Skip to main content Accessibility help
  • Print publication year: 2016
  • Online publication date: June 2016

2 - The role of next generation sequencing technologies in shaping the future of insect molecular systematics

from Part I - Next Generation Phylogenetics



Insecta consists of 29 living orders that are not equivalent by any criteria except taxonomic rank (Davis et al. 2010). Insects demonstrate the greatest biodiversity, accounting for over half of all described eukaryotes, approximately 1 million described species (Grimaldi and Engel 2005) and a global total of anywhere between 5 and 10 million species (Gaston 1991; Raven and Yeates 2007). Although lower-end estimates of species numbers are more likely (Mora et al. 2011), around two-thirds of all insects probably remain to be discovered and described (May 2010), vastly outnumbering the total diversity of other better-studied taxonomic groups like vertebrates and vascular plants. The importance of insects for stable ecosystem functioning also cannot be understated. For example, insects are responsible for the breakdown of organic material, animal and human remains, removal of waste, aeration and turnover of soil, and the vital task of pollination for flowering plants. They also include important predators that control numbers of other pest invertebrates or weed plants, and are an essential food source for many birds, fish, reptiles and amphibians. Understanding the impressive numerical and ecological diversity of insects has long been recognized as an important research goal. To achieve this, it is vital to clarify the evolutionary history and ancestral attributes of lineages. Here we will (1) take stock of our current understanding of insect systematics and the role molecular phylogenetics has played, (2) review the taxonomic diversity of transcriptomes and whole genomes in Insecta and its current bias, (3) discuss the ways that NGS technologies can be used to study insect evolution, and (4) propose strategies for selecting future insects to sequence, for example to maximize genomic diversity and resolve important phylogenetic questions that remain in the field of insect systematics.

Systematics of insects and outstanding questions

In recent years of arthropod research, evidence in favour of a close affinity between hexapods (Insecta, Collembola, Protura and Diplura) and crustaceans has strengthened (Edgecombe 2010; Giribet and Edgecombe 2012; Trautwein et al. 2012; von Reumont et al. 2012). Major arthropod lineages like Myriapoda and Chelicerata are now typically considered more distant relatives than various ‘Crustacea’, and velvet worms are considered the sister-group to Arthropoda as a whole (Campbell et al. 2011, Fig 2.1). There has been some evidence that Hexapoda may be polyphyletic, or mutually paraphyletic with respect to Crustacea (Nardi et al. 2003; Cook et al. 2005).

Arillo, A. and Engel, M. S. (2006). Rock crawlers in Baltic amber (Notoptera: Mantophasmatodea). American Museum Novitates, 2811, 1–10.
Asgari, S. (2013). MicroRNA functions in insects. Insect Biochemistry and Molecular Biology, 43, 388–97.
Bergman, C. M., Pfeiffer, B. D., Rincon-Limas, D. E., et al. (2002). Assessing the impact of comparative genomic sequence data on the functional annotation of the Drosophila genome. Genome Biology, 3, R0086.
Beutel, R. G., Friedrich, F., Hornschemeyer, T., et al. (2011). Morphological and molecular evidence converge upon a robust phylogeny of the megadiverse Holometabola. Cladistics, 27, 341–55.
Beutel, R. G. and Gorb, S. N. (2001). Ultrastructure of attachment specializations of hexapods (Arthropoda): evolutionary patterns inferred from a revised ordinal phylogeny. Journal of Zoological Systematics and Evolutionary Research, 39, 177–207.
Beutel, R. G. and Pohl, H. (2006). Endopterygote systematics – where do we stand and what is the goal (Hexapoda, Arthropoda)?Systematic Entomology, 31, 202–19.
Bonasio, R., Zhang, G. J., Ye, C. Y., et al. (2010). Genomic comparison of the Ants Camponotus floridanus and Harpegnathos saltator.Science, 329, 1068–71.
Boore, J. L. (2006). The use of genome-level characters for phylogenetic reconstruction. Trends in Ecology and Evolution, 21, 439–46.
Cameron, S. L., Miller, K. B., D'Haese, C. A., Whiting, M. F. and Barker, S. C. (2004). Mitochondrial genome data alone are not enough to unambiguously resolve the relationships of Entognatha, Insecta and Crustacea sensu lato (Arthropoda). Cladistics, 20, 534–57.
Campbell, L. I., Rota-Stabelli, O., Edgecombe, G. D., et al. (2011). MicroRNAs and phylogenomics resolve the relationships of Tardigrada and suggest that velvet worms are the sister group of Arthropoda. Proceedings of the National Academy of Sciences of the United States of America, 108, 15920–4.
Castro, L. R., Austin, A. D. and Dowton, M. (2002). Contrasting rates of mitochondrial molecular evolution in parasitic diptera and hymenoptera. Molecular Biology and Evolution, 19, 1100–13.
Caterino, M. S., Cho, S. and Sperling, F. A. H. (2000). The current state of insect molecular systematics: a thriving Tower of Babel. Annual Review of Entomology, 45, 1–54.
Chalwatzis, N., Hauf, J., van de Peer, Y., Kinzelbach, R. and Zimmermann, R. K. (1996). 18S ribosomal RNA genes of insects: primary structure of the genes and molecular phylogeny of the Holometabola. Annals of the Entomological Society of America, 89, 788–803.
Cook, C. E., Yue, Q. Y. and Akam, M. (2005). Mitochondrial genomes suggest that hexapods and crustaceans are mutually paraphyletic. Proceedings of the Royal Society B-Biological Sciences, 272, 1295–304.
Cristino, A. S., Tanaka, E. D., Rubio, M., Piulachs, M. D. and Belles, X. (2011). Deep sequencing of organ- and stage-specific microRNAs in the evolutionarily basal insect Blattella germanica (L.) (Dictyoptera, Blattellidae). PloS One, 6, e.19350.
Davis, R. B., Baldauf, S. L. and Mayhew, P. J. (2010). Many hexapod groups originated earlier and withstood extinction events better than previously realized: inferences from supertrees. Proceedings of the Royal Society B-Biological Sciences, 277, 1597–606.
Eddy, S. R. (2005). A model of the statistical power of comparative genome sequence analysis. PLoS Biology, 3, 95–102.
Edgecombe, G. D. (2010). Arthropod phylogeny: an overview from the perspectives of morphology, molecular data and the fossil record. Arthropod Structure and Development, 39, 74–87.
Evans, J. D. and Gundersen-Rindal, D. (2003). Beenomes to Bombyx: future directions in applied insect genomics. Genome Biology, 4, 107.
Gaston, K. J. (1991). The magnitude of global insect species richness. Conservation Biology, 5, 283–96.
Gatesy, J. and Baker, R. H. (2005). Hidden likelihood support in genomic data: can forty-five wrongs make a right?Systematic Biology, 54, 483–92.
Giribet, G. and Edgecombe, G. D. (2012). Reevaluating the Arthropod Tree of Life. Annual Review of Entomology, 57, 167–86.
Glenn, T. C. (2011). Field guide to next-generation DNA sequencers. Molecular Ecology Resources, 11, 759–69.
Gregory, T. R. and Mable, B. K. (2005). Polyploidy in animals. In Gregory, T. R., ed. The Evolution of the Genome. San Diego, Elsevier; pp. 427–517.
Grimaldi, D. and Engel, M. S. (2005). Evolution of Insects. New York, Cambridge University Press; p. 772
Hahn, M. W., Han, M. V. and Han, S. G. (2007). Gene family evolution across 12 Drosophila genomes. PLoS Genetics, 3, e197.
Hanrahan, S. J. and Johnston, J. S. (2011). New genome size estimates of 134 species of arthropods. Chromosome Research, 19, 809–23.
Haussler, D., O'Brien, S. J., Ryder, O. A., et al. (2009). Genome 10K: a Proposal to Obtain Whole-Genome Sequence for 10 000 Vertebrate Species. Journal of Heredity, 100, 659–74.
He, P. A., Nie, Z. M., Chen, J. Q., et al. (2008). Identification and characteristics of microRNAs from Bombyx mori.BMC Genomics, 9, 248.
Hedges, S. B. (2002). The origin and evolution of model organisms. Nature Reviews Genetics, 3, 838–49.
Hennig, W. (1969). Die Stammesgeschichte der Insekten. Frankfurt am Main, Waldemar Kramer.
Hughes, J., Longhorn, S. J., Papadopoulou, A., et al. (2006). Dense taxonomic EST sampling and its applications for molecular systematics of the Coleoptera (beetles). Molecular Biology and Evolution, 23, 268–78.
Huson, D. H. and Bryant, D. (2006). Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution 23, 254–67.
i5K Consortium (2013). The i5K Initiative: advancing arthropod genomics for knowledge, human health, agriculture, and the environment. The Journal of Heredity, 104, 595–600.
Inward, D., Beccaloni, G. and Eggleton, P. (2007). Death of an order: a comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches. Biology Letters, 3, 331–5.
Ishiwata, K., Sasaki, G., Ogawa, J., Miyata, T. and Su, Z. H. (2011). Phylogenetic relationships among insect orders based on three nuclear protein-coding gene sequences. Molecular Phylogenetics and Evolution, 58, 169–80.
Jagadeeswaran, G., Zheng, Y., Sumathipala, N., et al. (2010). Deep sequencing of small RNA libraries reveals dynamic regulation of conserved and novel microRNAs and microRNA-stars during silkworm development. BMC Genomics, 11, 52.
Jaubert-Possamai, S., Rispe, C., Tanguy, S., et al. (2010). Expansion of the miRNA pathway in the hemipteran insect Acyrthosiphon pisum.Molecular Biology and Evolution, 27, 979–87.
Johnson, K. P., Yoshizawa, K. and Smith, V. S. (2004). Multiple origins of parasitism in lice. Proceedings of the Royal Society B-Biological Sciences, 271, 1771–6.
Katz, L. A., Grant, J. R., Parfrey, L. W. and Burleigh, J. G. (2012). Turning the crown upside down: gene tree parsimony roots the eukaryotic tree of life. Systematic Biology, 61, 653–60.
Kirkness, E. F., Haas, B. J., Sun, W. L., et al. (2010). Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle. Proceedings of the National Academy of Sciences of the United States of America, 107, 12168–73.
Kjer, K. M. (2004). Aligned 18S and insect phylogeny. Systematic Biology, 53, 506–14.
Kjer, K. M., Carle, F. L., Litman, J. and Ware, J. (2006). A molecular phylogeny of Hexapoda. Arthropod Systematics and Phylogeny, 64, 35–44.
Krauss, V., Thummler, C., Georgi, F., Lehmann, J., Stadler, P. F. and Eisenhardt, C. (2008). Near intron positions are reliable phylogenetic markers: an application to holometabolous insects. Molecular Biology and Evolution, 25, 821–30.
Kristensen, N. P. (1981). Phylogeny of insect orders. Annual Review of Entomology, 26, 135–57.
Kriventseva, E. V., Rahman, N., Espinosa, O. and Zdobnov, E. M. (2008). OrthoDB: the hierarchical catalog of eukaryotic orthologs. Nucleic Acids Research, 36, D271–D275.
Kulathinal, R. J. and Hartl, D. L. (2005). The latest buzz in comparative genomics. Genome Biology, 6, 201.
Legeai, F., Rizk, G. and Walsh, T. (2010). Bioinformatic prediction, deep sequencing of microRNAs and expression analysis during phenotypic plasticity in the pea aphid, Acyrthosiphon pisum.BMC Genomics, 11, 281.
Lehmann, J., Eisenhardt, C., Stadler, P. F. and Krauss, V. (2010). Some novel intron positions in conserved Drosophila genes are caused by intron sliding or tandem duplication. BMC Evolutionary Biology, 10, 156.
Letsch, H. O., Meusemann, K., Wipfler, B., Schutte, K., Beutel, R. and Misof, B. (2012). Insect phylogenomics: results, problems and the impact of matrix composition. Proceedings of the Royal Society B-Biological Sciences, 279, 3282–90.
Letsch, H. and Simon, S. (2013). Insect phylogenomics: new insights on the relationships of lower neopteran orders (Polyneoptera). Systematic Entomology, 38, 783–93.
Levine, B. R. (2011). i5k – The 5,000 Insect Genome Project. American Entomologist, 57, 111–13.
Li, L., Stoeckert, C. J. and Roos, D. S. (2003). OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Research, 13, 2178–89.
Liu, S. P., Li, D., Li, Q. B., Zhao, P., Xiang, Z. H. and Xia, Q. Y. (2010). MicroRNAs of Bombyx mori identified by Solexa sequencing. BMC Genomics, 11, 148.
Longhorn, S. J., Pohl, H. W. and Vogler, A. P. (2010). Ribosomal protein genes of holometabolan insects reject the Halteria, instead revealing a close affinity of Strepsiptera with Coleoptera. Molecular Phylogenetics and Evolution, 55, 846–59.
Lucas, K. and Raikhel, A. S. (2013). Insect MicroRNAs: biogenesis, expression profiling and biological functions. Insect Biochemistry and Molecular Biology, 43, 24–38.
Mallatt, J. and Giribet, G. (2006). Further use of nearly complete, 28S and 18S rRNA genes to classify Ecdysozoa: 37 more arthropods and a kinorhynch. Molecular Phylogenetics and Evolution, 40, 772–94.
Marco, A., Hui, J. H. L., Ronshaugen, M. and Griffiths-Jones, S. (2010). Functional shifts in insect microRNA evolution. Genome Biology and Evolution, 2, 686–96.
May, R. M. (2010). Tropical arthropod species, more or less?Science, 329, 41–2.
McKenna, D. D. and Farrell, B. D. (2010). 9-genes reinforce the phylogeny of holometabola and yield alternate views on the phylogenetic placement of Strepsiptera. PLoS One, 5, e.11887.
McMahon, D. P., Hayward, A. and Kathirithamby, J. (2011). The first molecular phylogeny of Strepsiptera (Insecta) reveals an early burst of molecular evolution correlated with the transition to endoparasitism. PLoS One, 6, e.21206.
Mead, E. A. and Tu, Z. (2008). Cloning, characterization, and expression of microRNAs from the Asian malaria mosquito, Anopheles stephensi.BMC Genomics, 9, 244.
Meusemann, K., von Reumont, B. M., Simon, S., et al. (2010). A phylogenomic approach to resolve the arthropod tree of life. Molecular Biology and Evolution, 27, 2451–64.
Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. B. and Worm, B. (2011). How many species are there on earth and in the ocean?PLoS Biology, 9, e.1001127.
Nardi, F., Spinsanti, G., Boore, J. L., Carapelli, A., Dallai, R. and Frati, F. (2003). Hexapod origins: monophyletic or paraphyletic?Science, 299, 1887–9.
Niehuis, O., Hartig, G., Grath, S., et al. (2012). Genomic and morphological evidence converge to resolve the enigma of Strepsiptera. Current Biology, 22, 1309–13.
Oakley, T. H., Wolfe, J. M., Lindgren, A. R. and Zaharoff, A. K. (2013). Phylotranscriptomics to bring the understudied into the fold: monophyletic Ostracoda, fossil placement, and Pancrustacean phylogeny. Molecular Biology and Evolution, 30, 215–33.
Ohno, S. (2013). Evolution by Gene Duplication. Springer Science and Business Media.
Pagel Van Zee, J., Geraci, N. S., Guerrero, F. D., et al. (2007). Tick genomics: the Ixodes genome project and beyond. International Journal for Parasitology, 37, 1297–305.
Pardi, F. and Goldman, N. (2005). Species choice for comparative genomics: being greedy works. PLoS Genetics, 1, e.71.
Pardi, F. and Goldman, N. (2007). Resource-aware taxon selection for maximizing phylogenetic diversity. Systematic Biology, 56, 431–44.
Philippe, H. and Telford, M. J. (2006). Large-scale sequencing and the new animal phylogeny. Trends in Ecology and Evolution, 21, 614–20.
Pohl, H. and Beutel, R. G. (2008). The evolution of Strepsiptera (Hexapoda). Zoology, 111, 318–38.
Pons, J., Barraclough, T. G., Theodorides, K., Cardoso, A. and Vogler, A. P. (2004). Using exon and intron sequences of the gene Mp20 to resolve basal relationships in Cicindela (Coleoptera: Cicindelidae). Systematic Biology, 53, 554–70.
Raven, P. H. and Yeates, D. K. (2007). Australian biodiversity: threats for the present, opportunities for the future. Australian Journal of Entomology, 46, 177–87.
Regier, J. C. and Shultz, J. W. (1997). Molecular phylogeny of the major arthropod groups indicates polyphyly of Crustaceans and a new hypothesis for the origin of hexapods. Molecular Biology and Evolution, 14, 902–13.
Regier, J. C., Shultz, J. W. and Kambic, R. E. (2005). Pancrustacean phylogeny: hexapods are terrestrial crustaceans and maxillopods are not monophyletic. Proceedings of the Royal Society B-Biological Sciences, 272, 395–401.
Regier, J. C., Shultz, J. W., Zwick, A., et al. (2010). Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature, 463, 1079–98.
Richards, S., Gibbs, R. A., Gerardo, N. M., et al. (2010). Genome sequence of the pea aphid Acyrthosiphon pisum.PloS Biology, 8, e.1000313.
Robinson, G. E., Hackett, K. J., Purcell-Miramontes, M., et al. (2011). Creating a buzz about insect genomes. Science, 331, 1386–6.
Roeding, F., Hagner-Holler, S., Ruhberg, H., et al. (2007). EST sequencing of Onychophora and phylogenomic analysis of Metazoa. Molecular Phylogenetics and Evolution, 45, 942–51.
Rokas, A. and Holland, P. W. (2000). Rare genomic changes as a tool for phylogenetics. Trends in Ecology and Evolution, 15, 454–459.
Rokas, A., Kathirithamby, J. and Holland, P. W. H. (1999). Intron insertion as a phylogenetic character: the engrailed homeobox of Strepsiptera does not indicate affinity with Diptera. Insect Molecular Biology, 8, 527–30.
Rota-Stabelli, O., Campbell, L., Brinkmann, H., et al. (2011). A congruent solution to arthropod phylogeny: phylogenomics, microRNAs and morphology support monophyletic Mandibulata. Proceedings of the Royal Society B-Biological Sciences, 278, 298–306.
Sanchez-Gracia, A., Vieira, F. G. and Rozas, J. (2009). Molecular evolution of the major chemosensory gene families in insects. Heredity, 103, 208–16.
Sanders, K. L. and Lee, M. S. Y. (2010). Arthropod molecular divergence times and the Cambrian origin of pentastomids. Systematics and Biodiversity, 8, 63–74.
Savard, J., Tautz, D., Richards, S., et al. (2006). Phylogenomic analysis reveals bees and wasps (Hymenoptera) at the base of the radiation of Holometabolous insects. Genome Research, 16, 1334–8.
Sharanowski, B. J., Robbertse, B., Walker, J., et al. (2010). Expressed sequence tags reveal Proctotrupomorpha (minus Chalcidoidea) as sister to Aculeata (Hymenoptera: Insecta). Molecular Phylogenetics and Evolution, 57, 101–12.
Simon, S., Narechania, A., DeSalle, R. and Hadrys, H. (2012). Insect phylogenomics: exploring the source of incongruence using new transcriptomic data. Genome Biology and Evolution, 4, 1295–309.
Simon, S., Strauss, S., von Haeseler, A. and Hadrys, H. (2009). A phylogenomic approach to resolve the basal Pterygote divergence. Molecular Biology and Evolution, 26, 2719–30.
Skalsky, R. L., Vanlandingham, D. L., Scholle, F., Higgs, S. and Cullen, B. R. (2010). Identification of microRNAs expressed in two mosquito vectors, Aedes albopictus and Culex quinquefasciatus.BMC Genomics, 11, 119.
Sperling, E. A., Vinther, J., Moy, V. N., et al. (2009). MicroRNAs resolve an apparent conflict between annelid systematics and their fossil record. Proceedings of the Royal Society B-Biological Sciences, 276, 4315–22.
Stark, A., Lin, M. F., Kheradpour, P., et al. (2007). Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures. Nature, 450, 219–32.
Talavera, G. and Vila, R. (2011). What is the phylogenetic signal limit from mitogenomes? The reconciliation between mitochondrial and nuclear data in the Insecta class phylogeny. BMC Evolutionary Biology, 11, 315.
Terrapon, N., Li, C., Robertson, H. M., Ji, L., et al. (2014). Molecular traces of alternative social organization in a termite genome. Nature Communications, 5, e.3636.
Terry, M. D. and Whiting, M. F. (2005). Mantophasmatodea and phylogeny of the lower neopterous insects. Cladistics, 21, 240–57.
Thomas, J. W., Touchman, J. W., Blakesley, R. W., et al. (2003). Comparative analyses of multi-species sequences from targeted genomic regions. Nature, 424, 788–93.
Thomson, R. C., Plachetzki, D. C., Mahler, D. L. and Moore, B. R. (2014). A critical appraisal of the use of microRNA data in phylogenetics. Proceedings of the National Academy of Sciences of the United States of America, 111, E3659–68.
Timmermans, M. J. T. N., Roelofs, D., Marien, J. and van Straalen, N. M. (2008). Revealing pancrustacean relationships: phylogenetic analysis of ribosomal protein genes places Collembola (springtails) in a monophyletic Hexapoda and reinforces the discrepancy between mitochondrial and nuclear DNA markers. BMC Evolutionary Biology, 8, 83.
Tomoyasu, Y., Miller, S. C., Tomita, S., Schoppmeier, M., Grossmann, D. and Bucher, G. (2008). Exploring systemic RNA interference in insects: a genome-wide survey for RNAi genes in Tribolium. Genome Biology and Evolution, 9, R10.
Toth, A. L., Varala, K., Newman, T. C., et al. (2007). Wasp gene expression supports an evolutionary link between maternal behavior and eusociality. Science, 318, 441–4.
Trautwein, M. D., Wiegmann, B. M., Beutel, R., Kjer, K. M. and Yeates, D. K. (2012). Advances in insect phylogeny at the dawn of the postgenomic era. Annual Review of Entomology, 57, 449–68.
Vera, J. C., Wheat, C. W., Fescemyer, H. W., et al. (2008). Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing. Molecular Ecology, 17, 1636–47.
von Reumont, B. M., Jenner, R. A., Wills, M. A., et al. (2012). Pancrustacean phylogeny in the light of new phylogenomic data: support for Remipedia as the possible sister group of Hexapoda. Molecular Biology and Evolution, 29, 1031–45.
von Reumont, B. M., Meusemann, K., Szucsich, N. U., et al. (2009). Can comprehensive background knowledge be incorporated into substitution models to improve phylogenetic analyses? A case study on major arthropod relationships. BMC Evolutionary Biology, 9, 119.
Waterhouse, R. M., Tegenfeldt, F., Li, J., Zdobnov, E. M. and Kriventseva, E. V. (2013). OrthoDB: a hierarchical catalog of animal, fungal and bacterial orthologs. Nucleic Acids Research, 41, D358–D365.
Waterhouse, R. M., Zdobnov, E. M., Tegenfeldt, F., Li, J. and Kriventseva, E. V. (2011). OrthoDB: the hierarchical catalog of eukaryotic orthologs in 2011. Nucleic Acids Research, 39, D283–8.
Wei, Y. Y., Chen, S., Yang, P. C., Ma, Z. Y. and Kang, L. (2009). Characterization and comparative profiling of the small RNA transcriptomes in two phases of locust. Genome Biology, 10, R6.
Wheeler, W. C., Whiting, M., Wheeler, Q. D. and Carpenter, J. M. (2001). The phylogeny of the extant hexapod orders. Cladistics, 17, 113–69.
Whitfield, J. B. and Kjer, K. M. (2008). Ancient rapid radiations of insects: challenges for phylogenetic analysis. Annual Review of Entomology, 53, 449–72.
Whiting, M. F. (2002). Mecoptera is paraphyletic: multiple genes and phylogeny of Mecoptera and Siphonaptera. Zoologica Scripta, 31, 93–104.
Whiting, M. F., Carpenter, J. C., Wheeler, Q. D. and Wheeler, W. C. (1997). The strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. Systematic Biology, 46, 1–68.
Whiting, M. F. and Wheeler, W. C. (1994). Insect homeotic transformation. Nature, 368, 696.
Wiegmann, B. M., Trautwein, M. D., Kim, J. W., Cassel, B. K., Bertone, M. A., Winterton, S. L. and Yeates, D. K. (2009). Single-copy nuclear genes resolve the phylogeny of the holometabolous insects. BMC Biology, 7, 34.
Wiegmann, B. M., Trautwein, M. D., Winkler, I. S., et al. (2011). Episodic radiations in the fly tree of life. Proceedings of the National Academy of Sciences of the United States of America, 108, 5690–5.
Wu, D. Y., Hugenholtz, P., Mavromatis, K., et al. (2009). A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature, 462, 1056–60.
Yamauchi, M. M., Miya, M. U. and Nishida, M. (2004). Use of a PCR-based approach for sequencing whole mitochondrial genomes of insects: two examples (cockroach and dragonfly) based on the method developed for decapod crustaceans. Insect Molecular Biology, 13, 435–42.
Yoshizawa, K. and Johnson, K. P. (2005). Aligned 18S for Zoraptera (Insecta): phylogenetic position and molecular evolution. Molecular Phylogenetics and Evolution, 37, 572–80.
Zdobnov, E. M. and Bork, P. (2007). Quantification of insect genome divergence. Trends in Genetics, 23, 16–20.