Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-17T19:25:13.566Z Has data issue: false hasContentIssue false

20 - Intravenous feeding

Published online by Cambridge University Press:  10 December 2009

Patti J. Thureen
Affiliation:
University of Colorado at Denver and Health Sciences Center
William C. Heird
Affiliation:
Department of Pediatrics, Children's Nutrition Research Center and Baylor College of Medicine, Houston, TX
William W. Hay
Affiliation:
University of Colorado at Denver and Health Sciences Center
Get access

Summary

Total parenteral nutrition as practiced today was not a part of modern medicine until the late 1960s. Having demonstrated that normal growth of puppies could be achieved solely with parenterally administered nutrients, Dudrick et al. adapted the technique used in animals for clinical use. Shortly thereafter, Wilmore and Dudrick described use of this new technique in treatment of an infant who had virtually no remaining small intestine and, therefore, was totally dependent upon parenterally delivered nutrients. Although the infant eventually succumbed, normal growth and development was maintained for several months solely with parenterally delivered nutrients.

This successful attempt to deliver sufficient nutrients parenterally was preceded by centuries of unsuccessful attempts beginning shortly after description of the circulatory system in the early seventeenth century and the realization that ingested nutrients reached the circulation. These attempts included infusion of wine, ale, olive oil, and milk. As easily predicted today, most were disasters. However, two of three patients who received milk infusions for treatment of cholera in the early 1800s survived but whether this was because of, or despite, the milk infusions is not clear. Since the practice was not continued, the latter seems more likely.

By the late 1800s the potentially deleterious effects of catabolism and starvation were recognized, rekindling interest in ability to provide nutrients parenterally. This resulted in development of products that could be delivered parenterally and, by the early 1940s, glucose and protein hydrolysates that could be delivered safely by the parenteral route were available.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dudrick, S. J., Wilmore, D. W., Vars, H. M.Long term total parenteral nutrition with growth in puppies and positive nitrogen balance in patients. Surg. Forum. 1967;18:356.Google Scholar
Dudrick, S. J., Wilmore, D. W., Vars, H. M., Rhoads, J. E.Long term parenteral nutrition with growth, development, and positive nitrogen balance. Surgery 1968;64:134–42.Google ScholarPubMed
Wilmore, D. M., Dudrick, S. J.Growth and development of an infant receiving all nutrients by vein. J. Am. Med. Assoc. 1968;203:860–4.CrossRefGoogle ScholarPubMed
Wretlind, A.Total parenteral nutrition. Surg. Clin. N. Am. 1978;58:1055–70.CrossRefGoogle Scholar
Wilmore, D. W. The history of parenteral nutrition. In Baker, R. D., Baker, S. S., Davis, A. M., eds. Pediatric Parenteral Nutrition. New York, NY: Chapman and Hall; 1997:1–6.Google Scholar
Helfrick, F. W., Abelson, N. M.Intravenous feeding of a complete diet in a child: a report of a case. J. Pediatr. 1944;25:400–3.CrossRefGoogle Scholar
Heird, W. C. Parenteral nutrition. In Grand, R. J., Sutphen, J. L., Dietz, W. H. Jr, eds. Pediatric Nutrition: Theory and Practice. Boston, MA: Butterworths; 1987:747–61.Google Scholar
Filler, R. M., Eraklis, A. J., Rubin, V. G., Das, J. B.Long-term parenteral nutrition in infants. N. Engl. J. Med. 1969; 281: 589–94.CrossRefGoogle ScholarPubMed
Heird, W. C., Winters, R. W.Total parenteral nutrition: the state of the art. J. Pediatr. 1975;86:2–16.CrossRefGoogle ScholarPubMed
Keating, J. P., Ternberg, J. L.Amino acid-hypertonic glucose treatment for intractable diarrhea in infants. Am. J. Dis. Child. 1971;122:226–8.Google ScholarPubMed
Driscoll, J. M. Jr, Heird, W. C., Schullinger, J. N., Gongaware, R. D., Winters, R. W.Total intravenous alimentation in low birth weight infants: a preliminary report. J. Pediatr. 1972;81:145–53.CrossRefGoogle ScholarPubMed
Peden, V. H., Karpel, J. T.Total parenteral nutrition in premature infants. J. Pediatr. 1972;81:137–44.CrossRefGoogle ScholarPubMed
Ehrenkrantz, R. A., Younes, N., Lemons, J. A.et al.Longitudinal growth of hospitalized very low birth weight infants. Pediatrics 1999;104:280–9.CrossRefGoogle Scholar
Heird, W. C. Nutritional support of the pediatric patient. In Winters, R. W., Greene, H. L., eds. Nutritional Support of the Seriously Ill Patient. New York, NY: Academic Press; 1983:157–79.Google Scholar
Heird, W. C. Parenteral feeding. In Sinclair, J. C., Bracken, M. B., eds. Effective Care of the Newborn Infant. Oxford: Oxford University Press; 1992:141–60.Google Scholar
Mulvihill, S. J., Fonkalsrud, E. W.Complication of superior versus inferior vena cava occlusion in infants receiving central Total Parenteral Nutrition. J. Pediatr. Surg. 1984;19:752.CrossRefGoogle Scholar
Shaw, J. C. L.Parenteral nutrition in the management of sick low birth weight infants. Pediatr. Clin. N. Am. 1973;20:333–58.CrossRefGoogle Scholar
Shulman, R. J., Pokorny, W. J., Martin, C. G., Petitt, R., Baldaia, L., Roney, D.Comparison of percutaneous and surgical placement of central venous catheters in neonates. J. Pediatr. Surg. 1986;21:348–50.CrossRefGoogle ScholarPubMed
Nakamura, K. T., Sato, Y., Erenberg, A.Evaluation of a percutaneously placed 27-gauge central venous catheter in neonates weight <1200 grams. J. Parenter. Enteral Nutr. 1990;14:295–9.CrossRefGoogle ScholarPubMed
Chathas, M. K., Paton, J. B., Fisher, D. E.Percutaneous central venous catheterization. Am. J. Dis. Child. 1990;144:1246–50.CrossRefGoogle ScholarPubMed
Jacobowski, D., Ziegler, M. D., Perreira, G.Complications of pediatric parenteral nutrition: central versus peripheral administration. J. Parenter. Enteral Nutr. 1979;3:29.Google Scholar
Dunn, L., Hulman, S., Weiner, J., Kliegman, R.Beneficial effects of early hypocaloric enteral feeding on neonatal gastrointestinal function: preliminary report of a randomized trial. J. Pediatr. 1988;112:622–9.CrossRefGoogle ScholarPubMed
Slagle, T. A., Gross, S. J.Effect of early low-volume enteral substrate on subsequent feeding tolerance in very low birth weight infants. J. Pediatr. 1988;113:526–31.CrossRefGoogle ScholarPubMed
Meetze, W. H., Valentine, C., McGuigan, J. E.et al.Gastrointestinal priming prior to full enteral nutrition in very low birth weight infants. J. Pediatr. Gastroenterol. Nutr. 1992;15:163–70.CrossRefGoogle ScholarPubMed
Friedman, Z., Danon, A., Stahlman, M. T., Oates, J. A.Rapid onset of essential acid deficiency in the newborn. Pediatrics 1976;58:640–9.Google ScholarPubMed
Friedman, Z., Frolich, C.Essential fatty acids and the major urinary metabolites of the E prostaglandins in thriving neonates and infants receiving parenteral fat emulsions. Pediatr. Res. 1979;13:932–6.CrossRefGoogle Scholar
Committee on Nutrition, American Academy of Pediatrics. Use of intravenous fat emulsions in pediatric patients. Pediatrics 1981;68:738–43.
Heller, R. M., Kirchner, S. G., O'Neill, J. A. Jr, et al.Skeletal changes of copper deficiency in infants receiving prolonged total parenteral nutrition. J. Pediatr. 1978;92:947–9.CrossRefGoogle ScholarPubMed
Jeejeebhoy, K. N., Chu, R. C., Marliss, E. B., Greenberg, G. R., Bruce-Robertson, A.Chromium deficiency, glucose intolerance, and neuropathy reversed by chromium supplementation, in a patient receiving long-term total parenteral nutrition. Am. J. Clin. Nutr. 1977;30:531–8.CrossRefGoogle Scholar
Kien, C. L., Ganther, H. E.Manifestations of chronic selenium deficiency in a child receiving total parenteral nutrition. Am. J. Clin. Nutr. 1983;37:319–28.CrossRefGoogle Scholar
Abumrad, N. N., Schneider, A. J., Steel, D., Rogers, L. S.Amino acid intolerance during prolonged total parenteral nutrition reversed by molybdate therapy. Am. J. Clin. Nutr. 1981;34:2551–9.CrossRefGoogle ScholarPubMed
Zlotkin, S. H., Bryan, M. H., Anderson, G. H.Intravenous nitrogen and energy intakes required to duplicate in utero nitrogen accretion in prematurely born human infants. J. Pediatr. 1981;99:115–20.CrossRefGoogle ScholarPubMed
Anderson, T. L., Muttart, C., Bieber, M. A., Nicholson, J. F., Heird, W. C.A controlled trial of glucose vs glucose and amino acids in premature infants. J. Pediatr. 1979;94:947–51.CrossRefGoogle Scholar
Saini, J., MacMahon, P., Morgan, J. B., Kovar, I. Z.Early parenteral feeding of amino acids. Arch. Dis. Child. 1989;64:1362–6.CrossRefGoogle ScholarPubMed
Mitton, S. G., Garlick, P. J.Changes in protein turnover after the introduction of parenteral nutrition in premature infants: comparison of breast milk and egg protein-based amino acid solutions. Pediatr. Res. 1992;32:447–54.CrossRefGoogle ScholarPubMed
Rivera, A., Bell, E. F., Bier, D. M.Effect of intravenous amino acids on protein metabolism of preterm infants during the first three days of life. Pediatr. Res. 1993;33:106–11.CrossRefGoogle ScholarPubMed
Goudoever, J. B., Colen, T., Wattimena, J. L. D.et al.Immediate commencement of amino acid supplementation in preterm infants: effect on serum amino acid concentrations and protein kinetics on the first day of life. J. Pediatr. 1995;127:458–65.CrossRefGoogle ScholarPubMed
Thureen, P. J., Melara, D., Fennessey, P. V., Hay, W. W. Jr.Effect of low versus high intravenous amino acid intake on very low birth weight infants in the early neonatal period. Pediatr. Res. 2003;53:24–32.CrossRefGoogle ScholarPubMed
Kashyap, S., Heird, W. C. Protein requirements of low birthweight, very low birthweight, and small for gestational age infants. In Räihä, N. C. R., ed. Nestle Nutrition Workshop Series: Protein Metabolism During Infancy. New York, NY: Nestec Ltd., Vevey/Raven Press;1994:133–51.Google Scholar
Duffy, B., Gunn, T., Collinge, J., Pencharz, P.The effect of varying protein quality and energy intake on the nitrogen metabolism of parenterally fed very low birth weight (1600 g) infants. Pediatr. Res. 1981;15:1040–4.CrossRefGoogle Scholar
Helms, R. A., Christensen, M. L., Mauer, E. C., Storm, M. C.Comparison of a pediatric versus standard amino acid formulation in preterm neonates requiring parenteral nutrition. J. Pediatr. 1987;110:466–72.CrossRefGoogle ScholarPubMed
Heird, W. C., Hay, W., Helms, R. A.et al.Pediatric parenteral amino acid mixture in low birth weight infants. Pediatrics 1988;81:41–50.Google ScholarPubMed
Winters, R. W., Heird, W. C., Dell, R. B., Nicholson, J. F. Plasma amino acids in infants receiving parenteral nutrition. In Greene, H. L., Holliday, M. A., Munro, H. N., eds. Clinical Nutrition Update: Amino Acids. Chicago, IL: American Medical Association; 1977:147–54.Google Scholar
Roberts, S. A., Ball, R. O., Filler, R. M., Moore, A. M., Pencharz, P. B.Phenylalanine and tyrosine metabolism in neonates receiving parenteral nutrition differing in pattern of amino acids. Pediatr. Res. 1998;44:907–14.CrossRefGoogle ScholarPubMed
Wykes, L. J., House, J. D., Ball, R. O., Pencharz, P. B.Aromatic amino acid metabolism of neonatal piglets receiving total parental nutrition: effect of tyrosine precursors. Am. J. Physiol. 1994;267:E672–9.Google Scholar
Sturman, J. A., Gaull, G. A., Räihä, N. C. R.Absence of cystathionase in human liver: is cystine essential?Science 1970;169:74–6.CrossRefGoogle ScholarPubMed
Zlotkin, S. H., Anderson, G. H.The development of cystathionase activity during the first year of life. Pediatr. Res. 1982;16:65–8.CrossRefGoogle ScholarPubMed
Räihä, N. C. R.Phenylalanine hydroxylase in human liver during development. Pediatr. Res. 1973;7:1–4.CrossRefGoogle ScholarPubMed
Chawla, R. K., Berry, C. J., Kutner, M. H., Rudman, D.Plasma concentrations of transsulfuration pathway products during nasoenteral and intravenous hyperalimentation of malnourished patients. Am. J. Clin. Nutr. 1985;42:577–84.CrossRefGoogle ScholarPubMed
Zlotkin, S. H., Bryan, M. H., Anderson, G. H.Cysteine supplementation to cysteine-free intravenous feeding regimens in newborn infants. Am. J. Clin. Nutr. 1981;34:914–23.CrossRefGoogle ScholarPubMed
Malloy, M. H., Rassin, D. K., Richardson, C. J.Total parenteral nutrition in sick preterm infants: effects of cysteine supplementation with nitrogen intakes of 240 & 400 mg/kg/d. J. Pediatr. Gastroenterol. Nutr. 1984;3:239–44.CrossRefGoogle Scholar
Goudoever, J. B., Sulkers, E. J., Timmerman, M.Amino acid solutions for premature infants during the first week of life: the role of N-acetyl-L-cysteine and N-acetyl-L-tyrosine. J. Parenter. Enteral Nutr. 1994;18:404–8.CrossRefGoogle ScholarPubMed
Roberts, S. A., Ball, R. O., Moore, A. M., Filler, R. M., Pencharz, P. B.The effect of graded intake of glycyl-L-tyrosine on phenylalanine and tyrosine metabolism in parenterally fed neonates with an estimation of tyrosine requirement. Pediatr. Res. 2001;49:111–19.CrossRefGoogle ScholarPubMed
Souba, W. W., Austgen, T. R.Interorgan glutamine flow following surgery and infection. J. Parenter. Enteral Nutr. 1990;14:90S–3S.CrossRefGoogle ScholarPubMed
Lacey, J. M., Wilmore, D. W.Is glutamine a conditionally essential amino acid?Nutr. Rev. 1990;48:297–309.CrossRefGoogle ScholarPubMed
Poindexter, B. B., Ehrenkranz, R. A., Stoll, B. J.et al.Effect of parenteral glutamine supplementation on plasma amino acid concentrations in extremely low-birth-weight infants. Am. J. Clin. Nutr. 2003;77:737–43.CrossRefGoogle ScholarPubMed
Poindexter, B. B., Ehrenkrantz, R. A., Stoll, B. J.et al.Parenteral glutamine supplementation in ELBW infants: a multicenter randomized clinical trial. Pediatr. Res. 2002;51:317A.Google Scholar
Weinstein, M. R., Oh, W.Oxygen consumption in infants with bronchopulmonary dysplasia. J. Pediatr. 1981;99:958–61.CrossRefGoogle ScholarPubMed
Munro, H. N. General aspects of the regulation of protein metabolism by diet and hormone. In Munro, H. N., ed. Mammalian Protein Metabolism, Vol. I. Biochemical Aspects of Protein Metabolism. New York, NY: Academic Press; 1964:381–481.Google Scholar
Pineault, M., Chessex, P., Bisaillon, S., Brisson, G.Total parenteral nutrition in the newborn: impact of the quality of infused energy on nitrogen metabolism. Am. J. Clin. Nutr. 1988;47:298–304.CrossRefGoogle ScholarPubMed
Bresson, J. L., Bader, B., Rocchiccioli, F.et al.Protein-metabolism kinetics and energy-substrate utilization in infants fed parenteral solutions with different glucose-fat ratios. Am. J. Clin. Nutr. 1991;54:370–6.CrossRefGoogle ScholarPubMed
Heird, W. C. Lipid metabolism in parenteral nutrition. In Fomon, S. J., Heird, W. C., eds. Energy and Protein Needs During Infancy. New York, NY: Academic Press; 1986:215–29.Google Scholar
Andrew, G., Chan, G., Schiff, D.Lipid metabolism in the neonate. I. The effect of intralipid infusion on plasma triglyceride and free fatty acid concentrations in the neonate. J. Pediatr. 1976;88:273–8.Google Scholar
Greene, H. L., Hazlett, D., Demaree, R.Relationship between intralipid-induced hyperlipidemia and pulmonary function. Am. J. Clin. Nutr. 1976;29:127–35.CrossRefGoogle ScholarPubMed
Pereira, G. R., Fox, W. W., Stanley, C. A., Baker, L., Schwartz, J. G.Decreased oxygenation and hyperlipidemia during intravenous fat infusions in premature infants. Pediatrics 1980;66:26–30.Google Scholar
Loo, L. S., Tang, J. P., Kohl, S.The inhibition of leukocyte cellular cytotoxicity to herpes simplex virus in vitro and in vivo by intralipid. J. Infect. Dis. 1982;146:64–70.CrossRefGoogle ScholarPubMed
Cleary, T. C., Pickering, L. K.Mechanisms of intralipid effect on polymorpho-nuclear leukocytes. J. Clin. Lab. Immunol. 1983;11:21–6.Google Scholar
Odell, G. B., Cukier, J. O., Ostrea, E. M. Jr, Maglalang, A. C., Poland, R. L.The influence of fatty acids on the binding of bilirubin to albumin. J. Lab. Clin. Med. 1977;89:295–307.Google ScholarPubMed
Penn, D., Schmidt-Sommerfeld, E., Pascu, F.Decreased carnitine concentration in newborn infants receiving total parenteral nutrition. Early Hum. Dev. 1979;4:23–8.CrossRefGoogle Scholar
Schmidt-Sommerfeld, E., Penn, D., Wolf, H.Carnitine deficiency in premature infants receiving total parenteral nutrition: effect of L-carnitine supplementation. J. Pediatr. 1983;102:931–5.CrossRefGoogle ScholarPubMed
Orzali, A., Donzelli, F., Enzi, G., Rubaltelli, F. F.Effect of carnitine on lipid metabolism in the newborn. I. Carnitine supplementation during total parenteral nutrition in the first 48 hours of life. Biol. Neonate. 1983;43:186–90.CrossRefGoogle Scholar
Christensen, M. L., Helms, R. A., Mauer, E. C., Storm, M. C.Plasma carnitine concentration and lipid metabolism in infants receiving parenteral nutrition. J. Pediatr. 1989; 115:794–8.CrossRefGoogle ScholarPubMed
Helms, R. A., Whitington, P. F., Mauer, E. C.et al.Enhanced lipid utilization in infants receiving oral L-carnitine during long-term parenteral nutrition. J. Pediatr. 1986;109:984–8.CrossRefGoogle ScholarPubMed
Sulkers, E. J., Lafeber, H. N., Degenhart, H. J.et al.Effects of high carnitine supplementation on substrate utilization in low-birth-weight infants receiving total parenteral nutrition. Am. J. Clin. Nutr. 1990;52:889–94.CrossRefGoogle ScholarPubMed
Holman, R. T., Johnson, S. B., Hatch, T. F.A case of human linolenic acid deficiency involving neurological abnormalities. Am. J. Clin. Nutr. 1982;35:617–23.CrossRefGoogle ScholarPubMed
Bjerve, K. S., Fischer, S., Alme, K.Alpha-linolenic acid deficiency in man: effect of ethyl linolenate on plasma and erythrocyte fatty acid composition and biosynthesis of prostanoids. Am. J. Clin. Nutr. 1987b;46:570–6.CrossRefGoogle Scholar
Brans, Y. W., Andrew, D. S., Carrillo, D. W.et al.Tolerance of fat emulsions in very-low-birth-weight neonates. Am. J. Dis. Child. 1988;142:145–52.Google ScholarPubMed
Koo, W. W. K., Tsang, R. C.Bone mineralization in infants. Prog. Food Nutr. Sci. 1984;8:229–302.Google ScholarPubMed
Koo, W. W. K., Tsang, R. C. Rickets in infants. In Nelson, N. M., ed. Current Therapy in Neonatal Perinatal Medicine. Philadelphia, PA: BC Decker; 1985:299–304.Google Scholar
Ziegler, E. E., O'Donnell, A. M., Nelson, S. E., Fomon, S. J.Body composition of the reference fetus. Growth 1976;40:329–41.Google ScholarPubMed
Koo, W. W. K., Tsang, R. C., Steichen, J. J.et al.Parenteral nutrition for infants: effect of high versus low calcium and phosphorus content. J. Pediatr. Gastroenterol. Nutr. 1987;6:96–104.CrossRefGoogle ScholarPubMed
Prestridge, L. L., Schanler, R. J., Shulman, R. J., Burns, P. A., Laine, L. L.Effect of parenteral calcium and phosphorus therapy on mineral retention and bone mineral content in very low birth weight infants. J. Pediatr. 1993;122:761–8.CrossRefGoogle ScholarPubMed
Arakaw, T., Tamura, T., Igarasi, Y., Suzuki, M., Sandstead, M. M.Zinc deficiency in two infants during total parenteral alimentation for diarrhea. Am. J. Clin. Nutr. 1976;29:197–204.CrossRefGoogle Scholar
Greene, H. L., Hambidge, K. M., Schanler, R., Tsang, R. C.Guidelines for the use of vitamins, trace elements, calcium, magnesium, and phosphorus in infants and children receiving total parenteral nutrition: report of the subcommittee on pediatric parenteral nutrient requirements from the committee on clinical practice issues of the American Society for Clinical Nutrition. Am. J. Clin. Nutr. 1988;48:1324–42.CrossRefGoogle Scholar
Collins, J. W. Jr, Hoope, M., Brown, K.et al.A controlled trial of insulin infusion in parenteral nutrition in extremely low birth weight infants with glucose intolerance. J. Pediatr. 1991;118:921–7.CrossRefGoogle ScholarPubMed
Poindexter, B. B., Karn, C. A., Denne, S. C.Exogenous insulin reduces proteolysis and protein synthesis in extremely low birth weight infants. J. Pediatr. 1998;132:948–53.CrossRefGoogle ScholarPubMed
Haumont, D., Deckelbaum, R. J., Richelle, M.et al.Plasma lipid and plasma lipoprotein concentrations in low birth weight infants given parenteral nutrition with 20% compared to 10% Intralipid. J. Pediatr. 1989;115:787–93.CrossRefGoogle Scholar
Fielding, C. J.Human lipoprotein lipase inhibition of activity by cholesterol. Biochim. Biophys. Acta 1970;218:221–6.CrossRefGoogle Scholar
Deckelbaum, R. J., Hamilton, J., Moser, A.et al.Medium chain versus long chain triacylglycerol emulsion hydrolysis by lipoprotein lipase and hepatic lipase: implications for the mechanisms of lipase action. Biochemistry 1990;29:1136–42.CrossRefGoogle ScholarPubMed
Park, W., Paust, H., Brösicke, M. S., Knoblach, G., Helge, H.Impaired fat utilization in parenterally fed low-birth-weight infants suffering from sepsis. J. Parenter. Enteral Nut. 1986;10:627–30.CrossRefGoogle ScholarPubMed
Goldman, D. A., Martin, W. T., Worthington, J. W.Growth of bacteria and fungi in total parenteral nutrition solutions. Am. J. Surg. 1973;126:314–18.CrossRefGoogle Scholar
McKee, K. T. Jr, Melly, M. A., Greene, H. L., Schaffner, W.Gram-negative bacillary sepsis associated with use of lipid emulsion in parenteral nutrition. Am. J. Dis. Child. 1979;133:649–50.Google ScholarPubMed
Sosenko, I. R. S., Rodriguez-Pierce, M., Bacalari, E.Effect of early initiation of intravenous lipid administration on the incidence and severity of chronic lung disease in premature infants. J. Pediatr. 1993;123:975–82.CrossRefGoogle ScholarPubMed
Carnielli, V. P., Wattimena, J. D. L., Luijendijk, I. H.et al.The very-low-birth-weight premature infant is capable of synthesizing arachidonic and docosahexaenoic acid from linoleic and linolenic acid. Pediatr. Res. 1996;40:169–74.CrossRefGoogle Scholar
Salem, N. Jr., Wegher, B., Mena, P., Uauy, R.Arachidonic and docosahexaenoic acids are biosynthesized from their 18-carbon precursors in human infants. Proc. Natl. Acad. Sci. USA 1996;93:49–54.CrossRefGoogle ScholarPubMed
Sauerwald, T. U., Hachey, D. L., Jensen, C. L.et al.Intermediates in endogenous synthesis of C22:6ω3 and C20:4ω6 by term and preterm infants. Pediatr. Res. 1997;41:183–7.CrossRefGoogle Scholar
Uauy, R., Mena, P., Wegher, B., Nieto, S., Salem, N. Jr.Long chain polyunsaturated fatty acid formation in neonates: effect of gestational age and intrauterine growth. Pediatr. Res. 2000;47:127–35.CrossRefGoogle ScholarPubMed
Clandinin, M. T., Chappell, J. E., Leong, S.et al.Intrauterine fatty acid accretion rates in human brain: implications for fatty acid requirements. Early Hum. Dev. 1980;4:121–9.CrossRefGoogle ScholarPubMed
Martinez, M., Ballabriga, A.Effect of parenteral nutrition with high doses of linoleate on the developing human liver and brain. Lipids 1987;22:133–8.CrossRefGoogle Scholar
Heird, W. C. The role of essential fatty acids in development. In Hay, W. W., Thureen, P., eds. Neonatal Nutrition and Metabolism. 2005.Google Scholar
Friedman, Z., Frolich, J. C.Essential fatty acids and the major urinary metabolites of the E prostaglandins in thriving neonates and in infants receiving parenteral fat emulsions. Pediatr. Res. 1979;13:926–32.CrossRefGoogle Scholar
Feldman, E. J., Dowling, R. H., McNaughton, J., Peters, T. J.Effects of oral versus intravenous nutrition on intestinal adaptation after small bowel resection in the dog. Gastroenterology 1976;70:712–9.Google ScholarPubMed
Johnson, L. R., Copeland, E. M., Dudrick, S. J., Lichtenberger, L. M., Castro, G. A.Structural and hormonal alterations in the gastrointestinal tract of parenterally fed rats. Gastroenterology 1975;68:1177–83.Google ScholarPubMed
Lipman, T. O.Bacterial translocation and enteral nutrition in humans: an outsider looks in. J. Parenter. Enteral Nutr. 1995;19:156–65.CrossRefGoogle Scholar
Lucas, A., Bloom, S. R., Aynsley-Green, A.Metabolic and endocrine effects of depriving preterm infants of enteral nutrition. Acta Paediatr. Scand. 1983;72:245–9.CrossRefGoogle Scholar
Levine, G. M., Deren, J. J., Steiger, E., Zinno, R.Role of oral intake in maintenance of gut mass and disaccharidase activity. Gastroenterology 1974;67:975–82.Google Scholar
Castro, G. A., Copeland, E. M., Dudrick, S. J., Johnson, L. R.Intestinal disaccharidase and peroxidase activities in parenterally nourished rats. J. Nutr. 1975;105:776–81.CrossRefGoogle ScholarPubMed
Shwachman, H., Lloyd-Still, J. D., Khaw, K. T., Antonowicz, I.Protracted diarrhea of infancy treated with intravenous alimentation. II. Studies of small intestinal biopsy results. Am. J. Dis. Child. 1973;125:365–8.CrossRefGoogle ScholarPubMed
Greene, H. L., McCabe, D. R., Merenstein, G. B.Intractable diarrhea and malnutrition in infancy: changes in intestinal morphology and disaccharidase activities during treatment with total intravenous nutrition or oral elemental diets. J. Pediatr. 1975;87:695–704.CrossRefGoogle ScholarPubMed
Burrin, D. G., Stoll, B., Chang, X.et al.Parenteral nutrition results in impaired lactose digestion and hexose absorption when enteral feeding is initiated in infant pigs. Am. J. Clin. Nutr. 2003;78:461–70.CrossRefGoogle ScholarPubMed
Merritt, R. J.Cholestasis associated with total parenteral nutrition. J. Pediatr. Gastroenterol. Nutr. 1980;5:9–22.CrossRefGoogle Scholar
Black, D. D., Suttle, E. A., Whitington, P. F., Whitington, G. L., Korones, S. D.The effect of short-term total parenteral nutrition on hepatic function in the human neonate: a prospective randomized study demonstrating alteration of hepatic canalicular function. J. Pediatr. 1981;99:445–9.CrossRefGoogle ScholarPubMed
Brown, M. R., Thunberg, B. J., Golub, L.et al.Decreased cholestasis with enteral instead of intravenous protein in the very low-birth-weight infant. J. Pediatr. Gastroenterol. Nutr. 1989;9:21–7.CrossRefGoogle ScholarPubMed
Forchielli, M. L., Gura, K. M., Sandler, R., Lo, C.Aminosyn PF or trophamine: which provides more protection from cholestasis associated with total parenteral nutrition?J. Pediatr. Gastroenterol. Nutr. 1995;21:374–82.CrossRefGoogle ScholarPubMed
Cooke, R. J., Whitington, P. F., Kelts, D.Effect of taurine supplementation on hepatic function during short-term parenteral nutrition in the premature infant. J. Pediatr. Gastroenterol. Nutr. 1984;3:234–8.CrossRefGoogle ScholarPubMed
Tyson, J. E., Kennedy, K. A., Cochrane Neonatal Group. Minimal enteral nutrition for promoting feeding tolerance and preventing morbidity in parenterally fed infants. Cochrane Database Syst. Rev. 2000;2:CD000504.Google Scholar
Owens, L., Burrin, D. G., Berseth, C. L.Minimal enteral feeding induces maturation of intestinal motor function but not mucosal growth in neonatal dogs. J. Nutr. 2002;132:2717–22.CrossRefGoogle Scholar
Schreiner, R. L., Glick, M. R., Nordschow, C. D.et al.An evaluation of methods to monitor infants receiving intravenous lipids. J. Pediatr. 1979;94:197–200.CrossRefGoogle ScholarPubMed
Schanler, R. J., Shulman, R. J., Lau, C., Smith, E. O., Heitkemper, M.Feeding strategies for preterm infants: randomized trial of time of initiation and method of feeding. Pediatrics 1999;103:434–9.CrossRefGoogle ScholarPubMed
Dice, J. E., Burckart, G. J., Woo, J. T., Helms, R. A.Standardized versus pharmacist-monitored individualized parenteral nutrition in low-birth-weight infants. Am. J. Hosp. Pharm. 1981;38:1487–9.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Intravenous feeding
    • By William C. Heird, Department of Pediatrics, Children's Nutrition Research Center and Baylor College of Medicine, Houston, TX
  • Patti J. Thureen, University of Colorado at Denver and Health Sciences Center
  • Edited by William W. Hay, University of Colorado at Denver and Health Sciences Center
  • Book: Neonatal Nutrition and Metabolism
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544712.021
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Intravenous feeding
    • By William C. Heird, Department of Pediatrics, Children's Nutrition Research Center and Baylor College of Medicine, Houston, TX
  • Patti J. Thureen, University of Colorado at Denver and Health Sciences Center
  • Edited by William W. Hay, University of Colorado at Denver and Health Sciences Center
  • Book: Neonatal Nutrition and Metabolism
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544712.021
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Intravenous feeding
    • By William C. Heird, Department of Pediatrics, Children's Nutrition Research Center and Baylor College of Medicine, Houston, TX
  • Patti J. Thureen, University of Colorado at Denver and Health Sciences Center
  • Edited by William W. Hay, University of Colorado at Denver and Health Sciences Center
  • Book: Neonatal Nutrition and Metabolism
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544712.021
Available formats
×