Skip to main content Accessibility help
  • Print publication year: 2010
  • Online publication date: August 2011

Chapter 3 - Synaptic changes in multiple sclerosis: Do they occur? How effectively can they be analyzed?

from Section 1 - Basic mechanisms

Related content

Powered by UNSILO


1. VercellinoM, PlanoF, VottaB, et al. Grey matter pathology in multiple sclerosis. J Neuropathol Exp Neurol 2005;64:1101–7
2. DuttaR, TrappB D. Pathogenesis of axonal and neuronal damage in multiple sclerosis. Neurology 2007;68:S22–S31.
3. ChardD, MillerD. Grey matter pathology in clinically early multiple sclerosis: evidence from magnetic resonance imaging. J Neurol Sci 2009;282:5–11
4. GeurtsJ J, BarkhofF. Grey matter pathology in multiple sclerosis. Lancet Neurol 2008;7:841–51
5. PetersonJ W, BoL, MorkS, et al. Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann Neurol 2001;50:389–400
6. BoL, VedelerC A, NylandH. Intracortical multiple sclerosis lesions are not associated with increased lymphocyte infiltration. Mult Scler 2003;9:323–31
7. KonorskiJ.Conditioned reflexes and neuron organization. Cambridge: Cambridge University Press, 1948.
8. CajalyRamónS. Nuevo concepto de la histología de los centros nerviosos. Rev Ciencias Méd Barcelona 1892;18:361–76, 457–76, 505–20, 529–41
9. TanziG.I fatti i le indizioni nell'odierna istologi del sistema nervoso. Riv Sper Freniatr 1893;19:419–72
10. HebbD O. The organization of behavior. New York: Wiley, 1949.
11. BlissT V P, LomoT.Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 1973;232:331–56
12. CookeS F, BlissT V. Plasticity in the human central nervous system. Brain 2006;129:1659–73
13. CollingridgeG L, KehlS J, McLennanH.The antagonism of amino acid-induced excitations of rat hippocampal CA1 neurones in vitro. J Physiol 1983;334:19–31
14. BlissT V, CollingridgeG L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 1993;361:31–9
15. BaileyC H, KandelE R.Structural changes accompanying memory storage. Annu Rev Physiol 1993;55:397–426
16. CollingridgeG L, KehlS J, McLennanH. The antagonism of amino acid-induced excitations of rat hippocampal CA1 neurones in vitro. J Physiol 1983;334:19–31
17. DudekS M, BearM F. Homosynaptic long-term depression in area CA1 of hippocampus and the effects of NMDA receptor blockade. Proc Natl Acad Sci USA 1992;89:4363–7
18. MayerM L, WestbrookG L, GuthrieP B.Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 1984;309:261–3
19. LeeS H, ShengM.Development of neuron–neuron synapses. Curr Opin Neurobiol 2000;10:125–31
20. RaoA, KimE, ShengM, CraigA M.Heterogeneity in the molecular composition of excitatory postsynaptic sites during development of hippocampal neurons in culture. J Neurosci 1998;18:1217–29
21. ZivN E, SmithS J. Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. Neuron 1996;17:91–102
22. LendvaiB, SternE A, ChenB, SvobodaK. Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo. Nature 2000;404:876–81
23. BhattD H, ZhangS, GanW B. Dendritic spine dynamics. Annu Rev Physiol 2009;71:261–82
24. ZhuB, LuoL, MooreG R, PatyD W, CynaderM S. Dendritic and synaptic pathology in experimental autoimmune encephalomyelitis. Am J Pathol 2003;162:1639–50
25. MarquesK B, SantosL M, OliveiraA L.Spinal motoneuron synaptic plasticity during the course of an animal model of multiple sclerosis. Eur J Neurosci 2006;24:3053–62
26. Jovanova-NesicK, ShoenfeldY.MMP-2, VCAM-1 and NCAM-1 expression in the brain of rats with experimental autoimmune encephalomyelitis as a trigger mechanism for synaptic plasticity and pathology. J Neuroimmunol 2006;181:112–21
27. WegnerC, EsiriM M, ChanceS A, PalaceJ, MatthewsP M. Neocortical neuronal, synaptic, and glial loss in multiple sclerosis. Neurology 2006;67:960–7
28. VercellinoM, MerolaA, PiacentinoC, et al. Altered glutamate reuptake in relapsing–remitting and secondary progressive multiple sclerosis cortex: correlation with microglia infiltration, demyelination, and neuronal and synaptic damage. J Neuropathol Exp Neurol 2007;66:732–9
29. TurrigianoG G, LeslieK R, DesaiN S, RutherfordL C, NelsonS B.Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 1998;391:892–6
30. DenkW, StricklerJ H, WebbW W. Two-photon laser scanning fluorescence microscopy. Science 1990;248:73–6
31. TurrigianoG G.AMPA receptors unbound: membrane cycling and synaptic plasticity. Neuron 2000;26:5–8
32. HelmchenF, DenkW.New developments in multiphoton microscopy. Curr Opin Neurobiol 2002;12:593–601
33. SvobodaK, YasudaR.Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron 2006;50:823–39
34. PanF, GanW B.Two-photon imaging of dendritic spine development in the mouse cortex. Dev Neurobiol 2008;68:771–8
35. TsienR Y.The green fluorescent protein. Annu Rev Biochem 1998;67:509–44
36. BetzW J, BewickG S. Optical anlysis of synaptic vesicle recycling at the frog neuromuscular junction. Science 1992;255:200–3
37. MalgaroliA, TingA E, WendlandB, et al. Presynaptic component of long-term potentiation visualized at individual hippocampal synapses. Science 1995;268:1624–8