[1] M., Arnaudon, A., Coulibaly and A., Thalmaier, Horizontal diffusion in C1 path space. Séminaire de Probabilités XLIII, pp. 73-94, Lecture Notes in Mathematics 2006, Springer (2010).
[2] S., Brendle, A generalization of Hamilton's differential Harnack inequality for the Ricci flow. J. Differential Geom., 82 (2009), 207–227.
[3] S., Brendle and R., Schoen, Manifolds with 1/4-pinched curvature are space forms. J. Am. Math. Soc., 22 (2009) 287-307.
[4] E., Cabezas-Rivas and P.M., Topping, The canonical shrinking soliton associated to a Ricci flow. Calc.Var. PDE, 43 (2012) 173–184.
[5] E., Cabezas-Rivas and P.M., Topping, The canonical expanding soliton and Harnack inequalities for Ricci flow. Trans. Am. Math. Soc., 364 (2012) 3001–3021.
[6] B., Chow and S.-C., Chu, A geometric interpretation of Hamilton's Harnack inequality for the Ricci flow. Math. Res. Lett., 2 (1995) 701-718.
[7] B., Chow and D., Knopf, New Li-Yau-Hamilton inequalities for the Ricci flow via the space-time approach. J. Differential Geom., 60 (2002), 1–54.
[8] S., Gallot, D., Hulin and J., Lafontaine, Riemannian Geometry (second edition), Springer-Verlag (1993).
[9] R.S., Hamilton, Three-manifolds with positive Ricci curvature. J. Differential Geom., 17 (1982) 255-306.
[10] R.S., Hamilton, The Harnack estimate for the Ricci flow. J. Differential Geom., 37 (1993) 225-243.
[11] R.S., Hamilton, The formation of singularities in the Ricci flow. Surveys in Differential Geometry, Vol. II (Cambridge, MA, 1993), pp. 7-136, International Press, Cambridge, MA, 1995.
[12] S., Helmensdorfer and P.M., Topping, The geometry of differential Harnack estimates. Act. Semin Theor. Spectr. Geom. [Grenoble 2011-2012], 30 (2013) 77-89.
[13] P., Li and S.-T., Yau, On the parabolic kernel of the Schrödinger operator. Acta Math., 156 (1986) 153–201.
[14] J., Lott, Optimal transport and Perelman's reduced volume. Calc. Var. Partial Dif. Equations, 36 (2009) 49-84.
[15] R.J., McCann and P.M., Topping, Ricci flow, entropy and optimal transportation. Am. J. Math., 132 (2010) 711-730.
[16] H., Nguyen, Invariant curvature cones and the Ricci flow. PhD thesis, Australian National University (2007).
[17] F., Otto and C., Villani, Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal., 173 (2000) 361-400.
[18] G., Perelman, The entropy formula for the Ricci flow and its geometric applications. http://arXiv.org/abs/math/0211159v1 (2002).
[19] G., Perelman, Ricci flow with surgery on three-manifolds. http://arxiv.org/abs/math/0303109v1 (2003).
[20] G., Perelman, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds. http://arXiv.org/abs/math/0307245v1 (2003).
[21] K.-T., Sturm and M.-K., von Renesse, Transport inequalities, gradient estimates, entropy and Ricci curvature. Commun. Pure Appl. Math., 58 (2005) 923-940.
[22] P.M., Topping, Diameter control under Ricci flow. Commun. Anal. Geom., 13 (2005) 1039-1055.
[23] P.M., Topping, ‘Lectures on the Ricci flow.’ L.M.S. Lecture Note Series 325, C.U.P. (2006) http://www.warwick.ac.uk/~maseq/RFnotes.html
[24] P.M., Topping, ℒ-optimal transportation for Ricci flow. J. Reine Angew. Math., 636 (2009) 93-122.
[25] C., Villani, Topics in Optimal Transportation, Graduate Studies in Mathematics, Vol. 58 American Mathematical Society (2003).
[26] Z.-H., Zhang, On the completeness of gradient Ricci solitons. Proc. Am. Math. Soc., 137 (2009) 2755–2759.