Skip to main content Accessibility help
×
Home
  • Print publication year: 2018
  • Online publication date: February 2018

5 - Abstract quotients of profinite groups, after Nikolov and Segal

[1] L., Babai, N., Nikolov and L., Pyber, Product growth and mixing in finite groups, Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, 248–257, ACM, New York, 2008.
[2] Y., Barnea, A., Jaikin-Zapirain and B., Klopsch, Abstract versus topological extensions of profinite groups, preprint, 2015.
[3] A. K., Bousfield, On the p-adic completions of nonnilpotent spaces, Trans. Amer. Math. Soc. 331 (1992), 335–359.
[4] G. A., Fernández-Alcober, I. V., Kazachkov, V. N., Remeslennikov and P., Symonds, Comparison of the discrete and continuous cohomology groups of a pro-p group, Algebra i Analiz 19 (2007), 126–142; translation in: St. Petersburg Math. J. 19 (2008), 961–973.
[5] W. T., Gowers, Quasirandom groups, Combin. Probab. Comput. 17 (2008), 363–387.
[6] B., Hartley, Subgroups of finite index in profinite groups, Math. Z. 168 (1979), 71–76.
[7] A., Jaikin-Zapirain, On the verbal width of finitely generated pro-p groups, Rev. Mat. Iberoamericana 24 (2008), 617–630.
[8] J. A., Kiehlmann, Classifications of countably-based Abelian profinite groups, J. Group Theory 16 (2013), 141–157.
[9] C., Martınez and E., Zelmanov, Products of powers in finite simple groups, Israel J. Math. 96 (1996), 469–479.
[10] K. H., Hofmann and S. A., Morris, The structure of compact groups, de Gruyter, Berlin, 2013.
[11] M. W., Liebeck and A., Shalev, Diameters of finite simple groups: sharp bounds and applications, Ann. Math. 154 (2001), 383–406.
[12] N., Nikolov, Algebraic properties of profinite groups, preprint, arXiv:1108.5130, 2012.
[13] N., Nikolov and L., Pyber, Product decompositions of quasirandom groups and a Jordan type theorem, J. Eur. Math. Soc. 13 (2011), 1063–1077.
[14] N., Nikolov and D., Segal, On finitely generated profinite groups I. Strong completeness and uniform bounds, Ann. of Math. 165 (2007), 171–238.
[15] N., Nikolov and D., Segal, On finitely generated profinite groups II. Products in quasisimple groups, Ann. of Math. 165 (2007), 239–273.
[16] N., Nikolov and D., Segal, Powers in finite groups, Groups Geom. Dyn. 5 (2011), 501–507.
[17] N., Nikolov and D., Segal, Generators and commutators in finite groups; abstract quotients of compact groups, Invent. Math. 190 (2012), 513–602.
[18] N., Nikolov and D., Segal, On normal subgroups of compact groups, J. Eur. Math. Soc. (JEMS) 16 (2014), 597–618.
[19] J., Saxl and J. S., Wilson, A note on powers in simple groups, Math. Proc. Camb. Philos. Soc. 122 (1997), 91–94.
[20] D., Segal, Closed subgroups of profinite groups, Proc. London Math. Soc. 81 (2000), 29–54.
[21] D., Segal, Words: notes on verbal width in groups, Cambridge University Press, Cambridge, 2009.
[22] J.-P., Serre, Galois cohomology, Springer-Verlag, Berlin, 1997.
[23] B., Sury, Central extensions of p-adic groups; a theorem of Tate, Comm. Algebra 21 (1993), 1203–1213.
[24] J. S., Wilson, Profinite groups, Oxford University Press, New York, 1998.
[25] J. S., Wilson, Finite index subgroups and verbal subgroups in profinite groups, Séminaire Bourbaki, Vol. 2009/2010, Exposés 1012–1026. Astérisque No. 339 (2011), Exp. No. 1026.