Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-pwrkn Total loading time: 0 Render date: 2024-09-24T16:50:15.406Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  19 April 2019

Ahmed Ali
Affiliation:
Deutsches Elektronen-Sychrotron (DESY), Hamburg
Luciano Maiani
Affiliation:
Università degli Studi di Roma 'La Sapienza', Italy
Antonio D. Polosa
Affiliation:
Università degli Studi di Roma 'La Sapienza', Italy
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Multiquark Hadrons , pp. 216 - 230
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aaij, R., et al. 2012a. Measurement of b-hadron production fractions in 7 TeV pp collisions. Phys. Rev., D85, 032008.Google Scholar
Aaij, R., et al. 2012b. Observation of X(3872) production in pp collisions at TeV. Eur. Phys. J., C72, 1972.Google Scholar
Aaij, R., et al. 2013a. Determination of the X(3872) meson quantum numbers. Phys. Rev. Lett., 110, 222001.CrossRefGoogle ScholarPubMed
Aaij, R., et al. 2013b. Implications of LHCb measurements and future prospects. Eur. Phys. J., C73(4), 2373.Google Scholar
Aaij, R., et al. 2014a. Study of the kinematic dependences of production in pp collisions and a measurement of the branching fraction. JHEP, 08, 143.Google Scholar
Aaij, R., et al. 2014b. Observation of the decay. JHEP, 07, 103.Google Scholar
Aaij, R., et al. 2014c. Observation of the resonant character of the Z(4430) state. Phys. Rev. Lett., 112(22), 222002.CrossRefGoogle ScholarPubMed
Aaij, R., et al. 2014d. Precision measurement of the ratio of the to lifetimes. Phys. Lett., B734, 122130.CrossRefGoogle Scholar
Aaij, R., et al. 2015a. Measurement of production in proton-proton collisions at TeV. Phys. Rev. Lett., 114, 132001.Google ScholarPubMed
Aaij, R., et al. 2015b. Observation of J/ψp resonances consistent with pentaquark states in decays. Phys. Rev. Lett., 115, 072001.CrossRefGoogle ScholarPubMed
Aaij, R., et al. 2016a. Evidence for exotic hadron contributions to decays. Phys. Rev. Lett., 117(8), 082003. [Addendum: Phys. Rev. Lett., 117(10), 109902 (2016)].CrossRefGoogle ScholarPubMed
Aaij, R., et al. 2016b. Search for structure in the invariant mass spectrum. Phys. Rev. Lett., 117(15), 152003. [Addendum: Phys. Rev. Lett., 118(10), 109904 (2017)].Google ScholarPubMed
Aaij, R., et al. 2017a. Observation of five new narrow states decaying to Phys. Rev. Lett., 118(18), 182001.CrossRefGoogle ScholarPubMed
Aaij, R., et al. 2017b. Observation of J/ψϕ structures consistent with exotic states from amplitude analysis of B+J/ψϕK+ decays. Phys. Rev. Lett., 118(2), 022003.CrossRefGoogle ScholarPubMed
Aaij, R., et al. 2017c. Observation of the doubly charmed baryon Phys. Rev. Lett., 119(11), 112001.CrossRefGoogle ScholarPubMed
Aaltonen, T., et al. 2009. Evidence for a narrow near-threshold structure in the J/ψϕ mass spectrum in B+J/ψϕK+ decays. Phys. Rev. Lett., 102, 242002.CrossRefGoogle Scholar
Abazov, V. M., et al. 2004. Observation and properties of the X(3872) decaying to J/ψπ+π in collisions at TeV. Phys. Rev. Lett., 93, 162002.CrossRefGoogle Scholar
Abazov, V. M., et al. 2016. Evidence for a state. Phys. Rev. Lett., 117(2), 022003.Google ScholarPubMed
Abdel-Rehim, A., Black, D., Fariborz, A. H., and Schechter, J. 2003. Chiral Lagrangian treatment of the scalar mesons: An overview. AIP Conf. Proc., 687, 5161. [51 (2003)].CrossRefGoogle Scholar
Abe, K., et al. 2006. Study of the Y (4260) resonance in e+ e- collisions with initial state radiation at Belle. In: Proceedings of the 33rd International Conference on High Energy Physics (ICHEP’06): Moscow, Russia, July 26–August 2, 2006.Google Scholar
Abele, A., et al. 1998. annihilation at rest into K(L)K±π. Phys. Rev. D57 , 3860.Google Scholar
Ablikim, M., et al. 2005. Resonances in J/Ψ → ϕπ+π and ϕK+K. Phys. Lett., B607, 243253.CrossRefGoogle Scholar
Ablikim, M., et al. 2011. Observation of charged κ in at BESII. Phys. Lett., B698, 183190.CrossRefGoogle Scholar
Ablikim, M., et al. 2013a. Observation of a charged charmonium-like structure in e+eπ+π J/Ψ at GeV. Phys. Rev. Lett., 110, 252001.CrossRefGoogle Scholar
Ablikim, M., et al. 2013b. Observation of a charged charmonium-like structure Zc(4020) and search for the Zc(3900) in e+eπ+πhc. Phys. Rev. Lett., 111(24), 242001.CrossRefGoogle Scholar
Ablikim, M., et al. 2014. Observation of e+eγ X(3872) at BESIII. Phys. Rev. Lett., 112(9), 092001.CrossRefGoogle Scholar
Ablikim, M., et al. 2015. Observation of the isospin-violating decay J/Ψ → π0 f0(980). Phys. Rev., D92(1), 012007.Google Scholar
Ablikim, M., et al. 2008. Observation of Y(2175) in J/Ψ → ηϕf (0)(980). Phys. Rev. Lett., 100, 102003.CrossRefGoogle Scholar
Ablikim, M., et al. 2017a. Evidence of two resonant structures in e+eπ+πhc. Phys. Rev. Lett., 118(9), 092002.CrossRefGoogle Scholar
Ablikim, M., et al. 2017b. Precise measurement of the e+eπ+πJ/ψ cross section at center-of-mass energies from 3.77 to 4.60 GeV. Phys. Rev. Lett., 118(9), 092001.CrossRefGoogle ScholarPubMed
Acosta, D., et al. 2004. Observation of the narrow state X(3872) → J/ψπ+π in collisions at TeV. Phys. Rev. Lett., 93, 072001.CrossRefGoogle Scholar
Adachi, I., et al. 2008. Observation of an enhancement in e+e to Upsilon(1S) π+π, Upsilon(2S) π+π, and Upsilon(3S) π+π production around GeV at Belle. In: Proceedings of the 34th International Conference on High Energy Physics (ICHEP 2008): Philadelphia, Pennsylvania, July 30-August 5, 2008.Google Scholar
Adachi, I., et al. 2012. First observation of the P-wave spin-singlet bottomonium states hb(1P) and hb(2P). Phys. Rev. Lett., 108, 032001.CrossRefGoogle ScholarPubMed
Adam, J., et al. 2016. Production of light nuclei and anti-nuclei in pp and Pb-Pb collisions at energies available at the CERN Large Hadron Collider. Phys. Rev., C93(2), 024917.Google Scholar
Ader, J. P., Richard, J. M., and Taxil, P. 1982. Do narrow heavy multi-quark states exist? Phys. Rev., D25, 2370.Google Scholar
Adler, S. L. 1969. Axial vector vertex in spinor electrodynamics. Phys. Rev., 177, 24262438.CrossRefGoogle Scholar
Agaev, S. S., Azizi, K., and Sundu, H. 2016. Strong decays in QCD. Phys. Rev., D93(7), 074002.Google Scholar
Agaev, S. S., Azizi, K., and Sundu, H. 2017. On the nature of the newly discovered Ω states. EPL, 118(6), 61001.CrossRefGoogle Scholar
Aitala, E. M., et al. 2001. Experimental evidence for a light and broad scalar resonance in D+ππ+π+ decay. Phys. Rev. Lett., 86, 770774.CrossRefGoogle Scholar
Aitala, E. M., et al. 2002. Dalitz plot analysis of the decay D+Kπ+π+ and indication of a low-mass scalar resonance. Phys. Rev. Lett., 89, 121801.CrossRefGoogle ScholarPubMed
Alberti, M., Bali, G. S., Collins, S., Knechtli, F., Moir, G., and Soeldner, W. 2017. Hadroquarkonium from lattice QCD. Phys. Rev., D95(7), 074501.Google Scholar
Albuquerque, R., Narison, S., Fanomezana, F., Rabemananjara, A., Rabetiarivony, D., and Randriamanatrika, G. 2016. XYZ-like Spectra from Laplace Sum Rule at N2LO in the Chiral Limit. Int. J. Mod. Phys., A31(36), 1650196.Google Scholar
Alford, Mark G., and Jaffe, R. L. 2000. Insight into the scalar mesons from a lattice calculation. Nucl. Phys., B578, 367382.CrossRefGoogle Scholar
Ali, A., and Wang, W. 2011. Production of the Exotic 1−− Hadrons ϕ(2170), X(4260) and Yb(10890) at the LHC and Tevatron via the Drell–Yan Mechanism. Phys. Rev. Lett., 106, 192001.CrossRefGoogle Scholar
Ali, A., Hambrock, C., Ahmed, I., and Aslam, M. J. 2010a. A case for hidden tetraquarks based on cross section between and 11.20 GeV. Phys. Lett., B684, 2839.CrossRefGoogle Scholar
Ali, A., Hambrock, C., and Aslam, M. J. 2010b. A Tetraquark interpretation of the BELLE data on the anomalous Upsilon(1S) pi+pi- and Upsilon(2S) pi+pi- production near the Upsilon(5S) resonance. Phys. Rev. Lett., 104, 162001. [Erratum: Phys. Rev. Lett. 107, 049903 (2011)].CrossRefGoogle ScholarPubMed
Ali, A., Hambrock, C., and Mishima, S. 2011. Tetraquark-based analysis and predictions of the cross sections and distributions for the processes e+ e- –¿ Upsilon(1S) (pi+ pi-, K+ K- eta pi0) near Upsilon(5S). Phys. Rev. Lett., 106, 092002.CrossRefGoogle Scholar
Ali, A., Hambrock, C., and Wang, W. 2012. Tetraquark Interpretation of the Charged Bottomonium-like states (10610) and and Implications. Phys. Rev., D85, 054011.Google Scholar
Ali, A., Maiani, L., Polosa, A. D., and Riquer, V. 2015. Hidden-Beauty Charged Tetraquarks and Heavy Quark Spin Conservation. Phys. Rev., D91(1), 017502.Google Scholar
Ali, A., Maiani, L., Polosa, A. D., and Riquer, V. 2016a. decays into tetraquarks. Phys. Rev., D94(3), 034036.Google Scholar
Ali, A., Ahmed, I., Aslam, M. J., and Rehman, A. 2016b. Heavy quark symmetry and weak decays of the b-baryons in pentaquarks with a component. Phys. Rev., D94(5), 054001.Google Scholar
Ali, A., Lange, J. S., and Stone, S. 2017. Exotics: Heavy Pentaquarks and Tetraquarks.CrossRefGoogle Scholar
Ali, A., Maiani, L., Borisov, A. V., Ahmed, I., Jamil Aslam, M., Parkhomenko, A. Ya., Polosa, A. D., and Rehman, A. 2018a. A new look at the Y tetraquarks and Ωc baryons in the diquark model. Eur. Phys. J., C78(1), 29.Google Scholar
Ali, A., Qin, Q., and Wang, W. 2018b. Discovery potential of stable and near-threshold doubly heavy tetraquarks at the LHC. Phys. Lett., B785 ,605609.CrossRefGoogle Scholar
Ali, A., Parkhomenko, A. Ya., Qin, Q., and Wang, W. 2018c. Prospects of discovering stable double-heavy tetraquarks at a Tera-Z factory. Phys. Lett., B782, 412420.CrossRefGoogle Scholar
Aliev, T. M., Bilmis, S., and Savci, M. 2017. Are the new excited Ωc baryons negative parity states? Arxiv:1704.03439.Google Scholar
Altarelli, Guido, Ellis, R. Keith, and Martinelli, G. 1978. Leptoproduction and Drell-Yan Processes Beyond the Leading Approximation in Chromodynamics. Nucl. Phys., B143, 521. [Erratum: Nucl. Phys., B146, 544 (1978)].CrossRefGoogle Scholar
Alwall, J., Frederix, R., Frixione, S., Hirschi, V., Maltoni, F., Mattelaer, O., Shao, H. S., Stelzer, T., Torrielli, P., and Zaro, M. 2014. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. JHEP, 07, 079.Google Scholar
Ambrosino, F., et al. 2009a. Scalar mesons at KLOE. Nucl. Phys. Proc. Suppl., 186, 290293.CrossRefGoogle Scholar
Ambrosino, F., et al. 2009b. Study of the a(0)(980) meson via the radiative decay ϕηπ0γ with the KLOE detector. Phys. Lett., B681, 513.CrossRefGoogle Scholar
Amsler, C., Eidelman, S., Gutsche, T., Hanhart, C., Spanier, S., and Tornqvist, N. A. 2013. Note on Scalar Mesons below 2 GeV. Chin. Phys. C38 , 090001.Google Scholar
Amsler, Claude, and Tornqvist, N. A. 2004. Mesons beyond the naive quark model. Phys. Rept., 389, 61117.CrossRefGoogle Scholar
Anisovich, V. V., Matveev, M. A., Nyiri, J., Sarantsev, A. V., and Semenova, A. N. 2015. Pentaquarks and resonances in the pJ/ψ spectrum. Arxiv:1507.07652.Google Scholar
Artoisenet, P., and Braaten, E. 2010. Production of the X(3872) at the Tevatron and the LHC. Phys. Rev., D81, 114018.Google Scholar
Aubert, B., et al. 2003. Observation of a narrow meson decaying to at a mass of 2.32-GeV/c2. Phys. Rev. Lett., 90, 242001.CrossRefGoogle Scholar
Aubert, B., et al. 2005a. Observation of a broad structure in the π+πJ/ψ mass spectrum around 4.26-GeV/c2. Phys. Rev. Lett., 95, 142001.CrossRefGoogle ScholarPubMed
Aubert, B., et al. 2005b. Study of the BJ/ψKπ+π decay and measurement of the BX(3872)K branching fraction. Phys. Rev., D71, 071103.Google Scholar
Aubert, B., et al. 2006. A Structure at 2175-MeV in e+eϕ f0(980) Observed via Initial-State Radiation. Phys. Rev., D74, 091103.Google Scholar
Aubert, B., et al. 2009. Search for the Z(4430)- at BABAR. Phys. Rev., D79, 112001.Google Scholar
Bali, G. S. 2003. The D+(s J )(2317): What can the lattice say? Phys. Rev., D68, 071501.Google Scholar
Bardeen, W. A., Eichten, E. J., and Hill, C. T. 2003. Chiral multiplets of heavy–light mesons. Phys. Rev., D68, 054024.Google Scholar
Barnes, T., Close, F. E., and Lipkin, H. J. 2003. Implications of a DK molecule at 2.32-GeV. Phys. Rev., D68, 054006.Google Scholar
Bauer, G. 2005. The X(3872) at CDF II. Int. J. Mod. Phys., A20, 37653767.Google Scholar
Beane, S. R., Chang, E., Cohen, S. D., Detmold, W., Lin, H. W., Orginos, K., Parreo, A., and Savage, M. J. 2015. Quarkonium-nucleus bound states from lattice QCD. Phys. Rev., D91(11), 114503.Google Scholar
Belavin, A. A., Polyakov, Alexander M., Schwartz, A. S., and Tyupkin, Yu. S. 1975. Pseudoparticle Solutions of the Yang-Mills Equations. Phys. Lett., B59, 8587.CrossRefGoogle Scholar
Bell, J. S., and Jackiw, R. 1969. A PCAC puzzle: pi0 – gamma gamma in the sigma model. Nuovo Cim., A60, 4761.CrossRefGoogle Scholar
Bernard, V., Hoja, D., Meissner, U. G., and Rusetsky, A. 2012. Matrix elements of unstable states. JHEP, 09, 023.Google Scholar
Besson, D., et al. 2003. Observation of a narrow resonance of mass 2.46-GeV/c**2 decaying to D*+(s) pi0 and confirmation of the D*(sJ)(2317) state. Phys. Rev., D68, 032002. [Erratum: Phys. Rev.D75,119908(2007)].Google Scholar
Bicudo, P., and Wagner, M. 2013. Lattice QCD signal for a bottom-bottom tetraquark. Phys. Rev., D87(11), 114511.Google Scholar
Bicudo, P., Cichy, K., Peters, A., Wagenbach, B., and Wagner, M. 2015. Evidence for the existence of and the non-existence of and tetraquarks from lattice QCD. Phys. Rev., D92(1), 014507.Google Scholar
Bicudo, P., Cichy, K., Peters, A., and Wagner, M. 2016. BB interactions with static bottom quarks from Lattice QCD. Phys. Rev., D93(3), 034501.Google Scholar
Bicudo, P., Scheunert, J., and Wagner, M. 2017a. Including heavy spin effects in the prediction of a tetraquark with lattice QCD potentials. Phys. Rev., D95(3), 034502.Google Scholar
Bicudo, P., Cardoso, M., Peters, A., Pflaumer, M., and Wagner, M. 2017b. tetraquark resonances with lattice QCD potentials and the Born–Oppenheimer approximation. Phys. Rev., D96(5), 054510.Google Scholar
Bignamini, C., Grinstein, B., Piccinini, F., Polosa, A. D., and Sabelli, C. 2009. Is the X(3872) production cross section at tevatron compatible with a hadron molecule interpretation? Phys. Rev. Lett., 103, 162001.CrossRefGoogle ScholarPubMed
Black, D., Fariborz, A. H., and Schechter, J. 2000. Mechanism for a next-to-lowest lying scalar meson nonet. Phys. Rev., D61, 074001.Google Scholar
Bodwin, G. T., Braaten, E., and Lepage, G. P. 1995. Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium. Phys. Rev., D51, 11251171.Google Scholar
Bondar, A., et al. 2012. Observation of two charged bottomonium-like resonances in Y(5S) decays. Phys. Rev. Lett., 108, 122001.CrossRefGoogle Scholar
Bondar, A. E., Garmash, A., Milstein, A. I., Mizuk, R., and Voloshin, M. B. 2011. Heavy quark spin structure in Zb resonances. Phys. Rev., D84, 054010.Google Scholar
Borchi, E, and Gatto, R. 1965. Assignment of higher Boson resonances to a p-wave multiplet of SU6. Phys. Lett., 14, 352354.CrossRefGoogle Scholar
Born, M., and Oppenheimer, R. 1927. Zur quantentheorie der molekln. Annalen der Physik, 389, 457.CrossRefGoogle Scholar
Braaten, E., and Kusunoki, M. 2004. Low-energy universality and the new charmonium resonance at 3870-MeV. Phys. Rev., D69, 074005.Google Scholar
Braaten, E., Langmack, C., and Smith, D. H. 2014. Born–Oppenheimer approximation for the XYZ mesons. Phys. Rev., D90(1), 014044.Google Scholar
Brambilla, N., et al. 2011. Heavy quarkonium: progress, puzzles, and opportunities. Eur. Phys. J., C71, 1534.Google Scholar
Brambilla, N., Vairo, A., and Rosch, T. 2005. Effective field theory Lagrangians for baryons with two and three heavy quarks. Phys. Rev., D72, 034021.Google Scholar
Braun, V. M. 1997. Light cone sum rules. Pages 105–118 of: Progress in heavy quark physics. Proceedings, 4th International Workshop, Rostock, Germany, September 20-22, 1997.Google Scholar
Briceno, R. A. 2015. Few-body physics. PoS, LATTICE2014, 008.Google Scholar
Briceno, R. A., Hansen, M. T., and Sharpe, S. R. 2017. Relating the finite-volume spectrum and the two-and-three-particle S matrix for relativistic systems of identical scalar particles. Phys. Rev., D95(7), 074510.Google Scholar
Brodsky, S. J., Hwang, D. S., and Lebed, R. F. 2014. Dynamical Picture for the Formation and Decay of the Exotic XYZ Mesons. Phys. Rev. Lett., 113(11), 112001.CrossRefGoogle ScholarPubMed
Brown, L. S., and Cahn, R. N. 1975. Chiral Symmetry and ψ′ → ψ + π + π Decay. Phys. Rev. Lett., 35, 1.CrossRefGoogle Scholar
Bugg, D. V. 2008a. How Resonances can synchronise with Thresholds. J. Phys., G35, 075005.Google Scholar
Bugg, D. V. 2008b. Re-analysis of data on a(0)(1450) and a(0)(980). Phys. Rev., D78, 074023.Google Scholar
Bugg, D. V. 2011. An Explanation of Belle states Zb(10610) and Zb(10650). EPL, 96(1), 11002.CrossRefGoogle Scholar
Burns, T. J. 2015. Phenomenology of Pc(4380)+, Pc(4450)+ and related states. Eur. Phys. J., A51(11), 152.Google Scholar
Burns, T. J., and Swanson, E. S. 2016. Interpreting the X (5568). Phys. Lett., B760, 627633.CrossRefGoogle Scholar
Butenschoen, M., He, Z.-G., and Kniehl, B. A. 2013. NLO NRQCD disfavors the interpretation of X(3872) as χc1(2P). Phys.Rev., D88, 011501.Google Scholar
Cabibbo, N., Benhar, O., and Maiani, L. 2018. An Introduction to Gauge Theories. New York: CRC Press.Google Scholar
Callan, Jr., Curtis, G., Coleman, Sidney R., Wess, J., and Zumino, Bruno. 1969. Structure of phenomenological Lagrangians. 2. Phys. Rev., 177, 22472250.CrossRefGoogle Scholar
Caprini, I., Colangelo, G., and Leutwyler, H. 2006. Mass and width of the lowest resonance in QCD. Phys. Rev. Lett., 96, 132001.CrossRefGoogle ScholarPubMed
Carlson, J., Heller, L., and Tjon, J. A. 1988. Stability of Dimesons. Phys. Rev., D37, 744.Google Scholar
Casalbuoni, R., Deandrea, A., Di Bartolomeo, N., Gatto, Raoul, Feruglio, F., and Nardulli, G. 1997. Phenomenology of heavy meson chiral Lagrangians. Phys. Rept., 281, 145238.CrossRefGoogle Scholar
Chatrchyan, S., et al. 2013. Measurement of the X(3872) production cross section via decays to J/psi pi pi in pp collisions at sqrt(s) = 7 TeV. JHEP, 04, 154.Google Scholar
Chen, B., Wei, K.-W., and Zhang, A. 2015a. Assignments of ΛQ and ΞQ baryons in the heavy quark-light diquark picture. Eur. Phys. J., A51, 82.Google Scholar
Chen, D.-Y., Liu, X., and Zhu, S.-L. 2011a. Charged bottomonium-like states Zb(10610) and Zb(10650) and the decay. Phys. Rev., D84, 074016.Google Scholar
Chen, D.-Y., He, J., Li, X.-Q., and Liu, X. 2011b. Dipion invariant mass distribution of the anomalous and production near the peak of . Phys. Rev., D84, 074006.Google Scholar
Chen, H.-X., Maiani, L., Polosa, A. D., and Riquer, V. 2015b. Y(4260) → γ +X(3872) in the diquarkonium picture. Eur. Phys. J., C75(11), 550.Google Scholar
Chen, H.-X., Chen, W., Liu, X., Steele, T. G., and Zhu, S.-L. 2015c. Towards exotic hidden-charm pentaquarks in QCD. Phys. Rev. Lett., 115(17), 172001.Google ScholarPubMed
Chen, H.-X., Chen, W., Liu, X., and Zhu, S.-L. 2016. The hidden-charm pentaquark and tetraquark states. Phys. Rept., 639, 1121.CrossRefGoogle Scholar
Chen, K. F., et al. 2008. Observation of anomalous Upsilon(1S) pi+ pi- and Upsilon(2S) pi+ pi- production near the Upsilon(5S) resonance. Phys. Rev. Lett., 100, 112001.CrossRefGoogle ScholarPubMed
Chen, R., Liu, X., Li, X.-Q., and Zhu, S.-L. 2015d. Identifying exotic hidden-charm pentaquarks. Phys. Rev. Lett., 115(13), 132002.Google ScholarPubMed
Chen, W., Steele, T. G., Chen, H.-X., and Zhu, S.-L. 2015e. Mass spectra of Zc and Zb exotic states as hadron molecules. Phys. Rev., D92(5), 054002.Google Scholar
Chen, W., Steele, T. G., Chen, H.-X., and Zhu, S.-L. 2015f. Zc(4200)+ decay width as a charmonium-like tetraquark state. Eur. Phys. J., C75(8), 358.Google Scholar
Cheng, H.-Y., and Hou, W.-S. 2003. B decays as spectroscope for charmed four quark states. Phys. Lett., B566, 193200.CrossRefGoogle Scholar
Cherman, A., Cohen, T. D., and Lebed, R. F. 2009. All you need is N: Baryon spectroscopy in two large N limits. Phys. Rev., D80, 036002.Google Scholar
Cheung, G. K. C., O’Hara, C., Moir, G., Peardon, M., Ryan, S. M., Thomas, C. E., and Tims, D. 2016. Excited and exotic charmonium, Ds and D meson spectra for two light quark masses from lattice QCD. JHEP, 12, 089.Google Scholar
Chilikin, K., et al. 2014. Observation of a new charged charmonium like state in decays. Phys. Rev., D90(11), 112009.Google Scholar
Cho, P. L. 1992. Chiral perturbation theory for hadrons containing a heavy quark: The Sequel. Phys. Lett., B285, 145152.CrossRefGoogle Scholar
Cho, P. L. 1993. Heavy hadron chiral perturbation theory. Nucl. Phys., B396, 183204. [Erratum: Nucl. Phys., B421, 683 (1994)].CrossRefGoogle Scholar
Choi, S. K., et al. 2003. Observation of a narrow charmonium-like state in exclusive B±K±π+πJ/Ψ decays. Phys. Rev. Lett., 91, 262001.CrossRefGoogle Scholar
Choi, S. K., et al. 2008. Observation of a resonance-like structure in the π±ψ′ mass distribution in exclusive B±ψ′ decays. Phys. Rev. Lett., 100, 142001.CrossRefGoogle Scholar
Cleven, M., Guo, F.-K., Hanhart, C., Wang, Q., and Zhao, Q. 2015. Employing spin symmetry to disentangle different models for the XYZ states. Phys. Rev., D92(1), 014005.Google Scholar
Close, F. E., and Page, P. R. 2005. Gluonic charmonium resonances at BaBar and BELLE? Phys. Lett., B628, 215222.CrossRefGoogle Scholar
Close, F. E., and Tornqvist, Nils A. 2002. Scalar mesons above and below 1-GeV. J. Phys., G28, R249–R267.Google Scholar
Coan, T. E., et al. 2006. Charmonium decays of Y(4260), psi(4160) and psi(4040). Phys. Rev. Lett., 96, 162003.CrossRefGoogle Scholar
Cohen, T. D., and Lebed, R. F. 2014. Are There Tetraquarks at Large Nc in QCD(F)? Phys. Rev., D90(1), 016001.Google Scholar
Cohen, T. D., Shafer, D. L., and Lebed, R. F. 2010. Baryons in QCD(AS) at Large N(c): A Roundabout Approach. Phys. Rev., D81, 036006.Google Scholar
Colangelo, P., and De Fazio, F. 2003. Understanding D(sJ)(2317). Phys. Lett., B570, 180184.CrossRefGoogle Scholar
Colangelo, P., and Khodjamirian, A. 2000. QCD sum rules, a modern perspective.CrossRefGoogle Scholar
Coleman, S. R. 1980. 1/N. Page 0011 of: 17th International School of Subnuclear Physics: Pointlike Structures Inside and Outside Hadrons Erice, Italy, July 31-August 10, 1979.Google Scholar
Coleman, S. R., Wess, J., and Zumino, B. 1969. Structure of phenomenological Lagrangians. 1. Phys. Rev., 177, 22392247.CrossRefGoogle Scholar
Collins, J. C., Soper, D. E., and Sterman, G. F. 1985. Transverse Momentum Distribution in Drell-Yan Pair and W and Z Boson Production. Nucl. Phys., B250, 199224.CrossRefGoogle Scholar
Corrigan, E., and Ramond, P. 1979. A Note on the Quark Content of Large Color Groups. Phys. Lett., 87B, 7374.CrossRefGoogle Scholar
Cotugno, G., Faccini, R., Polosa, A. D., and Sabelli, C. 2010. Charmed Baryonium. Phys. Rev. Lett., 104, 132005.CrossRefGoogle ScholarPubMed
Daldrop, J. O., Davies, C. T. H., and Dowdall, R. J. 2012. Prediction of the bottomonium D-wave spectrum from full lattice QCD. Phys. Rev. Lett., 108, 102003.CrossRefGoogle ScholarPubMed
Danilkin, I. V., Orlovsky, V. D., and Simonov, Yu. A. 2012. Hadron interaction with heavy quarkonia. Phys. Rev., D85, 034012.Google Scholar
De Rujula, A., Georgi, Howard, and Glashow, S. L. 1975. Hadron Masses in a Gauge Theory. Phys. Rev., D12, 147162.Google Scholar
De Rujula, A., Georgi, Howard, and Glashow, S. L. 1977. Molecular Charmonium: A New Spectroscopy? Phys. Rev. Lett., 38, 317.CrossRefGoogle Scholar
d’Enterria, D. G. 2003. Hard scattering cross-sections at LHC in the Glauber approach: From pp to pA and AA collisions. Nucl-ex/0302016.Google Scholar
Dolen, R., Horn, D., and Schmid, C. 1968. Finite energy sum rules and their application to pi N charge exchange. Phys. Rev., 166, 17681781.CrossRefGoogle Scholar
Donald, G. C., Davies, C. T. H., Dowdall, R. J., Follana, E., Hornbostel, K., Koponen, J., Lepage, G. P., and McNeile, C. 2012. Precision tests of the J/ψ from full lattice QCD: mass, leptonic width and radiative decay rate to ηc. Phys. Rev., D86, 094501.Google Scholar
Doring, M., Meissner, Ulf-G., Oset, E., and Rusetsky, A. 2011. Unitarized chiral perturbation theory in a finite volume: scalar meson sector. Eur. Phys. J., A47, 139.Google Scholar
Dowdall, R. J., Davies, C. T. H., Hammant, T. C., and Horgan, R. R. 2012. Precise heavy-light meson masses and hyperfine splittings from lattice QCD including charm quarks in the sea. Phys. Rev., D86, 094510.Google Scholar
Dowdall, R. J., et al. 2012. The Upsilon spectrum and the determination of the lattice spacing from lattice QCD including charm quarks in the sea. Phys. Rev., D85, 054509.Google Scholar
Drenska, N. V., Faccini, R., and Polosa, A. D. 2008. Higher Tetraquark Particles. Phys. Lett., B669, 160166.CrossRefGoogle Scholar
Drenska, N. V., Faccini, R., and Polosa, A. D. 2009. Exotic Hadrons with Hidden Charm and Strangeness. Phys. Rev., D79, 077502.Google Scholar
Dubynskiy, S., and Voloshin, M. B. 2008. Hadro-Charmonium. Phys. Lett., B666, 344346.CrossRefGoogle Scholar
Ebert, D., Faustov, R. N., Galkin, V. O., and Martynenko, A. P. 2002. Mass spectra of doubly heavy baryons in the relativistic quark model. Phys. Rev., D66, 014008.Google Scholar
Ebert, D., Faustov, R. N., and Galkin, V. O. 2011. Spectroscopy and Regge trajectories of heavy baryons in the relativistic quark-diquark picture. Phys. Rev., D84, 014025.Google Scholar
Edmonds, A. R. 1957. Angular Momentum in Quantum Mechanics. Princeton: Princeton University Press.CrossRefGoogle Scholar
Eichten, E. J., and Quigg, C. 2017. Heavy-quark symmetry implies stable heavy tetraquark mesons . Phys. Rev. Lett., 119(20), 202002.CrossRefGoogle ScholarPubMed
Escribano, R., and Frere, J.-M. 2005. Study of the eta - eta-prime system in the two mixing angle scheme. JHEP, 06, 029.Google Scholar
Esposito, A., Piccinini, F., Pilloni, A., and Polosa, A. D. 2013a. A Mechanism for Hadron Molecule Production in p pbar(p) Collisions. J. Mod. Phys., 4, 15691573.CrossRefGoogle Scholar
Esposito, A., Papinutto, M., Pilloni, A., Polosa, A. D., and Tantalo, N. 2013b. Doubly charmed tetraquarks in Bc and Ξbc decays. Phys. Rev., D88(5), 054029.Google Scholar
Esposito, A., Guerrieri, A. L., Maiani, L., Piccinini, F., Pilloni, A., Polosa, A. D., and Riquer, V. 2015. Observation of light nuclei at ALICE and the X(3872) conundrum. Phys. Rev., D92(3), 034028.Google Scholar
Esposito, A., Pilloni, A., and Polosa, A. D. 2016a. Hybridized Tetraquarks. Phys. Lett., B758, 292295.CrossRefGoogle Scholar
Esposito, A., Pilloni, A., and Polosa, A. D. 2016b. Multiquark Resonances.CrossRefGoogle Scholar
Faessler, Amand, Gutsche, Thomas, Lyubovitskij, Valery E., and Ma, Yong-Liang. 2007. Strong and radiative decays of the D(s0)*(2317) meson in the DK-molecule picture. Phys. Rev., D76, 014005.Google Scholar
Fariborz, A. H., Jora, R., and Schechter, J. 2008. Note on a sigma model connection with instanton dynamics. Phys. Rev., D77, 094004.Google Scholar
Feynman, R. P. 1973. Photon-hadron interactions.Google Scholar
Flatte, S. M. 1976. Coupled - Channel Analysis of the pi eta and K anti-K Systems Near K anti-K Threshold. Phys. Lett., B63, 224227.CrossRefGoogle Scholar
Fleming, S., and Mehen, T. 2006. Doubly heavy baryons, heavy quark-diquark symmetry and NRQCD. Phys. Rev., D73, 034502.Google Scholar
Francis, A., Hudspith, R. J., Lewis, R., and Maltman, K. 2017. Lattice Prediction for Deeply Bound Doubly Heavy Tetraquarks. Phys. Rev. Lett., 118(14), 142001.CrossRefGoogle ScholarPubMed
Gasiorowicz, S., and Rosner, J. L. 1981. Hadron Spectra and Quarks. Am. J. Phys., 49, 954.CrossRefGoogle Scholar
Gell-Mann, M. 1964. A Schematic Model of Baryons and Mesons. Phys. Lett., 8, 214215.CrossRefGoogle Scholar
Ghosh, R., Bhattacharya, A., and Chakrabarti, B. 2015. The masses of and in the quasi particle diquark model. A study on and in the quasi particle diquark model, Phys. Part. Nucl. Lett. 14(2017), 550552.CrossRefGoogle Scholar
Gockeler, M., Horsley, R., Lage, M., Meissner, U. G., Rakow, P. E. L., Rusetsky, A., Schierholz, G., and Zanotti, J. M. 2012. Scattering phases for meson and baryon resonances on general moving-frame lattices. Phys. Rev., D86, 094513.Google Scholar
Godfrey, S., and Isgur, N. 1985. Mesons in a Relativized Quark Model with Chromodynamics. Phys. Rev., D32, 189231.Google Scholar
Godfrey, S. 2003. Testing the nature of the D(sJ)*(2317)+ and D(sJ)(2463)+ states using radiative transitions. Phys. Lett., B568, 254260.CrossRefGoogle Scholar
Gokhroo, G., et al. 2006. Observation of a Near-threshold Enhancement in Decay. Phys. Rev. Lett., 97, 162002.CrossRefGoogle ScholarPubMed
Green, M. B., Schwarz, J. H., and Witten, E. 2012. Superstring Theory Vol. 1. Cambridge University Press.CrossRefGoogle Scholar
Guerrieri, A. L., Piccinini, F., Pilloni, A., and Polosa, A. D. 2014. Production of Tetraquarks at the LHC. Phys. Rev., D90(3), 034003.Google Scholar
Guerrieri, A. L., Papinutto, M., Pilloni, , Alessandro, P., Antonio, D., and Tantalo, N. 2015. Flavored tetraquark spectroscopy. PoS-LATTICE2014, 106.Google Scholar
Guo, F.-K., Hanhart, C., and Meissner, Ulf-G. 2009. Implications of heavy quark spin symmetry on heavy meson hadronic molecules. Phys. Rev. Lett., 102, 242004.CrossRefGoogle ScholarPubMed
Guo, F.-K., Meissner, Ulf-G., Wang, W., and Yang, Z. 2015. How to reveal the exotic nature of the Pc(4450). Phys. Rev., D92(7), 071502.Google Scholar
Guo, F.-K., Hanhart, C., Meissner, Ulf-G., Wang, Q., Zhao, Q., and Zou, B.-S. 2017. Hadronic molecules. Rev. Mod. Phys. 90 (2018), 015004.Google Scholar
Hall, J. M. M., Hsu, A. C. P., Leinweber, D. B., Thomas, A. W., and Young, R. D. 2013. Finite-volume matrix Hamiltonian model for a Δ → system. Phys. Rev., D87(9), 094510.Google Scholar
Hambrock, C. 2011. b-baryon light-cone distribution amplitudes and a dynamical theory for -tetraquarks. Ph.D. thesis, Hamburg U.Google Scholar
Han, M. Y., and Nambu, Yoichiro. 1965. Three Triplet Model with Double SU(3) Symmetry. Phys. Rev., 139, B1006–B1010.CrossRefGoogle Scholar
He, J. 2016. and interactions and the LHCb hidden-charmed pentaquarks. Phys. Lett., B753, 547551.CrossRefGoogle Scholar
He, Q., et al. 2006. Confirmation of the Y(4260) resonance production in ISR. Phys. Rev., D74, 091104.Google Scholar
Hicks, K. H. 2012. On the conundrum of the pentaquark. Eur. Phys. J., H37, 131.Google Scholar
Horsley, S. A. R. 2018. Topology and the optical Dirac equation.CrossRefGoogle Scholar
Hou, W.-S. 2006. Searching for the bottom counterparts of X(3872) and Y(4260) via π+πυ. Phys. Rev., D74, 017504.Google Scholar
Hu, J., and Mehen, T. 2006. Chiral Lagrangian with heavy quark-diquark symmetry. Phys. Rev., D73, 054003.Google Scholar
Ikeda, Y. 2018. The tetraquark candidate Zc(3900) from dynamical lattice QCD simulations. J. Phys., G45(2), 024002.Google Scholar
Ikeda, Y., Charron, B., Aoki, S., Doi, T., Hatsuda, T., Inoue, T., Ishii, N., Murano, K., Nemura, H., and Sasaki, K. 2014. Charmed tetraquarks Tcc and Tcs from dynamical lattice QCD simulations. Phys. Lett., B729, 8590.CrossRefGoogle Scholar
Ikeda, Y., Aoki, S., Doi, T., Gongyo, S., Hatsuda, T., Inoue, T., Iritani, T., Ishii, N., Murano, K., and Sasaki, K. 2016. Fate of the tetraquark candidate Zc(3900) from lattice QCD. Phys. Rev. Lett., 117(24), 242001.CrossRefGoogle Scholar
Ishii, N., Aoki, S., Doi, T., Hatsuda, T., Ikeda, Y., Inoue, T., Murano, K., Nemura, H., and Sasaki, K. 2012. Hadron–hadron interactions from imaginary-time Nambu–Bethe–Salpeter wave function on the lattice. Phys. Lett., B712, 437441.CrossRefGoogle Scholar
Jaffe, R. L. 2005. Exotica. Phys. Rept., 409, 145.CrossRefGoogle Scholar
Jaffe, R. L. 1977. Multi-Quark Hadrons. 1. The Phenomenology of (2 Quark 2 anti-Quark) Mesons. Phys. Rev., D15, 267.Google Scholar
Jaffe, R. L., and Wilczek, Frank. 2003. Diquarks and exotic spectroscopy. Phys. Rev. Lett., 91, 232003.CrossRefGoogle ScholarPubMed
Janssen, G., Pearce, B. C., Holinde, K., and Speth, J. 1995. On the structure of the scalar mesons f0 (975) and a0 (980). Phys. Rev., D52, 26902700.Google Scholar
Juge, K. J., Kuti, J., and Morningstar, C. J. 1999. Ab initio study of hybrid mesons. Phys. Rev. Lett., 82, 44004403.CrossRefGoogle Scholar
Junnarkar, P., Padmanath, M., and Mathur, N. 2018. Heavy light tetraquarks from Lattice QCD. EPJ Web Conf., 175, 05014.CrossRefGoogle Scholar
Karliner, M., and Lipkin, H. J. 2008. Possibility of Exotic States in the Upsilon system. Arxiv:0802.0649.Google Scholar
Karliner, M., and Rosner, J. L. 2014. Baryons with two heavy quarks: Masses, production, decays, and detection. Phys. Rev., D90(9), 094007.Google Scholar
Karliner, M., and Rosner, J. L. 2015. New Exotic Meson and Baryon Resonances from Doubly-Heavy Hadronic Molecules. Phys. Rev. Lett., 115(12), 122001.CrossRefGoogle Scholar
Karliner, M., and Rosner, J. L. 2017a. Discovery of doubly-charmed Ξcc baryon implies a stable tetraquark. Phys. Rev. Lett., 119(20), 202001.CrossRefGoogle Scholar
Karliner, M., and Rosner, J. L. 2017b. Isospin splittings in baryons with two heavy quarks. Phys. Rev., D96(3), 033004.Google Scholar
Karliner, M., and Rosner, J. L. 2017c. Very narrow excited Ωc baryons. Phys. Rev., D95(11), 114012.Google Scholar
Karliner, M., Nussinov, S., and Rosner, J. L. 2017. states: masses, production, and decays. Phys. Rev., D95(3), 034011.Google Scholar
Kauffman, R. P. 1991. Higgs boson p(T) in gluon fusion. Phys. Rev., D44, 14151425.Google Scholar
Khachatryan, V., et al. 2017. Observation of pair production in proton-proton collisions at TeV. JHEP, 05, 013.Google Scholar
Klarsfeld, S., Martorell, J., and Sprung, D. W. L. 1984. DEUTERON PROPERTIES AND THE NUCLEON NUCLEON INTERACTION. J. Phys., G10, 165179.CrossRefGoogle Scholar
Knecht, M., and Peris, S. 2013. Narrow Tetraquarks at Large N. Phys. Rev., D88, 036016.Google Scholar
Kolomeitsev, E. E., and Lutz, M. F. M. 2004. On Heavy light meson resonances and chiral symmetry. Phys. Lett., B582, 3948.CrossRefGoogle Scholar
Krokovny, P., et al. 2013. First observation of the in a Dalitz analysis of . Phys. Rev., D88(5), 052016.Google Scholar
Kubar-Andre, J., and Paige, F. E. 1979. Gluon Corrections to the Drell-Yan Model. Phys. Rev., D19, 221.Google Scholar
Kubarovsky, V., and Voloshin, M. B. 2015. Formation of hidden-charm pentaquarks in photon-nucleon collisions. Phys. Rev., D92(3), 031502.Google Scholar
Lai, H.-L., Guzzi, M., Huston, J., Li, Z., Nadolsky, P. M., Pumplin, J., and Yuan, C. P. 2010. New parton distributions for collider physics. Phys. Rev., D82, 074024.Google Scholar
Landau, L. D. 1961. Small binding energies in Quantum Field Theory. Soviet Phys.-JETP, 12, 1294.Google Scholar
Landau, L. D., and Lifshitz, E. M. 1980. Quantum Mechanics. Course of Theoretical Physics, vol. 3. Oxford: Butterworth-Heinemann.Google Scholar
Lebed, R. F. 2013. Large-N Structure of Tetraquark Mesons. Phys. Rev., D88, 057901.Google Scholar
Lebed, R. F. 2015. The Pentaquark Candidates in the Dynamical Diquark Picture. Phys. Lett., B749, 454457.CrossRefGoogle Scholar
Lebed, R. F., Mitchell, R. E., and Swanson, E. S. 2017. Heavy-Quark QCD Exotica. Prog. Part. Nucl. Phys., 93, 143194.CrossRefGoogle Scholar
Lee, S.-H., DeTar, C., Na, H., and Mohler, D. 2014. Searching for the X(3872) and on HISQ lattices, .Google Scholar
Lees, J. P., et al. 2012. Study of the reaction e+eJ/ψπ+π via initial-state radiation at BaBar. Phys. Rev., D86, 051102.Google Scholar
Lenz, A. 2015. Lifetimes and heavy quark expansion. Int. J. Mod. Phys., A30(10), 1543005. [63 (2014)].Google Scholar
Li, G.-N., He, X.-G., and He, M. 2015. Some predictions of diquark model for hidden charm pentaquark discovered at the LHCb. JHEP, 12, 128.Google Scholar
Lichtenberg, D. B. 1975. Charmed baryons in a quark-diquark model. Nuovo Cim., A28, 563.CrossRefGoogle Scholar
Liu, L., Lin, H.-W., Orginos, K., and Walker-Loud, A. 2010. Singly and doubly charmed J=1/2 baryon spectrum from lattice QCD. Phys. Rev., D81, 094505.Google Scholar
Liu, L., Orginos, K., Guo, F.-K., Hanhart, C., and Meissner, Ulf-G. 2013. Interactions of charmed mesons with light pseudoscalar mesons from lattice QCD and implications on the nature of the Phys. Rev., D87(1), 014508.Google Scholar
Liu, X.-H., Zhao, Q., and Close, F. E. 2008. Search for tetraquark candidate Z(4430) in meson photoproduction. Phys. Rev., D77, 094005.Google Scholar
Liu, X.-H., Wang, Q., and Zhao, Q. 2016. Understanding the newly observed heavy pentaquark candidates. Phys. Lett., B757, 231236.CrossRefGoogle Scholar
Liu, Z. Q., et al. 2013. Study of e+eπ+πJ/Ψ and observation of a charged charmonium like state at belle. Phys. Rev. Lett., 110, 252002.CrossRefGoogle Scholar
Locher, M. P., Markushin, V. E., and Zheng, H. Q. 1998. Structure of f0 (980) from a coupled channel analysis of S wave pi pi scattering. Eur. Phys. J., C4, 317326.CrossRefGoogle Scholar
Lucha, W., Melikhov, D., and Sazdjian, H. 2017. Narrow exotic tetraquark mesons in large-Nc QCD. Phys. Rev., D96(1), 014022.Google Scholar
Lüscher, M. 1991a. Signatures of unstable particles in finite volume. Nucl. Phys., B364, 237251.CrossRefGoogle Scholar
Lüscher, M. 1991b. Two particle states on a torus and their relation to the scattering matrix. Nucl. Phys., B354, 531578.CrossRefGoogle Scholar
Luke, M. E., Manohar, A. V., and Rothstein, I. Z. 2000. Renormalization group scaling in nonrelativistic QCD. Phys. Rev., D61, 074025.Google Scholar
Luo, S.-Q., Chen, K., Liu, X., Liu, Y.-R., and Zhu, S.-L. 2017. Exotic tetraquark states with the configuration. Eur. Phys. J., C77(10), 709.Google Scholar
Lutz, M. F. M., and Soyeur, M. 2008. Radiative and isospin-violating decays of D(s)-mesons in the hadrogenesis conjecture. Nucl. Phys., A813, 1495.CrossRefGoogle Scholar
Ma, Y.-Q., Wang, K., and Chao, K.-T. 2011a. J/ψ(ψ′) production at the Tevatron and LHC at in nonrelativistic QCD. Phys.Rev.Lett., 106, 042002.CrossRefGoogle Scholar
Ma, Y.-Q., Wang, K., and Chao, K.-T. 2011b. QCD radiative corrections to χcJ production at hadron colliders. Phys.Rev., D83, 111503.Google Scholar
Maiani, L., Piccinini, F., Polosa, A. D., and Riquer, V. 2004. A New look at scalar mesons. Phys. Rev. Lett., 93, 212002.CrossRefGoogle Scholar
Maiani, L., Piccinini, F., Polosa, A. D., and Riquer, V. 2005. Diquark-antidiquarks with hidden or open charm and the nature of X(3872). Phys. Rev., D71, 014028.Google Scholar
Maiani, L., Polosa, A. D., and Riquer, V. 2007. The Charged Z(4433): Towards a new spectroscopy.Google Scholar
Maiani, L., Piccinini, F., Polosa, A. D., and Riquer, V. 2014. The Z(4430) and a New Paradigm for Spin Interactions in Tetraquarks. Phys. Rev., D89, 114010.Google Scholar
Maiani, L., Polosa, A. D., and Riquer, V. 2015. The new pentaquarks in the diquark model. Phys. Lett., B749, 289291.CrossRefGoogle Scholar
Maiani, L., Polosa, A. D., and Riquer, V. 2016a. Interpretation of axial resonances in J/psi-phi at LHCb. Phys. Rev., D94(5), 054026.Google Scholar
Maiani, L., Polosa, A. D., and Riquer, V. 2016b. Tetraquarks in the 1/N expansion and meson-meson resonances. JHEP, 06, 160.Google Scholar
Maiani, L., Polosa, A. D., and Riquer, V. 2018a. A theory of X and Z multiquark resonances. Phys. Lett., B778, 247251.CrossRefGoogle Scholar
Maiani, L., Polosa, A. D., and Riquer, V. 2018b. Tetraquarks in the 1/N expansion: a new appraisal.Google Scholar
Manohar, A. V., and Wise, M. B. 1993. Exotic Q Q anti-q anti-q states in QCD. Nucl. Phys., B399, 1733.CrossRefGoogle Scholar
Manohar, A. V., and Wise, M. B. 2000. Heavy quark physics. Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol., 10, 1191.Google Scholar
Martin, A. D., Stirling, W. J., Thorne, R. S., and Watt, G. 2009. Parton distributions for the LHC. Eur. Phys. J., C63, 189285.CrossRefGoogle Scholar
Matheus, R. D. E., Narison, S., Nielsen, M., and Richard, J. M. 2007. Can the X(3872) be a 1++ four-quark state? Phys. Rev., D75, 014005.Google Scholar
Matheus, R. D. E., Navarra, F. S., Nielsen, M., and Zanetti, C. M. 2009. QCD Sum Rules for the X(3872) as a mixed molecule-charmoniun state. Phys. Rev., D80, 056002.Google Scholar
Mehen, T. 2017. Implications of heavy quark-diquark symmetry for excited doubly heavy baryons and tetraquarks. Phys. Rev. D96 , 094028.Google Scholar
Meissner, U.-G., and Oller, J. A. 2015. Testing the χc1 p composite nature of the Pc(4450). Phys. Lett., B751, 5962.CrossRefGoogle Scholar
Meng, C., Han, H., and Chao, K.-T. 2017. X(3872) and its production at hadron colliders. Phys. Rev., D96(7), 074014.Google Scholar
Mikhasenko, M. 2015. A triangle singularity and the LHCb pentaquarks. arxiv:1507.06552.Google Scholar
Mironov, A., and Morozov, A. 2015. Is the pentaquark doublet a hadronic molecule? JETP Lett., 102(5), 271273. [Pisma Zh. Eksp. Teor. Fiz.102,no.5,302(2015)].CrossRefGoogle Scholar
Mizuk, R., et al. 2016. Energy scan of the e+ehb(nP )π+π (n = 1,2) cross sections and evidence for ϒ(11020) decays into charged bottomonium-like states. Phys. Rev. Lett., 117(14), 142001.CrossRefGoogle Scholar
Mohler, D., Prelovsek, S., and Woloshyn, R. M. 2013. scattering and D meson resonances from lattice QCD. Phys. Rev., D87(3), 034501.Google Scholar
Montanet, L., Rossi, G. C., and Veneziano, G. 1980. Baryonium Physics. Phys. Rept., 63, 149222.CrossRefGoogle Scholar
Morgan, D. 1992. Pole counting and resonance classification. Nucl. Phys., A543, 632644.CrossRefGoogle Scholar
Navarra, F. S., Dias, J. M., Nielsen, M., and Zanetti, C. M. 2014. QCD sum rules for the state. Int. J. Mod. Phys. Conf. Ser., 26, 1460069.CrossRefGoogle Scholar
Nielsen, M., Navarra, F. S., and Lee, S. H. 2010. New Charmonium States in QCD Sum Rules: A Concise Review. Phys. Rept., 497, 4183.CrossRefGoogle Scholar
Novikov, V. A., Okun, L. B., Shifman, Mikhail A., Vainshtein, A. I., Voloshin, M. B., and Zakharov, Valentin I. 1977. Sum rules for charmonium and charmed mesons decay rates in quantum chromodynamics. Phys. Rev. Lett., 38, 626. [Erratum: Phys. Rev. Lett. 38, 791 (1977)].CrossRefGoogle Scholar
Novikov, V. A., Okun, L. B., Shifman, Mikhail A., Vainshtein, A. I., Voloshin, M. B., and Zakharov, Valentin I. 1978. Charmonium and gluons: basic experimental facts and theoretical introduction. Phys. Rept., 41, 1133.CrossRefGoogle Scholar
Olive, K. A., et al. 2014. Review of particle physics. Chin.Phys., C38, 090001.Google Scholar
Olsen, S. L. 2015. XYZ Meson Spectroscopy. In: Proceedings, 53rd International Winter Meeting on Nuclear Physics (Bormio 2015): Bormio, Italy, January 26-30, 2015.Google Scholar
Olsen, S. L., Skwarnicki, T., and Zieminska, D. 2017. Non-standard heavy mesons and baryons, an experimental review. Rev. Mod. Phys. 90(2018) 015003.Google Scholar
Padmanath, M., and Mathur, N. 2017. Quantum numbers of recently discovered Ω0c baryons from lattice QCD. Phys. Rev. Lett., 119(4), 042001.CrossRefGoogle Scholar
Padmanath, M., Lang, C. B., and Prelovsek, S. 2015. X(3872) and Y(4140) using diquark-antidiquark operators with lattice QCD. Phys. Rev., D92(3), 034501.Google Scholar
Pakhlov, P., and Uglov, T. 2015. Charged charmonium-like Z+(4430) from rescattering in conventional B decays. Phys. Lett., B748, 183186.CrossRefGoogle Scholar
Pakhlova, G., et al. 2008. Observation of a near-threshold enhancement in the e+e → Λ+(c)Lambda(c) cross section using initial-state radiation. Phys. Rev. Lett., 101, 172001.CrossRefGoogle ScholarPubMed
Patrignani, C., et al. 2016. Review of particle physics. Chin. Phys., C40(10), 100001.Google Scholar
Pelaez, J. R. 2016. From controversy to precision on the sigma meson: a review on the status of the non-ordinary f0(500) resonance. Phys. Rept., 658, 1.CrossRefGoogle Scholar
Prelovsek, S. 2014. Hadron spectroscopy. PoS, LATTICE2014, 015.Google Scholar
Prelovsek, S. 2016. Hadron spectroscopy and interactions from lattice QCD. EPJ Web Conf., 129, 00018.CrossRefGoogle Scholar
Prelovsek, S., and Leskovec, L. 2013. Evidence for X(3872) from DD scattering on the lattice. Phys. Rev. Lett., 111, 192001.CrossRefGoogle ScholarPubMed
Rajagopal, K., and Wilczek, F. 2000. The Condensed matter physics of QCD, published in “At the frontier of particle physics. Handbook of QCD”, Vol. 3, 2061–2151.Google Scholar
Rapp, R., Schafer, T., Shuryak, E. V., and Velkovsky, M. 1998. Diquark Bose condensates in high density matter and instantons. Phys. Rev. Lett., 81, 5356.CrossRefGoogle Scholar
Richard, J.-M. 2016. Exotic hadrons: review and perspectives. Few Body Syst., 57(12), 11851212.CrossRefGoogle Scholar
Rosner, J. L. 1998. Improved tests of relations for baryon isomultiplet splittings. Phys. Rev., D57, 43104317.Google Scholar
Rosner, J. L. 2007. Threshold effect and pi+- psi(2S) peak. Phys. Rev., D76, 114002.Google Scholar
Rossi, G. C., and Veneziano, G. 1977. A possible description of baryon dynamics in dual and gauge theories. Nucl. Phys., B123, 507545.CrossRefGoogle Scholar
Rossi, G., and Veneziano, G. 2016. The string-junction picture of multiquark states: an update. JHEP, 06, 041.Google Scholar
Santel, D., et al. 2016. Measurements of the ϒ(10860) and ϒ(11020) resonances via σ(e+e → ϒ(nS)π+π). Phys. Rev., D93(1), 011101.Google Scholar
Savage, M. J., and Wise, M. B. 1990. Spectrum of baryons with two heavy quarks. Phys. Lett., B248, 177180.CrossRefGoogle Scholar
Schafer, T., and Shuryak, E. V. 1998. Instantons in QCD. Rev. Mod. Phys., 70, 323426.CrossRefGoogle Scholar
Selem, Alexander, and Wilczek, Frank. 2006. Hadron systematics and emergent diquarks. Pages 337–356 of: Proceedings, Ringberg Workshop on New Trends in HERA Physics 2005: Ringberg Castle, Tegernsee, Germany, October 2-7, 2005.Google Scholar
Shen, C. P., et al. 2009. Observation of the phi(1680) and the Y(2175) in e+e- —¿ phi pi+ pi-. Phys. Rev., D80, 031101.Google Scholar
Shi, Y.-J., Wang, W., Xing, Y., and Xu, J. 2018. Weak decays of doubly heavy baryons: multi-body decay channels. Eur. Phys. J., C78(1), 56.Google Scholar
Shifman, M. A., Vainshtein, A. I., and Zakharov, V. I. 1979. QCD and resonance physics. Theoretical foundations. Nucl. Phys., B147, 385447.CrossRefGoogle Scholar
Shifman, M. A., Vainshtein, A. I., and Zakharov, V. I. 1980. Instanton density in a theory with massless quarks. Nucl. Phys., B163, 4656.CrossRefGoogle Scholar
Shuryak, E. V., and Rosner, J. L. 1989. Instantons and baryon mass splittings. Phys. Lett., B218, 7274.CrossRefGoogle Scholar
Sirunyan, A. M., et al. 2017. Search for the X(5568) state decaying into in proton-proton collisions at Google Scholar
Sjostrand, T., Mrenna, S., and Skands, P. Z. 2006. PYTHIA 6.4 physics and manual. JHEP, 05, 026.CrossRefGoogle Scholar
Sonnenschein, J., and Weissman, D. 2016. A tetraquark or not a tetraquark: A holography inspired stringy hadron (HISH) perspective.CrossRefGoogle Scholar
Sterman, G. F., and Weinberg, S. 1977. Jets from quantum chromodynamics. Phys. Rev. Lett., 39, 1436.CrossRefGoogle Scholar
’t Hooft, G., Isidori, G., Maiani, L., Polosa, A. D., and Riquer, V. 2008. A theory of scalar mesons. Phys. Lett., B662, 424430.CrossRefGoogle Scholar
’t Hooft, G. 1974a. A planar diagram theory for strong interactions. Nucl. Phys., B72, 461. [337 (1973)].CrossRefGoogle Scholar
’t Hooft, G. 1974b. A two-dimensional model for mesons. Nucl. Phys., B75, 461470.CrossRefGoogle Scholar
’t Hooft, G. 1986. How instantons solve the U(1) problem. Phys. Rept., 142, 357387.CrossRefGoogle Scholar
’t Hooft, G. 1999. The physics of instantons in the pseudoscalar and vector meson mixing.Google Scholar
Terasaki, K. 2003. BABAR resonance as a new window of hadron physics. Phys. Rev., D68, 011501.Google Scholar
Thompson, W. J. 2004. Angular Momentum. Weinheim: Wiley-VCH.Google Scholar
Tomaradze, A., Dobbs, S., Xiao, T., and Seth, K. K. 2015. Precision measurement of the mass of the meson and the binding energy of the X(3872) meson as a molecule. Phys. Rev., D91(1), 011102.Google Scholar
Tornqvist, N. A. 1991. Possible large deuteron-like meson meson states bound by pions. Phys. Rev. Lett., 67, 556559.CrossRefGoogle ScholarPubMed
Tornqvist, N. A. 1994. From the deuteron to deusons, an analysis of deuteron - like meson meson bound states. Z. Phys., C61, 525537.Google Scholar
Tornqvist, N. A. 2004. Isospin breaking of the narrow charmonium state of Belle at 3872-MeV as a deuson. Phys. Lett., B590, 209215.CrossRefGoogle Scholar
Vaccarino, A., and Weingarten, D. 1999. Glueball mass predictions of the valence approximation to lattice QCD. Phys. Rev., D60, 114501.Google Scholar
Wagner, M. 2011. Static-static-light-light tetraquarks in lattice QCD. Acta Phys. Polon. Supp., 4, 747752.CrossRefGoogle Scholar
Wang, W., and Zhu, R.-L. 2017. Interpretation of the newly observed resonances. Phys. Rev., D96(1), 014024.Google Scholar
Wang, W., Xing, Z.-P., and Xu, J. 2017. Weak decays of doubly heavy baryons: SU(3) analysis. Eur. Phys. J., C77(11), 800.Google Scholar
Wang, Z.-G. 2016a. Analysis of Pc(4380) and Pc(4450) as pentaquark states in the diquark model with QCD sum rules. Eur. Phys. J., C76(2), 70.Google Scholar
Wang, Z.-G. 2016b. Reanalysis of X(4140) as axial-vector tetraquark state with QCD sum rules. Eur. Phys. J., C76(12), 657.Google Scholar
Wang, Z.-G. 2016c. Tetraquark state candidates: Y(4260), Y(4360), Y(4660) and Zc(4020/4025). Eur. Phys. J., C76(7), 387.Google Scholar
Wang, Z.-G. 2017. Analysis of the mass and width of the Y(4274) as axialvector molecule-like state. Eur. Phys. J., C77(3), 174.Google Scholar
Wang, Z.-G., and Huang, T. 2014. The Zb(10610) and Zb(10650) as axial-vector tetraquark states in the QCD sum rules. Nucl. Phys., A930, 6385.CrossRefGoogle Scholar
Wang, Z.-G., and Huang, T. 2016. Analysis of the pentaquark states in the diquark model with QCD sum rules. Eur. Phys. J., C76(1), 43.Google Scholar
Weinberg, S. 2013a. Lectures on Quantum Mechanics. Cambridge.Google Scholar
Weinberg, S. 1965. Evidence that the deuteron is not an elementary particle. Phys. Rev., 137, B672B678.CrossRefGoogle Scholar
Weinberg, S. 2013b. Tetraquark mesons in large N quantum chromodynamics. Phys. Rev. Lett., 110, 261601.CrossRefGoogle Scholar
Weinstein, J. D., and Isgur, N. 1990. K anti-K molecules. Phys. Rev., D41, 2236.Google Scholar
Witten, E. 1979. Baryons in the 1/n expansion. Nucl. Phys., B160, 57115.CrossRefGoogle Scholar
Wu, J., Liu, Y.-R., Chen, K., Liu, X., and Zhu, S.-L. 2016. X(4140), X(4270), X(4500) and X(4700) and their tetraquark partners. Phys. Rev., D94(9), 094031.Google Scholar
Xiao, C. W., and Meissner, U. G. 2015. J/ψ(ηc)N and ϒ(ηb)N cross sections. Phys. Rev., D92(11), 114002.Google Scholar
Xiao, T., Dobbs, S., Tomaradze, A., and Seth, Kamal K. 2013. Observation of the charged hadron and evidence for the neutral in e+eππJ/ψ at Phys. Lett., B727, 366370.CrossRefGoogle Scholar
Yamazaki, T. 2015. Hadronic interactions. PoS, LATTICE2014, 009.Google Scholar
Yang, Z., Wu, X.-G., Chen, G., Liao, Q.-L., and Zhang, J.-W. 2012. Bc meson production around the Z0 peak at a high luminosity e+e collider. Phys. Rev., D85, 094015.Google Scholar
Yelton, J., et al. 2017. Observation of excited Ωc charmed baryons in e+e collisions Phys. Rev. D97 (5), 051102..Google Scholar
Yu, F.-S., Jiang, H.-Y., Li, R.-H., Lu, C.-D., Wang, W., and Zhao, Z.-X. 2017. Discovery potentials of doubly charmed baryons. Chin. Phys. C42(2018) 051001.Google Scholar
Zeldovich, Y. B., and Sakharov, A. D. 1967. Mass formulas for mesons and baryons in the quark model. Acta Phys. Hung., 22, 153157.CrossRefGoogle Scholar
Zhu, R. 2016. Hidden charm octet tetraquarks from a diquark-antidiquark model. Phys. Rev., D94(5), 054009.Google Scholar
Zhu, R., and Qiao, C.-F. 2016. Pentaquark states in a diquark–triquark model. Phys. Lett., B756, 259264.CrossRefGoogle Scholar
Zweig, G. 1964. An SU(3) model for strong interaction symmetry and its breaking. Version 2. Pages 22–101 of: Lichtenberg, D. B., and Rosen, Simon Peter (eds.), Developments in the quark theory of hadrons. Vol. 1964–1978.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Ahmed Ali, Deutsches Elektronen-Sychrotron (DESY), Hamburg, Luciano Maiani, Università degli Studi di Roma 'La Sapienza', Italy, Antonio D. Polosa, Università degli Studi di Roma 'La Sapienza', Italy
  • Book: Multiquark Hadrons
  • Online publication: 19 April 2019
  • Chapter DOI: https://doi.org/10.1017/9781316761465.020
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Ahmed Ali, Deutsches Elektronen-Sychrotron (DESY), Hamburg, Luciano Maiani, Università degli Studi di Roma 'La Sapienza', Italy, Antonio D. Polosa, Università degli Studi di Roma 'La Sapienza', Italy
  • Book: Multiquark Hadrons
  • Online publication: 19 April 2019
  • Chapter DOI: https://doi.org/10.1017/9781316761465.020
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Ahmed Ali, Deutsches Elektronen-Sychrotron (DESY), Hamburg, Luciano Maiani, Università degli Studi di Roma 'La Sapienza', Italy, Antonio D. Polosa, Università degli Studi di Roma 'La Sapienza', Italy
  • Book: Multiquark Hadrons
  • Online publication: 19 April 2019
  • Chapter DOI: https://doi.org/10.1017/9781316761465.020
Available formats
×