (2012). Tonic signaling from O2 sensors sets neural circuit activity and behavioral state. Nature Neuroscience, 15(4), 581591.CrossRefGoogle ScholarPubMed
Chase, D.L. and Koelle, M.R. (2007). Biogenic amine neurotransmitters in C. elegans. WormBook, 115.Google Scholar
Cohen, E. et al. (2014). Caenorhabditis elegans nicotinic acetylcholine receptors are required for nociception. Molecular and Cellular Neurosciences, 59, 8596.CrossRefGoogle ScholarPubMed
Dayan, P. and Balleine, B.W. (2002). Reward, motivation, and reinforcement learning. Neuron, 36(2), 285298.CrossRefGoogle ScholarPubMed
Donnelly, J.L. et al. (2013). Monoaminergic orchestration of motor programs in a complex C. elegans behavior. PLoS Biology, 11(4), e1001529.CrossRefGoogle Scholar
Emiliani, V. et al. (2015). All-optical interrogation of neural circuits. The Journal of Neuroscience, 35(41), 1391713926.CrossRefGoogle ScholarPubMed
Fang-Yen, C., Alkema, M.J. and Samuel, A.D.T. (2015). Illuminating neural circuits and behaviour in Caenorhabditis elegans with optogenetics. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1677), 20140212.CrossRefGoogle ScholarPubMed
Faumont, S. et al. (2011). An image-free opto-mechanical system for creating virtual environments and imaging neuronal activity in freely moving Caenorhabditis elegans. PLoS ONE, 6(9), e24666.CrossRefGoogle ScholarPubMed
Faumont, S., Lindsay, T.H. and Lockery, S.R. (2012). Neuronal microcircuits for decision making in C. elegans. Current Opinion in Neurobiology, 22(4), 580591.CrossRefGoogle ScholarPubMed
Guo, Z.V., Hart, A.C. and Ramanathan, S. (2009). Optical interrogation of neural circuits in Caenorhabditis elegans. Nature Methods, 6(12), 891896.CrossRefGoogle ScholarPubMed
Han, B., Bellemer, A. and Koelle, M.R. (2015). An evolutionarily conserved switch in response to GABA affects development and behavior of the locomotor circuit of Caenorhabditis elegans. Genetics, 199(4), 11591172.CrossRefGoogle ScholarPubMed
Hoerndli, F.J. et al. (2015). Neuronal activity and CaMKII regulate kinesin-mediated transport of synaptic AMPARs. Neuron, 86(2), 457474.CrossRefGoogle ScholarPubMed
Husson, S.J. (2012). Keeping track of worm trackers. WormBook, 117.CrossRefGoogle Scholar
Husson, S.J. et al. (2012a). Optogenetic analysis of a nociceptor neuron and network reveals ion channels acting downstream of primary sensors. Current Biology, 22(9), 743752.CrossRefGoogle ScholarPubMed
Husson, S.J. et al. (2012b). Microbial light-activatable proton pumps as neuronal inhibitors to functionally dissect neuronal networks in C. elegans. PLoS ONE, 7(7), e40937CrossRefGoogle ScholarPubMed
Husson, S.J., Gottschalk, A. and Leifer, A.M. (2013). Optogenetic manipulation of neural activity in C. elegans: from synapse to circuits and behaviour. Biology of the Cell, 105(6), 235250.CrossRefGoogle Scholar
Inoue, M. et al. (2015). Rational design of a high-affinity, fast, red calcium indicator R-CaMP2. Nature Methods, 12(1), 6470.CrossRefGoogle ScholarPubMed
Jensen, M. et al. (2012). Wnt signaling regulates acetylcholine receptor translocation and synaptic plasticity in the adult nervous system. Cell, 149(1), 173187.CrossRefGoogle ScholarPubMed
Kawazoe, Y., Yawo, H. and Kimura, K.D. (2013). A simple optogenetic system for behavioral analysis of freely moving small animals. Neuroscience Research, 75(1), 6568.CrossRefGoogle ScholarPubMed
Kindt, K.S. et al. (2007). Dopamine mediates context-dependent modulation of sensory plasticity in C. elegans. Neuron, 55(4), 662676.CrossRefGoogle ScholarPubMed
Kittelmann, M. et al. (2013). In vivo synaptic recovery following optogenetic hyperstimulation. Proceedings of the National Academy of Sciences, 110(32), E3007E3016.CrossRefGoogle ScholarPubMed
Kocabas, A. et al. (2012). Controlling interneuron activity in Caenorhabditis elegans to evoke chemotactic behaviour. Nature, 490(7419), 273277.CrossRefGoogle ScholarPubMed
Krieg, M., Dunn, A.R. and Goodman, M.B. (2014). Mechanical control of the sense of touch by β-spectrin. Nature Cell Biology, 16(3), 224233.CrossRefGoogle ScholarPubMed
Leifer, A.M. et al. (2011). Optogenetic manipulation of neural activity in freely moving Caenorhabditis elegans. Nature Methods, 8(2), 147152.CrossRefGoogle ScholarPubMed
Li, Z. et al. (2014). Encoding of both analog- and digital-like behavioral outputs by one C. elegans interneuron. Cell, 159(4), 751765.CrossRefGoogle ScholarPubMed
Liewald, J.F. et al. (2008). Optogenetic analysis of synaptic function. Nature Methods, 5(10), 895902.CrossRefGoogle ScholarPubMed
Lindsay, T.H., Thiele, T.R. and Lockery, S.R. (2011). Optogenetic analysis of synaptic transmission in the central nervous system of the nematode Caenorhabditis elegans. Nature Communications, 2, 306309.CrossRefGoogle ScholarPubMed
Liu, Q., Hollopeter, G. and Jorgensen, E.M. (2009). Graded synaptic transmission at the Caenorhabditis elegans neuromuscular junction. Proceedings of the National Academy of Sciences of the United States of America, 106(26), 1082310828.CrossRefGoogle ScholarPubMed
Lockery, S.R. (2011). The computational worm: spatial orientation and its neuronal basis in C. elegans. Current Opinion in Neurobiology, 21(5), 782790.CrossRefGoogle ScholarPubMed
Luo, L. et al. (2014). Dynamic encoding of perception, memory, and movement in a C. elegans chemotaxis circuit. Neuron, 82(5), 11151128.CrossRefGoogle Scholar
Milward, K. et al. (2011). Neuronal and molecular substrates for optimal foraging in Caenorhabditis elegans. Proceedings of the National Academy of Sciences, 108(51), 2067220677.CrossRefGoogle ScholarPubMed
Nagel, G. et al. (2002). Channelrhodopsin-1: a light-gated proton channel in green algae. Science, 296(5577), 23952398.CrossRefGoogle ScholarPubMed
Nagel, G. et al. (2003). Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proceedings of the National Academy of Sciences of the United States of America, 100(24), 1394013945.CrossRefGoogle ScholarPubMed
Nagel, G. et al. (2005). Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Current Biology, 15(24), 22792284.CrossRefGoogle ScholarPubMed
Narayan, A., Laurent, G. and Sternberg, P.W. (2011). Transfer characteristics of a thermosensory synapse in Caenorhabditis elegans. Proceedings of the National Academy of Sciences, 108(23), 96679672.CrossRefGoogle ScholarPubMed
Piggott, B.J. et al. (2011). The neural circuits and synaptic mechanisms underlying motor initiation in C. elegans. Cell, 147(4), 922933.CrossRefGoogle ScholarPubMed
Prevedel, R. et al. (2014). Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy. Nature Methods, 11(7), 727730.CrossRefGoogle ScholarPubMed
Ramot, D. et al. (2008). The Parallel Worm Tracker: a platform for measuring average speed and drug-induced paralysis in nematodes. PLoS ONE, 3(5), e2208.CrossRefGoogle ScholarPubMed
Richmond, J. (2005). Synaptic function. WormBook, 114.Google Scholar
Sasakura, H. and Mori, I. (2013). Behavioral plasticity, learning, and memory in C. elegans. Current Opinion in Neurobiology, 23(1), 9299.CrossRefGoogle ScholarPubMed
Satoh, Y. et al. (2014). Regulation of experience-dependent bidirectional chemotaxis by a neural circuit switch in Caenorhabditis elegans. Journal of Neuroscience, 34(47), 1563115637.CrossRefGoogle ScholarPubMed
Sawin, E.R., Ranganathan, R. and Horvitz, H.R. (2000). C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron, 26(3), 619631.CrossRefGoogle ScholarPubMed
Schild, L.C. and Glauser, D.A. (2015). Dual color neural activation and behavior control with Chrimson and CoChR in Caenorhabditis elegans. Genetics, 200(4), 10291034.CrossRefGoogle ScholarPubMed
Schmitt, C. et al. (2012). Specific expression of channelrhodopsin-2 in single neurons of Caenorhabditis elegans. PLoS ONE, 7(8), e43164.CrossRefGoogle ScholarPubMed
Schrödel, T. et al. (2013). Brain-wide 3D imaging of neuronal activity in Caenorhabditis elegans with sculpted light. Nature Methods, 10(10), 10131020.CrossRefGoogle ScholarPubMed
Schultheis, C. et al. (2011). Optogenetic analysis of GABAB receptor signaling in Caenorhabditis elegans motor neurons. Journal of Neurophysiology, 106(2), 817827.CrossRefGoogle ScholarPubMed
Schultz, W. (2007). Multiple dopamine functions at different time courses. Annual Review of Neuroscience, 30, 259288.CrossRefGoogle ScholarPubMed
Shipley, F.B. et al. (2014). Simultaneous optogenetic manipulation and calcium imaging in freely moving C. elegans. Frontiers in Neural Circuits, 8, 28.CrossRefGoogle ScholarPubMed
Stirman, J.N. et al. (2011). Real-time multimodal optical control of neurons and muscles in freely behaving Caenorhabditis elegans. Nature Methods, 8(2), 153158.CrossRefGoogle ScholarPubMed
Sulston, J., Dew, M. and Brenner, S. (1975). Dopaminergic neurons in the nematode Caenorhabditis elegans. The Journal of Comparative Neurology, 163(2), 215226.CrossRefGoogle ScholarPubMed
Swierczek, N.A. et al. (2011). High-throughput behavioral analysis in C. elegans. Nature Methods, 8(7), 592598.CrossRefGoogle ScholarPubMed
Tanimoto, Y. et al. (2016). In actio optophysiological analyses reveal functional diversification of dopaminergic neurons in the nematode C. elegans. Scientific Reports, 6, 26297.CrossRefGoogle ScholarPubMed
Tokunaga, T. et al. (2014). Automated detection and tracking of many cells by using 4D live-cell imaging data. Bioinformatics (Oxford, England), 30(12), i43i51.Google ScholarPubMed
Trojanowski, N.F. et al. (2014). Neural and genetic degeneracy underlies Caenorhabditis elegans feeding behavior. Journal of Neurophysiology, 112(4), 951961.CrossRefGoogle ScholarPubMed
Watanabe, S. et al. (2013a). Ultrafast endocytosis at Caenorhabditis elegans neuromuscular junctions. eLife, 2, e00723.CrossRefGoogle ScholarPubMed
Watanabe, S. et al. (2013b). Ultrafast endocytosis at mouse hippocampal synapses. Nature, 504(7479), 242247.CrossRefGoogle ScholarPubMed
Wen, Q. et al. (2012). Proprioceptive coupling within motor neurons drives C. elegans forward locomotion. Neuron, 76(4), 750761.CrossRefGoogle ScholarPubMed
White, J.G. et al. (1986). The structure of the nervous system of the nematode Caenorhabditis elegans. Philosophical Transactions of the Royal Society B: Biological Sciences, 314(1165), 1340.Google ScholarPubMed
Williams, D.C. et al. (2013). Rapid and permanent neuronal inactivation in vivo via subcellular generation of reactive oxygen with the use of KillerRed. Cell Reports, 5(2), 553563.CrossRefGoogle ScholarPubMed
Zhang, F. et al. (2007). Multimodal fast optical interrogation of neural circuitry. Nature, 446(7136), 633639.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×