Skip to main content Accessibility help
×
Home
  • Print publication year: 2018
  • Online publication date: February 2018

16 - Elementary totally disconnected locally compact groups, after Wesolek

[1] Bachir, Bekka, Pierre de la, Harpe and Alain, Valette. Kazhdan's property (T), volume 11 of New Mathematical Monographs. Cambridge University Press, Cambridge, 2008.
[2] Pierre-Emmanuel, Caprace and Nicolas, Monod. Decomposing locally compact groups into simple pieces. Math. Proc. Camb. Philos. Soc., 150(1):97–128, 2011.
[3] Jean A., Dieudonné. La g'eom'etrie des groupes classiques. Springer-Verlag, Berlin- New York, 1971. Troisieme édition, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 5.
[4] Pierre de la Harpe and Yves de Cornulier. Metric geometry of locally compact groups. Book in preparation, available online.
[5] Su, Gao. Invariant descriptive set theory, volume 293 of Pure and Applied Mathematics (Boca Raton). CRC Press, Boca Raton, FL, 2009.
[6] Kate, Juschenko and Nicolas, Monod. Cantor systems, piecewise translations and simple amenable groups. Ann. Math. (2), 178(2):775–787, 2013.
[7] Alexander S., Kechris. Classical descriptive set theory, volume 156 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995.
[8] Jean-Louis, Krivine. Introduction to axiomatic set theory. Translated from the French by David Miller. D. Reidel Publishing Co., Dordrecht; Humanities Press, New York, 1971.
[9] Hiroki, Matui. Some remarks on topological full groups of Cantor minimal systems. Internat. J. Math., 17(2):231–251, 2006.
[10] Colin D., Reid and Phillip R., Wesolek. Homomorphisms into totally disconnected, locally compact groups with dense image. ArXiv:1509.00156.
[11] Jacques, Tits. Sur le groupe des automorphismes d'un arbre. In Essays on topology and related topics (M'emoires d'edi'es à Georges de Rham), pages 188–211. Springer, New York, 1970.
[12] Phillip, Wesolek. Elementary totally disconnected locally compact groups. Proc. Lond. Math. Soc. (3), 110(6):1387–1434, 2015.