Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 1
  • Print publication year: 2018
  • Online publication date: February 2018

6 - Automorphism groups of trees: generalities and prescribed local actions

[1] C., Banks, M., Elder and G. A., Willis, Simple groups of automorphisms of trees determined by their actions on finite subtrees, Journal of Group Theory 18 (2015), 235261.
[2] M., Burger and S., Mozes, Groups acting on trees: from local to global structure, Publications Mathématiques de l'IHÉS 92 (2000), 113–150.
[3] M., Burger and S., Mozes, Lattices in product of trees, Publications Mathématiques de l'IHÉS 92 (2000), 151–194.
[4] A., Le Boudec, Groups acting on trees with almost prescribed local action, arXiv preprint 1505.01363 (2015).
[5] P.-E., Caprace and N., Monod, Decomposing locally compact groups into simple pieces, Math. Proc. Cambridge Philos. Soc. 150 Nr. 1 (2011), 97128.
[6] P.-E., Caprace and N., Monod, Isometry groups of non-positively curved spaces: structure theory, J. Topol. 2(4) (2009), 661–700.
[7] P.-E., Caprace and N., Monod, Isometry groups of non-positively curved spaces: discrete subgroups, J. Topol. 2(4) (2009), 701–746.
[8] N., Monod, Continuous bounded cohomology of locally compact groups, LNM vol. 1758 (Springer 2001).
[9] J.-P., Serre, Trees, Springer Monographs in Mathematics.
[10] S. M., Smith, A product for permutation groups and topological groups, Duke Math. J. 166(15) (2017), 2965–2999.
[11] J., Tits, Sur le groupe d'automorphismes d'un arbre, in Essays on Topology and Related Topics, Springer Berlin Heidelberg (1970), 188–211.