Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-11T23:16:06.227Z Has data issue: false hasContentIssue false

10 - From hardware and software to kernels and envelopes: a concept shift for robotics, developmental psychology, and brain sciences

from Part IV - Philosophical and theoretical considerations

Published online by Cambridge University Press:  05 February 2012

Jeffrey L. Krichmar
Affiliation:
University of California, Irvine
Hiroaki Wagatsuma
Affiliation:
Kyushu Institute of Technology (KYUTECH), Japan
Get access

Summary

From hardware and software to kernels and envelopes

At the beginning of robotics research, robots were seen as physical platforms on which different behavioral programs could be run, similar to the hardware and software parts of a computer. However, recent advances in developmental robotics have allowed us to consider a reversed paradigm in which a single software, called a kernel, is capable of exploring and controlling many different sensorimotor spaces, called envelopes. In this chapter, we review studies we have previously published about kernels and envelopes to retrace the history of this concept shift and discuss its consequences for robotic designs and also for developmental psychology and brain sciences.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asada, M.Hosoda, K.Kuniyoshi, Y. 2009 Cognitive developmental robotics: a surveyIEEE Transactions on Autonomous Mental Development 1 12CrossRefGoogle Scholar
Baldassarre, G. 2002 A modular neural-network model of the basal ganglia’s role in learning and selection motor behaviorsJournal of Cognitive Systems Research 3 5CrossRefGoogle Scholar
Baldwin, J. M. 1925 Mental Development in the Child and the RaceNew YorkMacmillanGoogle Scholar
Barto, A. G. 1995 Houk, J. C.Davis, J. L.Beiser, D. G.Models of Information Processing in the Basal GangliaCambridge, MAMIT Press215Google Scholar
Barto, A. G.Singh, S.Chentanez, N. 2004
Bell, D. S. 1973 The experimental reproduction of amphetamine psychosisArchives in General Psychiatry 29 35CrossRefGoogle ScholarPubMed
Berlyne, D. E. 1960 Conflict, Arousal and CuriosityMcGraw-HillCrossRefGoogle Scholar
Bernheimer, H.Birkmayer, W.Hornykiewicz, O., Jellinger, K.Seitelberger, F. 1973 Brain dopamine and the syndromes of Parkinson and Huntington: clinical, morphological and neurochemical correlationsJournal of the Neurological Sciences 20 415CrossRefGoogle ScholarPubMed
Berridge, K. C. 2007 The debate over dopamine’s role in reward: the case of incentive saliencePsychopharmacology 191 391CrossRefGoogle ScholarPubMed
Brooks, R. 1999 Cambrian Intelligence: The Early History of the New AICambridge, MAMIT PressGoogle Scholar
Bruner, J. 1962 On Knowing: Essays for the Left HandCambridge, MAHarvard University PressGoogle Scholar
Cameron, J.Pierce, W.D. 2002 Rewards and Intrinsic Motivation: Resolving the ControversySouth Hadley, MABergin and Garvey PressGoogle Scholar
Carboni, E.Imperato, A.Perezzani, L.Di Chiara, G. 1989 Amphetamine, cocaine, phencyclidine and nomifensine increases extra cellullar dopamine concentrations preferentially in the nucleus accumbens of freely moving ratsNeuroscience 28 653CrossRefGoogle Scholar
Clark, A. 2004 Natural-born Cyborgs: Minds, Technologies and the Future of Human IntelligenceOxford, UKOxford University PressGoogle Scholar
Csikszenthmihalyi, M. 1991 Flow: The Psychology of Optimal ExperienceNew YorkHarper PerennialGoogle Scholar
Daw, N.Kakade, S.Dayan, P. 2002 Opponent interactions between serotonin and dopamineNeural Networks 15 603CrossRefGoogle ScholarPubMed
Dayan, P.Sejnowski, T. J. 1996 Exploration bonuses and dual controlMachine Learning 25 5CrossRefGoogle Scholar
Dayan, P.Hinton, G.Giles, C.Hanson, S.Cowan, J. 1993 San Mateo, CAMorgan Kaufmann271
De Charms, R. 1968 Personal Causation: The Internal Affective Determinants of BehaviorNew YorkAcademic PressGoogle Scholar
Deci, E. L.Ryan, R. M. 1985 Intrinsic Motivation and Self-Determination in Human BehaviorNew York:Plenum PressCrossRefGoogle Scholar
Dember, W. N.Earl, R. W. 1957 Analysis of exploratory, manipulatory and curiosity behaviorsPsychological Review 64 91CrossRefGoogle ScholarPubMed
Deneve, S.Duhamel, J.-R.Pouget, A. 2007 Optimal sensorimotor integration in recurrent cortical networks: a neural implementation of Kalman filtersJournal of Neuroscience 27 5744CrossRefGoogle ScholarPubMed
Depue, R. A.Iacono, W. G. 1989 Neurobehavioral aspects of affective disordersAnnual Review of Psychology 40 457CrossRefGoogle ScholarPubMed
Dommett, E.Coizet, V.Blatha, C. D. 2005 How visual stimuli activate dopaminergic neurons at short latencyScience 307 1476CrossRefGoogle ScholarPubMed
Douglas, R.Martin, K. 1998 Shepherd, G. M.The Synaptic Organization of the BrainOxford, UKOxford University Press,459Google Scholar
Doya, K. 1999 What are the computations of cerebellum, basal ganglia, and the cerebral cortex?Neural Networks 12 961CrossRefGoogle ScholarPubMed
Doya, K. 2002 Metalearning and neuromodulationNeural Networks 15CrossRefGoogle ScholarPubMed
Doya, K.Samejima, K.Katagiri, K.Kawato, M. 2002 Multiple model-based reinforcement learningNeural Computation 14 1347CrossRefGoogle ScholarPubMed
Fedorov, V. V. 1972 Theory of Optimal ExperimentNew YorkAcademic PressGoogle Scholar
Festinger, L. 1957 A Theory of Cognitive DissonanceEvanston, ILRow, PetersonGoogle Scholar
Fiorillo, C. D. 2004 The uncertain nature of dopamineMolecular Psychiatry 9 122CrossRefGoogle ScholarPubMed
Gibson, J. 1986 The Ecological Approach to Visual PerceptionHillsdale, NJLawrence Erlbaum AssociatesGoogle Scholar
Grace, A. A. 1991 Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophreniaNeuroscience 41CrossRefGoogle ScholarPubMed
Gray, J. A. 1982 The Neuropsychology of Anxiety: An Enquiry into the Functions of the Septo-hippocampal SystemOxford, UKClarendon PressGoogle Scholar
Gray, J. A. 1990 Brain systems that mediate both emotion and cognitionCognition and Emotion 4 269CrossRefGoogle Scholar
Grey Walter, W. 1953 The Living BrainLondonPenguinGoogle Scholar
Harlow, H. F. 1950 Learning and satiation of response in intrinsically motivated complex puzzle performances by monkeysJournal of Comparative and Physiological Psychology 43 289CrossRefGoogle Scholar
Head, H.Holmes, G. 1911 Sensory disturbances from cerebral lesionsBrain 34CrossRefGoogle Scholar
Heath, R. G. 1963 Electrical self-stimulation of the brain in ManAmerican Journal of Psychiatry 120 571CrossRefGoogle ScholarPubMed
Hebb, D. O. 1955 Drives and the C.N.S (conceptual nervous system)Psychological Review 62 243CrossRefGoogle Scholar
Hooks, M. S.Kalivas, P. W. 1994 Involvement of dopamine and excitatory amino acid transmission in novelty-induced motor activityJournal of Pharmacology and Experimental Therapeutics 269 976Google ScholarPubMed
Horvitz, J.-C. 2000 Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward eventsNeuroscience 96 651CrossRefGoogle ScholarPubMed
Horvitz, J.-C. 2002 Dopamine gating of glutamatergic sensorimotor and incentive motivational input signals to the striatumBehavioral and Brain Research 137 65CrossRefGoogle ScholarPubMed
Houk, J. C.Adams, J. L.Barto, A. G. 1995 Houk, J. C.Davis, J. L.Beiser, D. G.Models of Information Processing in the Basal GangliaCambridge, MAMIT Press, pp.Google Scholar
Huang, X.Weng, J. 2002 Prince, C.Demiris, Y.Marom, Y.Kozima, H.Balkenius, C.Proceedings of the 2nd International Workshop on Epigenetic Robotics: Modeling Cognitive Development in Robotic SystemsLund, SwedenLund UniversityGoogle Scholar
Hull, C. L. 1943 Principles of Behavior: An Introduction to Behavior TheoryNew YorkAppleton-Century-CroftGoogle Scholar
Hunt, J. McV. 1965 Nebraska Symposium on MotivationLincoln, NEUniversity of Nebraska Press189
Ikemoto, S.Panksepp, J. 1999 The role of nucleus accumbens dopamine in motivated behavior: a unifying interpretation with special reference to reward-seekingBrain Research Reviews 31 6CrossRefGoogle ScholarPubMed
Iriki, A.Tanaka, A.Iwamura, Y. 1996 Coding of modified schema during tool use by macaque postcentral neuronesCognitive Neuroscience and Neuropsychology 7 2325Google ScholarPubMed
Jaeger, H. 2001 The Echo State Approach to Analyzing and Training Recurrent Neural NetworksBonn, GermanyGerman National Research Institute for Computer Science (GMD)Google Scholar
Jaeger, H.Haas, H. 2004 Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communicationScience 304 78CrossRefGoogle ScholarPubMed
Joel, D.Niv, Y.Ruppin, E. 2002 Actor-critic models of the basal ganglia: new anatomical and computational perspectivesNeural Networks 15 535CrossRefGoogle ScholarPubMed
Jordan, M.Jacobs, R. 1994 Hierarchical mixtures of experts and the EM algorithmNeural Computation 6 181CrossRefGoogle Scholar
Kagan, J. 1972 Motives and developmentJournal of Personality and Social Psychology 22 51CrossRefGoogle ScholarPubMed
Kakade, S.Dayan, P. 2002 Dopamine: generalization and bonusesNeural Networks 15 549CrossRefGoogle ScholarPubMed
Kaplan, F. 2004 Who is afraid of the humanoid? Investigating cultural differences in the acceptance of robotsInternational Journal of Humanoid Robotics 1 465CrossRefGoogle Scholar
Kaplan, F. 2005 Les machines apprivoisees: comprendre les robots de loisirParisVuibert, Collections Automates IntelligentsGoogle Scholar
Kaplan, F.Oudeyer, P.-Y. 2003 Prince, C. G.Berthouze, L.Kozima, H.Proceedings of the 3rd International Workshop on Epigenetic Robotics: Modeling Cognitive Development in Robotic SystemsLund University Cognitive Studies 101Lund, SwedenLund University73Google Scholar
Kaplan, F.Oudeyer, P.-Y. 2006 Kaplan, F.Oudeyer, P.-Y.Revel, A.Proceedings of the Sixth International Workshop on Epigenetic Robotics: Modeling Cognitive Development in Robotic SystemsLund University Cognitive Studies 128Lund, SwedenLund UniversityGoogle Scholar
Kaplan, F.Oudeyer, P.-Y. 2007 In search of the neural circuits of intrinsic motivationFrontiers in Neuroscience 1 225CrossRefGoogle ScholarPubMed
Kaplan, F.Oudeyer, P.-Y. 2007 Nehaniv, C.Dautenhahn, K.Models and Mechanisms of Imitation and Social Learning: Behavioural, Social and Communication DimensionsCambridge, UKCambridge University Press, pp.361Google Scholar
Kaplan, F.Oudeyer, P.-Y. 2007 Un robot motivé pour apprendre: le rôle des motivations intrinsèques dans le développement sensorimoteurEnfance 59 46CrossRefGoogle Scholar
Kaplan, F.Oudeyer, P.-Y. 2008 Le corps comme variable expérimentaleLa Revue Philosophique 2008 287Google Scholar
Kaplan, F.Oudeyer, P.-Y. 2009 Stable kernels and fluid body envelopesSICE Journal of Control, Measurement, and System Integration 48Google Scholar
Kaplan, F.d’Esposito, M.Oudeyer, P.-Y. 2006 http://aibo.playroom.fr
Kaplan, F.Oudeyer, P.-Y.Bergen, B. 2007 Computational models in the debate over language learnabilityInfant and Child Development 17 55CrossRefGoogle Scholar
Kawato, M. 1999 Internal models for motor control and trajectory planningCurrent Opinion in Neurobiology 9 718CrossRefGoogle ScholarPubMed
Khamassi, M.Lachèze, L.Girard, B.Berthoz, A.Guillot, A. 2005 Actor-critic models of reinforcement learning in the basal gangliaAdaptive Behavior 13 131CrossRefGoogle Scholar
Lakoff, G.Johnson, M. 1998 Philosophy in the Flesh: The Embodied Mind and its Challenge to Western ThoughtNew YorkBasic BooksGoogle Scholar
Lakoff, G.Nunez, R. 2001 Where Mathematics Comes From: How the Embodied Mind Brings Mathematics Into BeingNew YorkBasic BooksGoogle Scholar
Lungarella, M.Metta, G.Pfeifer, R.Sandini, G. 2003 Developmental robotics: a surveyConnection Science 15 151CrossRefGoogle Scholar
Maas, W.Natschlager, T.Markram, H. 2002 Real-time computing without stable states: a new framework for neural computation based on perturbationsNeural Computation 14 2531CrossRefGoogle Scholar
Marshall, J.Blank, D.Meeden, L. 2004
McClure, S.Daw, N. D.Montague, P. R. 2003 A computational substate for incentive salienceTrends in Neurosciences 26 423CrossRefGoogle Scholar
Meltzoff, A.Gopnick, A. 1993 Baron-Cohen, Tager-Flusberg, Cohen, D.Understanding Other MindsOxfordUKOxford University Press335Google Scholar
Merleau-Ponty, M. 1942 La structure du comportementParis:Presses Universitaires de FranceGoogle Scholar
Merleau-Ponty, M. 1945 Phénoménologie de la PerceptionParisGallimardGoogle Scholar
Montague, P. R.Dayan, P.Sejnowski, T. J. 1996 A framework for mesencephalic dopamine systems based on predictive Hebbian learningJournal of Neuroscience 16 1936CrossRefGoogle ScholarPubMed
Montgomery, K. C. 1954 The role of exploratory drive in learningJournal of Comparative and Physiological Psychology 47 60CrossRefGoogle Scholar
Moore, C.Corkum, V. 1994 Social understanding at the end of the first year of lifeDevelopmental Review 14 349CrossRefGoogle Scholar
Mountcastle, V. 1978 Edelman, G.Mountcastle, V.The Mindful BrainCambridge, MAMIT Press17Google Scholar
Niv, Y.Daw, N. D.Joel, D.Dayan, P. 2006 Tonic dopamine: opportunity costs and the control of response vigorPsychopharmacology507Google ScholarPubMed
Oades, R. D. 1985 The role of noradrenaline in tuning and dopamine in switching between signals in the CNSNeuroscience Biobehavorial Review 9 261CrossRefGoogle ScholarPubMed
Oudeyer, P.-Y.Kaplan, F. 2006 Discovering communicationConnection Science 18 189CrossRefGoogle Scholar
Oudeyer, P.-Y.Kaplan, F. 2007 What is intrinsic motivation? A typology of computational approachesFrontiers in Neurorobotics 1CrossRefGoogle ScholarPubMed
Oudeyer, P.-Y.Kaplan, F.Hafner, V. V.Whyte, A. 2005 42
Oudeyer, P.-Y.Kaplan, F.Hafner, V. 2007 Intrinsic motivation systems for autonomous mental developmentIEEE Transactions on Evolutionary Computation 11 265CrossRefGoogle Scholar
Panksepp, J. 1998 Affective Neuroscience: The Foundations of Human and Animal EmotionsNew YorkOxford University PressGoogle Scholar
Pettit, H. O.Justice, J. B. 1989 Dopamine in the nucleus accumbens during cocaine self-administration as studied by in vivo microdialysisPharmacology Biochemistry and Behavior 34 899CrossRefGoogle ScholarPubMed
Pfeifer, R.Bongard, J. 2007 How the Body Shapes the Way We Think: A New View of IntelligenceCambridge, MAMIT PressGoogle Scholar
Pfeifer, R.Scheier, C. 1999 Understanding IntelligenceBoston, MAMIT PressGoogle Scholar
Piaget, J. 1952 The Origins of Intelligence in ChildrenNew YorkNorton PressCrossRefGoogle Scholar
Piaget, J. 1962 Play, Dreams and Imitation in ChildhoodNew YorkNorton PressGoogle Scholar
Ploghaus, A.Tracey, I.Clare, S. 2000 Learning about pain: the neural substrate of the prediction error of aversive eventsPNAS 97 9281CrossRefGoogle ScholarPubMed
Quaade, F.Vaernet, K.Larsson, S. 1974 Stereotaxic stimulation and electrocoagulation of the lateral hypothalamus in obese humansActa 30 111Google ScholarPubMed
Redgrave, P.Prescott, T.Gurney, K. 1999 Is the short latency dopamine response too short to signal reward error?Trends in Neurosciences 22 146CrossRefGoogle ScholarPubMed
Ring, M. 1994 Continual learning in reinforcement environmentsUniversity of Texas at AustinGoogle Scholar
Rochat, P. 2002 Melzoff, A.Prinz, W.The Imitative Mind: Development, Evolution and Brain BasesCambridge, UKCambridge University PressGoogle Scholar
Rolls, E. T. 1999 The Brain and EmotionOxford, UKOxford University PressGoogle Scholar
Roth, G.Dicke, U. 2005 Evolution of the brain and intelligenceTrends 9 250Google ScholarPubMed
Ryan, R.Deci, E.L. 2000 Intrinsic and extrinsic motivations: classic definitions and new directionsContemporary Educational Psychology 25 54CrossRefGoogle ScholarPubMed
Schaffer, H. 1977 Proceedings of Loch Lomonds SymposiumNew YorkAcademic Press, pp.3Google Scholar
Schilder, P. 1935 L’image du corpsParisGallimardGoogle Scholar
Schmidhuber, J. 1991
Schmidhuber, J. 1992 Learning complex, extended sequences using the principle of history compressionNeural Computation 4 234CrossRefGoogle Scholar
Schmidhuber, J. 2006 Optimal artificial curiosity, developmental robotics, creativity, music, and the fine artsConnection Science 18 173CrossRefGoogle Scholar
Schultz, W. 1998 Predictive reward signal of dopamine neuronsJournal of Neurophysiology 80 1CrossRefGoogle ScholarPubMed
Schultz, W. 2006 Behavioral theories and the neurophysiology of rewardAnnual Review of Psychology 57 87CrossRefGoogle Scholar
Schultz, W.Dayan, P.Montague, P. R. 1997 A neural substrate of prediction and rewardScience 275 1593CrossRefGoogle ScholarPubMed
Shepherd, G. M. 1988 Gazzaniga, M.Perspectives in Memory ResearchCambridge, MA:MIT Press93Google Scholar
Smith, A.Li, M.Becker, S.Kapur, S. 2006 Dopamine, prediction error and associative learning: a model-based accountNetwork: Computation in Neural Systems 17 61CrossRefGoogle ScholarPubMed
Steels, L. 1994 The artificial life roots of artificial intelligenceArtificial Life Journal 1 89Google Scholar
Steels, L. 2003 Intelligence with representationPhilosophical Transactions of the Royal Society A 361 2381CrossRefGoogle ScholarPubMed
Steels, L. 2004 Fumiya, I.Pfeifer, R.Steels, L.Kunyoshi, K.Embodied Artificial IntelligenceBerlinSpringer Verlag231CrossRefGoogle Scholar
Stellar, J. R. 1985 The Neurobiology of Motivation and RewardNew YorkSpringer VerlagCrossRefGoogle Scholar
Storck, J.Hochreiter, S.Schmidhuber, J. 1995 Proceedings of ICANN 1995: International Conference on Artificial Neural NetworksParisEC2159Google Scholar
Suri, R. E.Schultz, W. 2001 Temporal difference model reproduces anticipatory neural activityNeural Computation 13 841CrossRefGoogle ScholarPubMed
Sutton, R. S. 1988 Learning to predict by the methods of temporal differencesMachine Learning 3 9CrossRefGoogle Scholar
Sutton, R. S.Barto, A. G. 1998 Reinforcement Learning: An IntroductionCambridge, MAMIT PressGoogle Scholar
Sutton, R. S.Precup, D.Singh, S. 1999 Between MDPSs and semi-MDPs: a framework for temporal abstraction in reinforcement learningArtificial Intelligence 112 181CrossRefGoogle Scholar
Tani, J. 2007 On the interactions between top-down anticipation and bottom-up regressionFrontiers in Neurorobotics 1CrossRefGoogle ScholarPubMed
Tani, J.Nolfi, S. 1999 Learning to perceive the world as articulated: an approach for hierarchical learning in sensory-motor systemsNeural Network 12 1131CrossRefGoogle ScholarPubMed
Thorndike, E. L. 1911 Animal Intelligence: Experimental StudiesNew YorkMacmillanCrossRefGoogle Scholar
Turing, A. 1950 Computing machinery and intelligenceMind 59 433CrossRefGoogle Scholar
Varela, F. J.Thompson, E.Rosch, E. 1991 The Embodied Mind: Cognitive Science And Human ExperienceCambridge, MAMIT PressGoogle Scholar
von Uexküll, J. 1909 Umwelt und Innenwelt der TiereBerlinSpringerGoogle Scholar
Vygotsky, L. 1978 Mind in Society: The Development of Higher Psychological ProcessesCambridge, MAHarvard University PressGoogle Scholar
Walkins, C. J. C. H.Dayan, P. 1992 Q-learningMachine Learning 8 279CrossRefGoogle Scholar
Warnier, J-P. 1999 Construire la culture materielle: l’homme qui pensait avec les doigtsParisPresses Universitaires de FranceCrossRefGoogle Scholar
Weinberger, D. R. 1987 Implications of normal brain development for the pathogenesis of schizophreniaArchives in General Psychiatry 44 660CrossRefGoogle ScholarPubMed
Weiner, I.Joel, D. 2002 Chiara, G. D.Handbook of Experimental Pharmacology. Vol 154/II: Dopamine in the CNS IIBerlinSpringer417Google Scholar
White, N. M. 1989 Reward or reinforcement: what’s the difference?Neuroscience Biobehavorial Review 13 181CrossRefGoogle ScholarPubMed
White, R. N. 1959 Motivation reconsidered: the concept of competencePsychological Review 66 297CrossRefGoogle Scholar
Wiering, M.Schmidhuber, J. 1997 HQ-learningAdaptive Behavior 6 219CrossRefGoogle Scholar
Wise, R. A. 1989 Liebman, J. M.Cooper, S. J.The Neuropharmacological Basis of RewardOxford, UKClarendon Press377Google Scholar
Yoshimoto, K.McBride, W.J.Lumeng, L.Li, T.-K. 1991 Alcohol stimulates the release of dopamine and serotonin in the nucleus accumbensAlcohol 9 17CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×