Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-24T18:21:59.708Z Has data issue: false hasContentIssue false

2 - The molecular basis of central nervous system development

from Section 1 - Making of the brain

Published online by Cambridge University Press:  01 March 2011

Hugo Lagercrantz
Affiliation:
Karolinska Institutet, Stockholm
M. A. Hanson
Affiliation:
Southampton General Hospital
Laura R. Ment
Affiliation:
Yale University, Connecticut
Donald M. Peebles
Affiliation:
University College London
Get access

Summary

Introduction

The aim of this chapter is to discuss how the central nervous system (CNS) is generated during development, and the rapid progress that is made in deciphering the underlying molecular programs for different steps in this process. Particular emphasis will be placed on the discussion of genes that are directly relevant for human CNS malformations.

Morphology of the developing CNS

In humans and other vertebrates, the early aspects of nervous system development proceed through a set of stereotypical intermediate steps. The first signs of the developing nervous system appear on the dorsal side of the gastrula-stage embryo where, in a process called neural induction, the mesoderm induces the overlying ectoderm to form the neural plate or neuroectoderm. The exact mechanism by which the mesoderm influences the ectoderm-to-neuroectoderm transition is still not understood, and hypotheses range from those suggesting the neuroectoderm develops by default mechanisms to those of a more active, instructive role for the mesoderm (see below).

After neuroectoderm formation, the neural plate bends along the rostrocaudal body axis to form the neural groove, and this change in morphology is accomplished by forces exerted through both the neural plate cells and the surrounding epidermis (Fig. 2.1). The notochord induces these cells to decrease in height and to become wedge shaped, giving rise to the neural groove (van Straaten et al.,1988; Smith & Schoenwolf, 1989). Shortly thereafter, the edges of the neural plate thicken and move upward to form the neural folds.

Type
Chapter
Information
The Newborn Brain
Neuroscience and Clinical Applications
, pp. 23 - 36
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, T. & Zukin., R. S. (2008). Epigenetic targets of HDAC inhibition in neurodegenerative and psychiatric disorders. Current Opinion in Pharmacology, 8, 57–64.CrossRefGoogle ScholarPubMed
Acampora, D., Mazan, S., Lallemand, Y., et al. (1995). Forebrain and midbrain regions are deleted in Otx2-/- mutants due to a defective anterior neuroectoderm specification during gastrulation. Development, 121, 3279–90.Google ScholarPubMed
Alvarez, I. S. & Schoenwolf, G. C. (1992). Expansion of surface epithelium provides the major extrinsic force for bending of the neural plate. Journal of Experimental Zoology, 261, 340–8.CrossRefGoogle ScholarPubMed
Amir, R. E., Veyver, I. B., Wan, M., et al. (1999). Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nature Genetics, 23, 185–8.CrossRefGoogle ScholarPubMed
Andersson, E., Tryggvason, U., Deng, Q., et al. (2006). Identification of intrinsic determinants of midbrain dopamine neurons. Cell, 124, 393–405.CrossRefGoogle ScholarPubMed
Baldwin, C. T., Hoth, C. F., Amos, J. A., et al. (1992). An exonic mutation in the HuP2 paired domain gene causes Waardenburg's syndrome. Nature, 355, 637–8.CrossRefGoogle ScholarPubMed
Blumberg, B., Bolado, J., Moreno, T. A., et al. (1997). An essential role for retinoid signaling in anteroposterior neural patterning. Development, 124, 373–9.Google ScholarPubMed
Boncinelli, E., Gulisano, M., & Broccoli, V. (1993). Emx and Otx homeobox genes in the developing mouse brain. Journal of Neurobiology, 24, 1356–66.CrossRefGoogle ScholarPubMed
Briscoe, J. & Ericson, J. (2001). Specification of neuronal fates in the ventral neural tube. Current Opinion in Neurobiology, 11, 43–9.CrossRefGoogle ScholarPubMed
Chiang, C., Litingtung, Y., Lee, E., et al. (1996). Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature, 383, 407–13.CrossRefGoogle ScholarPubMed
Crossley, P. H. & Martin, G. R. (1995). The mouse Fgf8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo. Development, 121, 439–51.Google ScholarPubMed
Crossley, P. H., Martinez, S., & Martin, G. R. (1996). Midbrain development induced by FGF8 in the chick embryo. Nature, 380, 66–8.CrossRefGoogle ScholarPubMed
Detrait, E. R., George, T. M., Etchevers, H. C., et al. (2005). Human neural tube defects: developmental biology, epidemiology, and genetics. Neurotoxicology and Teratology, 27, 515–24.CrossRefGoogle ScholarPubMed
Diez del Corral, R. & Storey, K. G. (2004). Opposing FGF and retinoid pathways: a signalling switch that controls differentiation and patterning onset in the extending vertebrate body axis. Bioessays, 26, 857–69.CrossRefGoogle ScholarPubMed
Echelard, Y., Epstein, D. J., St-Jacques, B., et al. (1993). Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell, 75, 1417–30.CrossRefGoogle ScholarPubMed
Ericson, J., Morton, S., Kawakami, A., et al. (1996). Two critical periods of Sonic Hedgehog signaling required for the specification of motor neuron identity. Cell, 87, 661–73.CrossRefGoogle ScholarPubMed
Faiella, A., Brunelli, S., Granata, T., et al. (1997). A number of schizencephaly patients including 2 brothers are heterozygous for germline mutations in the homeobox gene EMX2. European Journal of Human Genetics, 5, 186–90.Google ScholarPubMed
Feng, J., Fouse, S., & Fan, G. (2007). Epigenetic regulation of neural gene expression and neuronal function. Pediatric Research, 61, 58R–63R.CrossRefGoogle ScholarPubMed
Fricker-Gates, R. A. (2006). Radial glia: a changing role in the central nervous system. Neuroreport, 17, 1081–4.CrossRefGoogle ScholarPubMed
Frisén, J., Johansson, C. B., Lothian, C., et al. (1998). Central nervous system stem cells in the embryo and adult. Cellular and Molecular Life Sciences, 54, 935–45.CrossRefGoogle ScholarPubMed
Gould, A., Itasaki, N., & Krumlauf, R. (1998). Initiation of rhombomeric Hoxb4 expression requires induction by somites and a retinoid pathway. Neuron, 21, 39–51.CrossRefGoogle Scholar
Hammerschmidt, M., Brook, A., & McMahon, A. P. (1997). The world according to hedgehog. Trends in Genetics, 13, 14–21.CrossRefGoogle ScholarPubMed
Howard, T. D., Paznekas, W. A., Green, E. D., et al. (1997). Mutations in TWIST, a basic helix-loop-helix transcription factor, in Saethre–Chotzen syndrome. Nature Genetics, 15, 36–41.CrossRefGoogle ScholarPubMed
Hunt, P. & Krumlauf, R. (1992). Hox codes and positional specification in vertebrate embryonic axes. Annual Review of Cell Biology, 8, 227–56.CrossRefGoogle ScholarPubMed
Jacobson, M. (1991). Developmental Neurobiology. New York: Plenum Publishing.CrossRefGoogle Scholar
Jeffery, W. R. (2007). Chordate ancestry of the neural crest: new insights from ascidians. Seminars in Cell and Developmental Biology, 18, 481–91.CrossRefGoogle ScholarPubMed
Jepsen, K., Solum, D., Zhou, T., et al. (2007). SMRT-mediated repression of an H3K27 demethylase in progression from neural stem cell to neuron. Nature, 450, 415–19.CrossRefGoogle ScholarPubMed
Kessel, M. & Gruss, P. (1991). Homeotic transformations of murine vertebrae and concomitant alteration of Hox codes induced by retinoic acid. Cell, 67, 89–104.CrossRefGoogle ScholarPubMed
Kiefer, J. C. (2007). Epigenetics in development. Developmental Dynamics, 236, 1144–56.CrossRefGoogle ScholarPubMed
Knoblich, J. A. (2008). Mechanisms of asymmetric stem cell division. Cell, 132, 583–97.CrossRefGoogle ScholarPubMed
Kriegstein, A., Noctor, S., & Martinez-Cerdeno, V. (2006). Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion. Nature Reviews Neuroscience, 7, 883–90.CrossRefGoogle ScholarPubMed
Krumlauf, R. (1994). Hox genes in vertebrate development. Cell, 78, 191–201.CrossRefGoogle ScholarPubMed
Lee, J. E. (1997). Basic helix-loop-helix genes in neural development. Current Opinion in Neurobiology, 7, 13–20.CrossRefGoogle ScholarPubMed
Lee, M. G., Villa, R., Trojer, P., et al. (2007). Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination. Science, 318, 447–50.CrossRefGoogle ScholarPubMed
Lian, G. & Sheen, V. (2006). Cerebral developmental disorders. Current Opinion in Pediatrics, 18, 614–20.CrossRefGoogle ScholarPubMed
Liem, K. F. Jr., Tremml, G., Roelink, H., et al. (1995). Dorsal differentiation of neural plate cells induced by BMP-mediated signals from epidermal ectoderm. Cell, 82, 969–79.CrossRefGoogle ScholarPubMed
Louvi, A. & Artavanis-Tsakonas, S. (2006). Notch signalling in vertebrate neural development. Nature Reviews Neuroscience, 7, 93–102.CrossRefGoogle ScholarPubMed
Lumsden, A. & Krumlauf, R. (1996). Patterning the vertebrate neuraxis. Science, 274, 1109–15.CrossRefGoogle ScholarPubMed
Mark, M., Rijli, F. M., & Chambon, P. (1997). Homeobox genes in embryogenesis and pathogenesis. Pediatrics Research, 42, 421–9.CrossRefGoogle ScholarPubMed
Marshall, H., Nonchev, S., Sham, M. H., et al. (1992). Retinoic acid alters hindbrain Hox code and induces transformation of rhombomeres 2/3 into a 4/5 identity. Nature, 360, 737–41.CrossRefGoogle ScholarPubMed
McMahon, A. P., Joyner, A. L., Bradley, A., et al. (1992). The midbrain-hindbrain phenotype of Wnt-1-/Wnt-1- mice results from stepwise deletion of engrailed-expressing cells by 9.5 days postcoitum. Cell, 69, 581–95.CrossRefGoogle ScholarPubMed
Mehler, M. F., Mabie, P. C., Zhang, D., et al. (1997). Bone morphogenetic proteins in the nervous system. Trends in Neurosciences, 20, 309–17.CrossRefGoogle Scholar
Merkle, F. T. & Alvarez-Buylla, A. (2006). Neural stem cells in mammalian development. Current Opinion in Cell Biology, 18, 704–9.CrossRefGoogle ScholarPubMed
Miller, F. D. & Gauthier, A. S. (2007). Timing is everything: making neurons versus glia in the developing cortex. Neuron, 54, 357–69.CrossRefGoogle ScholarPubMed
Ming, J. E. & Muenke, M. (1998). Holoprosencephaly: from Homer to Hedgehog. Clinical Genetics, 53, 155–63.CrossRefGoogle ScholarPubMed
Mitchell, L. E., Adzick, N. S., Melchionne, J., et al. (2004). Spina bifida. Lancet, 364, 1885–95.CrossRefGoogle ScholarPubMed
Murry, C. E. & Keller, G. (2008). Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell, 132, 661–80.CrossRefGoogle ScholarPubMed
Nonchev, S., Vesque, C., Maconochie, M., et al. (1996). Segmental expression of Hoxa-2 in the hindbrain is directly regulated by Krox-20. Development, 122, 543–54.Google ScholarPubMed
Petrij, F., Giles, R. H., Dauwerse, H. G., et al. (1995). Rubinstein-Taybi syndrome caused by mutations in the transcriptional co-activator CBP. Nature, 376, 348–51.CrossRefGoogle ScholarPubMed
Porter, J. A., Kessler, D. P., Ekker, S. C., et al. (1995). The product of hedgehog autoproteolytic cleavage active in local and long-range signalling. Nature, 374, 363–6.CrossRefGoogle ScholarPubMed
Rakic, P. (1974). Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition. Science, 183, 425–7.CrossRefGoogle ScholarPubMed
Rakic, P. (1988). Specification of cerebral cortical areas. Science, 241, 170–6.CrossRefGoogle ScholarPubMed
Roessler, E. & Muenke, M. (2003). How a Hedgehog might see holoprosencephaly. Human Molecular Genetics, 12 Spec No 1, R15–25.CrossRefGoogle Scholar
Roessler, E., Belloni, E., Gaudenz, K., et al. (1996). Mutations in the human Sonic Hedgehog gene cause holoprosencephaly. Nature Genetics, 14, 357–60.CrossRefGoogle ScholarPubMed
Roessler, E., Belloni, E., Gaudenz, K., et al. (1997). Mutations in the C-terminal domain of Sonic Hedgehog cause holoprosencephaly. Human Molecular Genetics, 6, 1847–53.CrossRefGoogle ScholarPubMed
Rubenstein, J. L. & Beachy, P. A. (1998). Patterning of the embryonic forebrain. Current Opinion in Neurobiology, 8, 18–26.CrossRefGoogle ScholarPubMed
Ruiz i Altaba, A., Nguyen, V., & Palma, V. (2003). The emergent design of the neural tube: prepattern, SHH morphogen and GLI code. Current Opinion in Genetics and Development, 13, 513–21.CrossRefGoogle ScholarPubMed
Sauer, F. C. (1935). Mitosis in the neural tube. Journal of Comparative Neurology, 62, 377–405.CrossRefGoogle Scholar
Schneider-Maunoury, S., Topilko, P., Seitandou, T., et al. (1993). Disruption of Krox-20 results in alteration of rhombomeres 3 and 5 in the developing hindbrain. Cell, 75, 1199–214.CrossRefGoogle ScholarPubMed
Shi, Y., Sawada, J., Sui, G., et al. (2003). Coordinated histone modifications mediated by a CtBP co-repressor complex. Nature, 422, 735–8.CrossRefGoogle ScholarPubMed
Shimamura, K. & Rubenstein, J. K. (1997). Inductive interactions direct early regionalization of the mouse forebrain. Development, 124, 2709–18.Google ScholarPubMed
Smith, C. L. (2008). A shifting paradigm: histone deacetylases and transcriptional activation. Bioessays, 30, 15–24.CrossRefGoogle ScholarPubMed
Smith, J. L. & Schoenwolf, G. C. (1989). Notochordal induction of cell wedging in the chick neural plate and its role in neural tube formation. Journal for Experimental Zoology, 250, 49–62.CrossRefGoogle ScholarPubMed
Studer, M., Popperl, H., Marshall, H., et al. (1994). Role of a conserved retinoic acid response element in rhombomere restriction of Hoxb-1. Science, 265, 1728–32.CrossRefGoogle ScholarPubMed
Sur, M. & Rubenstein, J. L. (2005). Patterning and plasticity of the cerebral cortex. Science, 310, 805–10.CrossRefGoogle ScholarPubMed
Takeuchi, T., Watanabe, Y., Takano-Shimizu, T., et al. (2006). Roles of jumonji and jumonji family genes in chromatin regulation and development. Developmental Dynamics, 235, 2449–59.CrossRefGoogle ScholarPubMed
Tanabe, Y. & Jessell, T. M. (1996). Diversity and pattern in the developing spinal cord. Science, 274, 1115–23.CrossRefGoogle ScholarPubMed
Ulloa, F. & Briscoe, J. (2007). Morphogens and the control of cell proliferation and patterning in the spinal cord. Cell Cycle, 6, 2640–9.CrossRefGoogle ScholarPubMed
Straaten, H. W., Hekking, J. W., Wiertz-Hoessels, E. J., et al. (1988). Effect of the notochord on the differentiation of a floor plate area in the neural tube of the chick embryo. Anatomy Embryology, 177, 317–24.CrossRefGoogle ScholarPubMed
Wegner, M. & Stolt, C. C. (2005). From stem cells to neurons and glia: a Soxist's view of neural development. Trends in Neurosciences, 28, 583–8.CrossRefGoogle ScholarPubMed
Wichterle, H., Lieberam, I., Porter, J. A., et al. (2002). Directed differentiation of embryonic stem cells into motor neurons. Cell, 110, 385–97.CrossRefGoogle ScholarPubMed
Wilkinson, D. G., Bhatt, S., Cook, M., et al. (1989). Segmental expression of Hox-2 homoeobox-containing genes in the developing mouse hindbrain. Nature, 341, 405–9.CrossRefGoogle ScholarPubMed
Wonders, C. & Anderson, S. A. (2005). Cortical interneurons and their origins. Neuroscientist, 11, 199–205.CrossRefGoogle ScholarPubMed
Xu, G. L., Bestor, T. H., Bourc'his, D., et al. (1999). Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature, 402, 187–91.CrossRefGoogle Scholar
Yang, X. J. & Seto, E. (2008). The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nature Reviews Molecular Cell Biology, 9, 206–18.CrossRefGoogle ScholarPubMed
Yoshida, M., Suda, Y., Matsuo, I., et al. (1997). Emx1 and Emx2 functions in development of dorsal telencephalon. Development, 124, 101–11.Google ScholarPubMed
Zhang, M., Kim, H. J., Marshall, H., et al. (1994). Ectopic Hoxa-1 induces rhombomere transformation in mouse hindbrain. Development, 120, 2431–42.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×