Skip to main content Accessibility help
  • Print publication year: 2014
  • Online publication date: December 2014

12 - Amyotrophic lateral sclerosis and frontotemporal lobar degeneration


1. A. Al-Chalabi, O. Hardiman. The epidemiology of ALS: a conspiracy of genes, environment and time. Nat Rev Neurol 2013; 9: 617–28.
2. M. J. Strong, P. H. Gordon. Primary lateral sclerosis, hereditary spastic paraplegia and amyotrophic lateral sclerosis: discrete entities or spectrum? Amyotroph Lateral Scler Other Motor Neuron Disord 2005; 6: 8–16.
3. D. Ellison. Neuropathology, 3rd edn. Edinburgh: Mosby/Elsevier. 2013.
4. P. G. Ince, B. Clark, J. Holton, et al. Diseases of movement and system degenerations. In: S. Love, D. N. Louis, D. P. Ellison (eds). Greenfield’s Neuropathology, eds, 8th edn. London: Hodder Arnold. 2008: 889–1030.
5. L. M. de Lau, M. M. Breteler. Epidemiology of Parkinson’s disease. Lancet Neurol 2006; 5: 525–35.
6. I. S. Mackenzie, S. V. Morant, G. A. Bloomfield, T. M. MacDonald, J. O’Riodan. Incidence and prevalence of multiple sclerosis in the UK 1990–2010: a descriptive study in the General Practice Research Database. J Neurol Neurosurg Psychiatry 2014; 85: 76–84.
7. H. Ishiura, Y. Takahashi, J. Mitsui, et al. C9ORF72 repeat expansion in amyotrophic lateral sclerosis in the Kii peninsula of Japan. Arch Neurol 2012; 69: 1154–8.
8. M. J. Strong, T. Hortobágyi, K. Okamoto, S. Kato. Amyotrophic lateral sclerosis, primary lateral sclerosis and spinal muscular atrophy. In: D. W. Dickson (ed). Neurodegeneration: the Molecular Pathology of Dementia and Movement Disorders, 2nd edn. Oxford: Wiley-Blackwell. 2011: 418–33.
9. A. Al-Chalabi, A. Jones, C. Troakes, et al. The genetics and neuropathology of amyotrophic lateral sclerosis. Acta Neuropathol 2012; 124: 339–52.
10. A. Al-Chalabi, S. Kwak, M. Mehler, et al. Genetic and epigenetic studies of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2013; 14 (Suppl. 1): 44–52.
11. P. G. Ince, J. R. Highley, J. Kirby, et al. Molecular pathology and genetic advances in amyotrophic lateral sclerosis: an emerging molecular pathway and the significance of glial pathology. Acta Neuropathol 2011; 122: 657–71.
12. C. M. Lill, O. Abel, L. Bertram, A. Al-Chalabi. Keeping up with genetic discoveries in amyotrophic lateral sclerosis: the ALSoD and ALSGene databases. Amyotroph Lateral Scler 2011; 12: 238–49.
13. D. R. Rosen, T. Siddique, D. Patterson, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993; 362: 59–62.
14. J. Sreedharan, I. P. Blair, V. B. Tripathi, et al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 2008; 319: 1668–72.
15. C. Vance, B. Rogelj, T. Hortobagyi, et al. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 2009; 323: 1208–11.
16. M. DeJesus-Hernandez, I. R. Mackenzie, B. F. Boeve, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 2011; 72: 245–56.
17. A. E. Renton, E. Majounie, A. Waite, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 2011; 72: 257–68.
18. B. N. Smith, S. Newhouse, A. Shatunov, et al. The C9ORF72 expansion mutation is a common cause of ALS+/−FTD in Europe and has a single founder. Eur J Hum Genet 2013; 21: 102–8.
19. J. Beck, M. Poulter, D. Hensman, et al. Large C9orf72 hexanucleotide repeat expansions are seen in multiple neurodegenerative syndromes and are more frequent than expected in the UK population. Am J Hum Genet 2013; 92: 345–53.
20. T. F. Gendron, V. V. Belzil, Y. J. Zhang, L. Petrucelli. Mechanisms of toxicity in C9FTLD/ALS. Acta Neuropathol 2014: 127: 359–76.
21. D. J. Hensman Moss, M. Poulter, J. Beck, et al. C9orf72 expansions are the most common genetic cause of Huntington disease phenocopies. Neurology 2014: 82: 292–9.
22. M. van Blitterswijk, B. Mullen, A. M. Nicholson, et al. TMEM106B protects C9ORF72 expansion carriers against frontotemporal dementia. Acta Neuropathol 2014: 127: 397–406.
23. S. Al-Sarraj, A. King, C. Troakes, et al. p62 positive, TDP-43 negative, neuronal cytoplasmic and intranuclear inclusions in the cerebellum and hippocampus define the pathology of C9orf72-linked FTLD and MND/ALS. Acta Neuropathol 2011; 122: 691–702.
24. M. E. Murray, M. DeJesus-Hernandez, N. J. Rutherford, et al. Clinical and neuropathologic heterogeneity of c9FTD/ALS associated with hexanucleotide repeat expansion in C9ORF72. Acta Neuropathol 2011; 122: 673–90.
25. I. R. Mackenzie, P. Frick, M. Neumann. The neuropathology associated with repeat expansions in the C9ORF72 gene. Acta Neuropathol 2014: 127: 347–57.
26. H. X. Deng, W. Chen, S. T. Hong, et al. Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature 2011; 477: 211–5.
27. A. M. Clement, M. D. Nguyen, E. A. Roberts, et al. Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science 2003; 302: 113–7.
28. J. M. Beaulieu, M. D. Nguyen, J. P. Julien. Late onset of motor neurons in mice overexpressing wild-type peripherin. J Cell Biol 1999; 147: 531–44.
29. C. Zhao, J. Takita, Y. Tanaka, et al. Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bβ. Cell 2001; 105: 587–97.
30. B. H. LaMonte, K. E. Wallace, B. A. Holloway, et al. Disruption of dynein/dynactin inhibits axonal transport in motor neurons causing late-onset progressive degeneration. Neuron 2002; 34: 715–27.
31. K. Kaupmann, D. Simon-Chazottes, J. L. Guenet, H. Jockusch. Wobbler, a mutation affecting motoneuron survival and gonadal functions in the mouse, maps to proximal chromosome 11. Genomics 1992; 13: 39–43.
32. J. C. Mitchell, P. McGoldrick, C. Vance, et al. Overexpression of human wild-type FUS causes progressive motor neuron degeneration in an age- and dose-dependent fashion. Acta Neuropathol 2013; 125: 273–88.
33. M. R. Turner, R. Bowser, L. Bruijn, et al. Mechanisms, models and biomarkers in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2013; 14 (Suppl. 1): 19–32.
34. P. McGoldrick, P. I. Joyce, E. M. Fisher, L. Greensmith. Rodent models of amyotrophic lateral sclerosis. Biochim Biophys Acta 2013; 1832: 1421–36.
35. A. Stepto, J. M. Gallo, C. E. Shaw, F. Hirth. Modelling C9ORF72 hexanucleotide repeat expansion in amyotrophic lateral sclerosis and frontotemporal dementia. Acta Neuropathol 2014: 127: 377–89.
36. S. C. Ling, M. Polymenidou, D. W. Cleveland. Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 2013; 79: 416–38.
37. R. A. Nixon. The role of autophagy in neurodegenerative disease. Nat Med 2013; 19: 983–97.
38. S. Matus, V. Valenzuela, D. B. Medinas, C. Hetz. ER Dysfunction and Protein Folding Stress in ALS. Int J Cell Biol 2013; 2013: 674751.
39. M. W. Wooten, X. Hu, J. R. Babu, et al. Signaling, polyubiquitination, trafficking, and inclusions: sequestosome 1/p62’s role in neurodegenerative disease. J Biomed Biotechnol 2006; 2006: 62079.
40. A. M. Blokhuis, E. J. Groen, M. Koppers, L. H. van den Berg, R. J. Pasterkamp. Protein aggregation in amyotrophic lateral sclerosis. Acta Neuropathol 2013; 125: 777–94.
41. T. Van Langenhove, J. van der Zee, C. Van Broeckhoven. The molecular basis of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum. Ann Med 2012; 44: 817–28.
42. J. Sreedharan, R. H. Brown, Jr. Amyotrophic lateral sclerosis: Problems and prospects. Ann Neurol 2013; 74: 309–16.
43. A. L. Nishimura, V. Zupunski, C. Troakes, et al. Nuclear import impairment causes cytoplasmic trans-activation response DNA-binding protein accumulation and is associated with frontotemporal lobar degeneration. Brain 2010; 133: 1763–71.
44. T. P. Dawson. Neuropathology Techniques. London/New York: Arnold; distributed in the USA by Oxford University Press. 2003.
45. M. J. Strong. The evidence for altered RNA metabolism in amyotrophic lateral sclerosis (ALS). J Neurol Sci 2010; 288: 1–12.
46. M. Polymenidou, D. W. Cleveland. The seeds of neurodegeneration: prion-like spreading in ALS. Cell 2011; 147: 498–508.
47. P. H. Gordon. Amyotrophic lateral sclerosis: an update for 2013 Clinical Features, Pathophysiology, Management and Therapeutic Trials. Aging Dis 2013; 4: 295–310.
48. H. Stewart, N. J. Rutherford, H. Briemberg, et al. Clinical and pathological features of amyotrophic lateral sclerosis caused by mutation in the C9ORF72 gene on chromosome 9p. Acta Neuropathol 2012; 123: 409–17.
49. J. Simon-Sanchez, E. G. Dopper, P. E. Cohn-Hokke, et al. The clinical and pathological phenotype of C9ORF72 hexanucleotide repeat expansions. Brain 2012; 135: 723–35.
50. J. Cooper-Knock, C. Hewitt, J. R. Highley, et al. Clinico-pathological features in amyotrophic lateral sclerosis with expansions in C9ORF72. Brain 2012; 135: 751–64.
51. B. R. Brooks, R. G. Miller, M. Swash, T. L. Munsat. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 2000; 1: 293–9.
52. M. D. Carvalho, M. Swash. Awaji diagnostic algorithm increases sensitivity of El Escorial criteria for ALS diagnosis. Amyotroph Lateral Scler 2009; 10: 53–7.
53. L. H. Goldstein, S. Abrahams. Changes in cognition and behaviour in amyotrophic lateral sclerosis: nature of impairment and implications for assessment. Lancet Neurol 2013; 12: 368–80.
54. J. A. Hainfellner, P. Pilz, H. Lassmann, G. Ladurner, H. Budka. Diffuse Lewy body disease as substrate of primary lateral sclerosis. J Neurol 1995; 242: 59–63.
55. S. Maekawa, P. N. Leigh, A. King, et al. TDP-43 is consistently co-localized with ubiquitinated inclusions in sporadic and Guam amyotrophic lateral sclerosis but not in familial amyotrophic lateral sclerosis with and without SOD1 mutations. Neuropathology 2009; 29: 672–83.
56. M. R. Rosenfeld, J. B. Posner. Paraneoplastic motor neuron disease. Adv Neurol 1991; 56: 445–59.
57. A. M. Salazar, C. L. Masters, D. C. Gajdusek, C. J. Gibbs, Jr. Syndromes of amyotrophic lateral sclerosis and dementia: relation to transmissible Creutzfeldt–Jakob disease. Ann Neurol 1983; 14: 17–26.
58. F. Gray, J. F. Eizenbaum, R. Gherardi, J. D. Degos, J. Poirier. Luyso-pallido-nigral atrophy and amyotrophic lateral sclerosis. Acta Neuropathol 1985; 66: 78–82.
59. P. N. Leigh, B. H. Anderton, A. Dodson, et al. Ubiquitin deposits in anterior horn cells in motor neurone disease. Neurosci Lett 1988; 93: 197–203.
60. J. Lowe, G. Lennox, D. Jefferson, et al. A filamentous inclusion body within anterior horn neurones in motor neurone disease defined by immunocytochemical localisation of ubiquitin. Neurosci Lett 1988; 94: 203–10.
61. T. Arai, M. Hasegawa, H. Akiyama, et al. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 2006; 351: 602–11.
62. M. Neumann, D. M. Sampathu, L. K. Kwong, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 2006; 314: 130–3.
63. K. Mori, S. M. Weng, T. Arzberger, et al. The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science 2013; 339: 1335–8.
64. P. E. Ash, K. F. Bieniek, T. F. Gendron, et al. Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS. Neuron 2013; 77: 639–46.
65. K. Mori, S. Lammich, I. R. Mackenzie, et al. hnRNP A3 binds to GGGGCC repeats and is a constituent of p62-positive/TDP43-negative inclusions in the hippocampus of patients with C9orf72 mutations. Acta Neuropathol 2013; 125: 413–23.
66. T. J. Montine, C. H. Phelps, T. G. Beach, et al. National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach. Acta Neuropathol 2012; 123: 1–11.
67. I. Alafuzoff, P. G. Ince, T. Arzberger, et al. Staging/typing of Lewy body related α-synuclein pathology: a study of the BrainNet Europe Consortium. Acta Neuropathol 2009; 117: 635–52.
68. I. Alafuzoff, D. R. Thal, T. Arzberger, et al. Assessment of β-amyloid deposits in human brain: a study of the BrainNet Europe Consortium. Acta Neuropathol 2009; 117: 309–20.
69. N. J. Cairns, M. Neumann, E. H. Bigio, et al. TDP-43 in familial and sporadic frontotemporal lobar degeneration with ubiquitin inclusions. Am J Pathol 2007; 171: 227–40.
70. C. Troakes, S. Maekawa, L. Wijesekera, et al. An MND/ALS phenotype associated with C9orf72 repeat expansion: abundant p62-positive, TDP-43-negative inclusions in cerebral cortex, hippocampus and cerebellum but without associated cognitive decline. Neuropathology 2012; 32: 505–14.
71. P. F. Durrenberger, S. Fernando, S. N. Kashefi, et al. Effects of antemortem and postmortem variables on human brain mRNA quality: a BrainNet Europe study. J Neuropathol Exp Neurol 2010; 69: 70–81.
72. G. D. Watts, J. Wymer, M. J. Kovach, et al. Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat Genet 2004; 36: 377–81.
73. B. A. Keller, K. Volkening, C. A. Droppelmann, et al. Co-aggregation of RNA binding proteins in ALS spinal motor neurons: evidence of a common pathogenic mechanism. Acta Neuropathol 2012; 124: 733–47.
74. F. Mori, A. Kakita, H. Takahashi, K. Wakabayashi. Co-localization of Bunina bodies and TDP-43 inclusions in lower motor neurons in amyotrophic lateral sclerosis. Neuropathology 2014.
75. J. Brettschneider, K. Del Tredici, J. B. Toledo, et al. Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. Ann Neurol 2013; 74: 20–38.
76. M. Neumann, E. Bentmann, D. Dormann, et al. FET proteins TAF15 and EWS are selective markers that distinguish FTLD with FUS pathology from amyotrophic lateral sclerosis with FUS mutations. Brain 2011; 134: 2595–609.
77. T. Hortobagyi, C. Troakes, A. L. Nishimura, et al. Optineurin inclusions occur in a minority of TDP-43 positive ALS and FTLD-TDP cases and are rarely observed in other neurodegenerative disorders. Acta Neuropathol 2011; 121: 519–27.
78. I. Alafuzoff, T. Arzberger, S. Al-Sarraj, et al. Staging of neurofibrillary pathology in Alzheimer’s disease: a study of the BrainNet Europe Consortium. Brain Pathol 2008; 18: 484–96.
79. D. R. Thal, U. Rub, M. Orantes, H. Braak. Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology 2002; 58: 1791–800.
80. H. Braak, K. Del Tredici, U. Rub, et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 2003; 24: 197–211.
81. N. J. Cairns, E. H. Bigio, I. R. Mackenzie, et al. Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration. Acta Neuropathol 2007; 114: 5–22.
82. I. R. Mackenzie, M. Neumann, E. H. Bigio, et al. Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathol 2010; 119: 1–4.
83. G. M. McKhann, M. S. Albert, M. Grossman, et al. Clinical and pathological diagnosis of frontotemporal dementia: report of the Work Group on Frontotemporal Dementia and Pick’s Disease. Arch Neurol 2001; 58: 1803–9.
84. D. Neary, J. S. Snowden, L. Gustafson, et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 1998; 51: 1546–54.
85. D. Neary, J. S. Snowden, D. M. Mann, et al. Frontal lobe dementia and motor neuron disease. J Neurol Neurosurg Psychiatry 1990; 53: 23–32.
86. D. S. Knopman, R. O. Roberts. Estimating the number of persons with frontotemporal lobar degeneration in the US population. J Mol Neurosci 2011; 45: 330–5.
87. H. Braak, I. Alafuzoff, T. Arzberger, H. Kretzschmar, K. Del Tredici. Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 2006; 112: 389–404.
88. H. Braak, E. Braak. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 1991; 82: 239–59.
89. M. Jackson, G. Lennox, J. Lowe. Motor neurone disease-inclusion dementia. Neurodegeneration 1996; 5: 339–50.
90. R. A. Armstrong, N. J. Cairns. Different molecular pathologies result in similar spatial patterns of cellular inclusions in neurodegenerative disease: a comparative study of eight disorders. J Neural Transm 2012; 119: 1551–60.
91. V. M. Van Deerlin, P. M. Sleiman, M. Martinez-Lage, et al. Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions. Nat Genet 2010; 42: 234–9.
92. I. R. Mackenzie, M. Neumann, A. Baborie, et al. A harmonized classification system for FTLD-TDP pathology. Acta Neuropathol 2011; 122: 111–3.
93. R. A. Armstrong, W. Ellis, R. L. Hamilton, et al. Neuropathological heterogeneity in frontotemporal lobar degeneration with TDP-43 proteinopathy: a quantitative study of 94 cases using principal components analysis. J Neural Transm 2010; 117: 227–39.
94. C. Amador-Ortiz, W. L. Lin, Z. Ahmed, et al. TDP-43 immunoreactivity in hippocampal sclerosis and Alzheimer’s disease. Ann Neurol 2007; 61: 435–45.
95. M. I. Behrens, O. Mukherjee, P. H. Tu, et al. Neuropathologic heterogeneity in HDDD1: a familial frontotemporal lobar degeneration with ubiquitin-positive inclusions and progranulin mutation. Alzheimer Dis Assoc Disord 2007; 21: 1–7.
96. M. Cruts, I. Gijselinck, J. van der Zee, et al. Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 2006; 442: 920–4.
97. O. Mukherjee, P. Pastor, N. J. Cairns, et al. HDDD2 is a familial frontotemporal lobar degeneration with ubiquitin-positive, tau-negative inclusions caused by a missense mutation in the signal peptide of progranulin. Ann Neurol 2006; 60: 314–22.
98. I. R. Mackenzie, T. Arzberger, E. Kremmer, et al. Dipeptide repeat protein pathology in C9ORF72 mutation cases: clinico-pathological correlations. Acta Neuropathol 2013; 126: 859–79.
99. D. M. Mann, S. Rollinson, A. Robinson, et al. Dipeptide repeat proteins are present in the p62 positive inclusions in patients with frontotemporal lobar degeneration and motor neurone disease associated with expansions in C9ORF72. Acta Neuropathol Commun 2013; 1: 68.
100. M. Neumann, I. R. Mackenzie, N. J. Cairns, et al. TDP-43 in the ubiquitin pathology of frontotemporal dementia with VCP gene mutations. J Neuropathol Exp Neurol 2007; 66: 152–7.
101. M. S. Forman, I. R. Mackenzie, N. J. Cairns, et al. Novel ubiquitin neuropathology in frontotemporal dementia with valosin-containing protein gene mutations. J Neuropathol Exp Neurol 2006; 65: 571–81.
102. L. Benajiba, I. Le Ber, A. Camuzat, et al. TARDBP mutations in motoneuron disease with frontotemporal lobar degeneration. Ann Neurol 2009; 65: 470–3.
103. M. A. Gitcho, R. H. Baloh, S. Chakraverty, et al. TDP-43 A315T mutation in familial motor neuron disease. Ann Neurol 2008; 63: 535–8.
104. I. Le Ber, A. Camuzat, D. Hannequin, et al. Phenotype variability in progranulin mutation carriers: a clinical, neuropsychological, imaging and genetic study. Brain 2008; 131: 732–46.
105. G. G. Kovacs, J. R. Murrell, S. Horvath, et al. TARDBP variation associated with frontotemporal dementia, supranuclear gaze palsy, and chorea. Mov Disord 2009; 24: 1843–7.
106. N. J. Cairns, R. J. Perrin, R. E. Schmidt, et al. TDP-43 proteinopathy in familial motor neurone disease with TARDBP A315T mutation: a case report. Neuropathol Appl Neurobiol 2010; 36: 673–9.
107. I. R. Mackenzie, E. H. Bigio, P. G. Ince, et al. Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Ann Neurol 2007; 61: 427–34.
108. T. J. Kwiatkowski, Jr., D. A. Bosco, A. L. Leclerc, et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 2009; 323: 1205–8.
109. T. Van Langenhove, J. van der Zee, K. Sleegers, et al. Genetic contribution of FUS to frontotemporal lobar degeneration. Neurology 2010; 74: 366–71.
110. M. Neumann, R. Rademakers, S. Roeber, et al. A new subtype of frontotemporal lobar degeneration with FUS pathology. Brain 2009; 132: 2922–31.
111. E. H. Bigio, A. M. Lipton, C. L. White, 3rd, D. W. Dickson, A. Hirano. Frontotemporal and motor neurone degeneration with neurofilament inclusion bodies: additional evidence for overlap between FTD and ALS. Neuropathol Appl Neurobiol 2003; 29: 239–53.
112. N. J. Cairns, M. Grossman, S. E. Arnold, et al. Clinical and neuropathologic variation in neuronal intermediate filament inclusion disease. Neurology 2004; 63: 1376–84.
113. K. A. Josephs, J. L. Holton, M. N. Rossor, et al. Neurofilament inclusion body disease: a new proteinopathy? Brain 2003; 126: 2291–303.
114. M. Neumann, S. Roeber, H. A. Kretzschmar, et al. Abundant FUS-immunoreactive pathology in neuronal intermediate filament inclusion disease. Acta Neuropathol 2009; 118: 605–16.
115. T. Page, M. A. Gitcho, S. Mosaheb, et al. FUS immunogold labeling TEM analysis of the neuronal cytoplasmic inclusions of neuronal intermediate filament inclusion disease: a frontotemporal lobar degeneration with FUS proteinopathy. J Mol Neurosci 2011; 45: 409–21.
116. D. G. Munoz, M. Neumann, H. Kusaka, et al. FUS pathology in basophilic inclusion body disease. Acta Neuropathol 2009; 118: 617–27.
117. I. R. Mackenzie, D. G. Munoz, H. Kusaka, et al. Distinct pathological subtypes of FTLD-FUS. Acta Neuropathol 2011; 121: 207–18.
118. J. Brown, A. Ashworth, S. Gydesen, et al. Familial non-specific dementia maps to chromosome 3. Hum Mol Genet 1995; 4: 1625–8.
119. G. Skibinski, N. J. Parkinson, J. M. Brown, et al. Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia. Nat Genet 2005; 37: 806–8.
120. D. S. Knopman, A. R. Mastri, W. H. Frey, 2nd, J. H. Sung, T. Rustan. Dementia lacking distinctive histologic features: a common non-Alzheimer degenerative dementia. Neurology 1990; 40: 251–6.