Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-14T11:23:24.438Z Has data issue: false hasContentIssue false

Chapter II - Elements of the Mathematical Theory of the Navier–Stokes Equations

Published online by Cambridge University Press:  14 August 2009

C. Foias
Affiliation:
Indiana University, Bloomington
R. Rosa
Affiliation:
Universidade Federal do Rio de Janeiro
R. Temam
Affiliation:
Indiana University, Bloomington
Get access

Summary

Introduction

The purpose of this chapter is to recall some elements of the classical mathematical theory of the Navier–Stokes equations (NSE). We try also to explain the physical background of this theory for the physics-oriented reader.

As they stand, the Navier–Stokes equations are presumed to embody all of the physics inherent in the given incompressible, viscous fluid flow. Unfortunately, this does not automatically guarantee that the solutions to those equations satisfy the given physics. In fact, it is not even guaranteed a priori that a satisfactory solution exists. This chapter addresses the means for specifying function spaces – that is, the ensembles of functions consistent with the physics of the situation (such as incompressibility, boundedness of energy and enstrophy, as well as the prescribed boundary conditions) – that can serve as solutions to the Navier–Stokes equations. An important point is made that the kinematic pressure, p, is determined uniquely by the velocity field up to an additive constant. Hence, one cannot specify independently the initial boundary conditions for the pressure. This observation leads naturally to a representation of the NSE by an abstract differential equation in a corresponding function space for the velocity field.

Two types of boundary conditions are considered: no-slip, which are relevant to flows in domains bounded by solid impermeable walls; and space-periodic boundary conditions, which serve to study some idealized flows (including homogeneous flows) far away from real boundaries.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×