Skip to main content Accessibility help
×
Home
  • Print publication year: 2017
  • Online publication date: May 2017

8 - Parameterization of Subgrid-Scale Processes

Ahrens, C. D. (2000) Essentials of Meteorology: An Invitation to the Atmosphere, 3rd edition, Thomson Brooks/Cole, Belmont, CA.
Allen, D., Pickering, K., Stenchikov, G., Thompson, A., and Kondo, Y. (2000) A three-dimensional total odd nitrogen (NOy) simulation during SONEX using a stretched-grid chemical transport model, J. Geophys. Res., 105: doi: 10.1029/1999JD901029.
Balkanski, Y. J., Jacob, D. J., Gardner, G. M., Graustein, W. C., and Turekian, K. K. (1993) Transport and residence times of tropospheric aerosols inferred from a global three-dimensional simulation of 210Pb, J. Geophys. Res., 98(D11), 2057320586, doi:10.1029/93JD02456.
Balkovsky, E. and Fouxon, A. (1999) Universal long-time properties of Lagrangian statistics in the Batchelor regime and their application to the passive scalar problem, Phys. Rev. E, 60, 4164.
Blackadar, A. K. (1979) High Resolution Models of the Planetary Boundary Layer, Advances in Environmental and Scientific Engineering, Vol. I, Gordon and Breach, New York.
Brasseur, G. P. and Solomon, S. (2005) Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere, 3rd edition, Springer, New York.
Brodkey, R. S. (1981) Fundamentals of turbulent motions, mixing and kinetics, Chem. Eng. Comm., 8, 123.
Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F. (1971) Flux profile relationships in the atmospheric surface layer, J. Atmos. Sci., 28, 181189.
Cassiani, M., Vinuesa, J. F. Galmarini, S. and Denby, D. (2010) Stochastic fields methods for sub-grid scale emission heterogeneity in mesoscale atmospheric dispersion flows, Atm. Chem. Phys., 10, 267277.
Chella, R. and Ottino, J. M. (1984) Conversion and selectivity modifications due to mixing in unpremixed reactors, Chem. Eng. Sci., 39, 551.
Christian, H. J., Blakeslees, R., Boccippio, D., et al. (2003) Global frequency and distribution of lightning as observed from space by the Optical Transient Detector, J. Geophys. Res., 108(D1), 4005, doi:10.1029/2002JD002347.
Collins, W. J., Stevenson, D. S., Johnson, C. E., and Derwent, R. G. (1997) Tropospheric ozone in a global-scale three-dimensional Lagrangian model and its response to NOx emission controls, J. Atmos. Chem., 26, 223274.
Damköhler, G. (1940) Influence of turbulence on the velocity of flames in gas mixtures, Z. Elektrochem, 46, 601626.
Damköhler, G. (1947) The effect of turbulence on the flame velocity in gas mixtures, Technical report NACA TM 1112.
Deardorff, J. W. (1966) The counter gradient heat flux in the lower atmosphere and in the laboratory, J. Atmos. Sci., 23, 503506.
Deardorff, J. W. (1972) Theoretical expression for the countergradient vertical heat flux, J. Geophys. Res., 77 (30), 59005904.
Durran, D. R. (2010) Numerical Methods for Fluid Dynamics: with Applications to Geophysics, 2nd edition, Springer, New York.
Dyer, A. J. (1974) A review of flux-profile relations, Bound. Layer Meteor., 1, 363372.
Ecke, R. (2005) The turbulence problem: An experimentalist’s perspective, Los Alamos Sci., 29, 124141.
Ekman, V. W. (1905) On the influence of the earth’s rotation on ocean currents, Ark. Mat. Astron. Fys., 2, 11, 152.
Fairlie, T. D., Pierce, R. B., Al-Saadi, J. A., et al. (1999) The contribution of mixing in Lagrangian photochemical predictions of polar ozone loss over the Arctic in summer 1997, J. Geophys. Res., 104, 2659726609.
Favre, A. (1958a) Equations statistiques des gaz turbulents: Masse, quantité de movement, C. R. Acad. Sci. Paris, 246, 25762579.
Favre, A. (1958b) Equations statistiques des gaz turbulents: Énergie totale, énergie interne. C. R. Acad. Sci. Paris, 246, 27232725
Feng, J. (2007) A 3-mode parameterization of below-cloud scavenging of aerosols for use in atmospheric dispersion models, Atmos. Environ., 41, 68086822,.
Feng, J. (2009), A size-resolved model for below-cloud scavenging of aerosols by snowfall, J. Geophys. Res., 114, D08203, doi:10.1029/2008JD011012.
Fox, R. O. (2003) Computational Models for Turbulent Reacting Flows, Cambridge University Press, Cambridge.
Garratt, J. R. (1994) The Atmospheric Boundary Layer, Cambridge University Press, Cambridge.
Giorgi, F. and Chameides, W. L. (1986) Rainout lifetimes of highly soluble aerosols and gases as inferred from simulations with a general circulation model, J. Geophys. Res., 91, 1436714376.
Grell, G. A., Peckham, S. E., Schmitz, R., et al. (2005), Fully coupled online chemistry within the WRF model, Atmos. Environ., 39, 69576975, doi: 10.106/j.atmosenv.2005.04.027.
Heald, C. L., Jacob, D., Fiore, A., et al. (2003) Asian outflow and transpacific transport of carbon monoxide and ozone pollution: An integerated satellite aircraft and model perspective, J. Geophys. Res., 108, 4804.
Hesselberg, T. (1926) Die Gesetze des ausgegleichenen atmosphaerischen Bewegungen. Beitr. Physik freien Atmosphaere., 12, 141160.
Hines, C. O. (1997a) Doppler-spread parameterization of gravity wave momentum deposition in the middle atmosphere: Part 1. Basic formulation, J. Atmos. Solar. Terr. Phys., 59, 371386.
Hines, C. O. (1997b) Doppler-spread parameterization of gravity wave momentum deposition in the middle atmosphere: Part 2. Broad and quasi monochromatic spectra, and implementation, J. Atmos. Solar. Terr. Phys., 59, 387400.
Hogstrom, U. (1988) Non-dimensional wind and temperature profiles in the atmospheric surface layer: A re-evaluation, Bound. Layer Meteor., 42, 5578.
Holton, J. R. (1992) An Introduction to Dynamical Meteorology, 3rd edition, Academic Press, New York.
Holtslag, A. A. M. and Boville, B. (1993) Local versus nonlocal boundary-layer diffusion in a global climate model, J. Climate, 6, 18251842.
Hong, S. Y., Noh, Y., and Dudhia, J. (2006) A new vertical diffusion package with an explicit treatment of entrainment processes, Mon. Wea. Rev., 134, 23182341.
Kain, J. S. and Fritsch, J. M. (1990) A one-dimensional entraining/detraining plume model and its application in convective parameterization, J. Atmos. Sci., 47, 27842802.
Kazil, J., Wang, H., Feingold, G., et al. (2011) Modeling chemical and aerosol processes in the transition from closed to open cells during VOCALs-Rex, Atmos. Chem. Phys., 11, 74917514, doi: 10.5194/acp-11-7491-2011.
Kolmogorov, A. N. (1941a) The local structure of turbulence in incompressible viscous fluid for very large Reynolds number, Dokl. Akad. Nauk SSSR, 30, 301303. Reprinted in Proc. R. Soc. Lond., Ser: A, 434, 9–13, 1991
Kolmogorov, A. N. (1941b) Dissipation of energy in the locally isotropic turbulence, Dokl. Akad. Nauk SSSR, 31, 1921. Reprinted in Proc. R. Soc. Lond., Ser: A, 434, 15–17, 1991.
Kramm, G. and Meixner, F. X. (2000) On the dispersionof trace species in the atmospheric boundary layer: A reformulation of the governing equations for the turbulent flow of the compressible atmosphere, Tellus, 52A, 500522.
Lawrence, M. G. and Crutzen, P. J. (1998) The impact of cloud particle gravitational settling on soluble trace gas distribution, Tellus, 50B, 263289.
Levine, S. Z. and Schwartz, S. E. (1982) In-cloud and below-cloud scavenging of nitric acid vapor, Atmos. Environ., 16 (7), 17251734.
Lin, J. C., Gerbig, C., Wofsy, S. C., et al. (2003) A near-field tool for simulating the upstream influence of atmospheric observations: The Stochastic Time-Inverted Lagrangian Transport (STILT) model, J. Geophys. Res., 108, 4493, doi:10.1029/2002JD003161.
Lindzen, R. S. (1981) Turbulence and stress due to gravity wave and tidal breakdown, J. Geophys. Res., 86, 97079714.
Liu, S. C., McAfee, J. R., and Cicerone, R.J. (1984) Radon 222 and tropospheric vertical transport, J. Geophys. Res., 89, 72917297.
Mari, C., Jacob, D. J., and Bechtold, P. (2000) Transport and scavenging of soluble gases in a deep convective cloud, J. Geophys. Res., 105, 2225522267.
McKenna, D. S., Grooss, J. U., Gunther, G., et al. (2002) A new Chemical Lagrangian Model of the Stratosphere (CLaMS): 2. Formulation of chemistry scheme and initialization, J. Geophys. Res., 107, 4309.
Medvedev, A. S. and Klaassen, G. P. (1995) Vertical evolution of gravity wave spectra and the parameterization of associated wave drag, J. Geophys. Res., 110 (D12), 2584125853, doi: 10.1029/95JD02533.
Meijer, E. W., van Velthoven, P. E. J., Brunner, D. W., Huntrieser, H., and Kedler, H. (2001) Improvement and evaluation of the parameterisation of nitrogen oxide production by lightning, Phys. Chem. Earth. (C), 26, 577583.
Monin, A. S. and Obukhov, A. M. (1954) Basic laws of turbulent mixing in the atmosphere near the ground, Tr. Akad. Nauk., SSSR Geophyz Inst., No 24 (151), 19631987.
Murray, L. T., Jacob, D. J., Logan, J. A., et al., (2012) Optimized regional and interannual variability of lightning in a global chemical transport model constrained by LIS/OTD satellite data, J. Geophys. Res., 117, D20307, doi:10.1029/2012JD017934
Obukhov, A. M. (1941) On the distribution of energy in the spectrum of turbulent flow, Dokl. Akad. Nauk SSSR, 32, 2224.
Ott, L. E., Pickering, K. E., Stenchikov, G. L., et al. (2010) Production of lightning NOx and its vertical distribution calculated from three-dimensional cloud-scale chemical transport model simulations, J. Geophys. Res., 115, D04301, doi: 10.1029/2009JD011880.
Pope, S. B. (2000) Turbulent Flows, Cambridge University Press, Cambridge.
Prandtl, L. (1925) Über die ausgebildete Turbulenz, Z. Angew. Math. Mech., 5, 136138.
Price, C. and Rind, D. (1992) A simple parameterization for calculating global lightning distribution, J. Geophys. Res., 97, 99199933.
Price, C., Penner, J., and Prather, M. (1997) NOx from lightning: 1. Global distribution based on lightning physics, J. Geophys. Res., 102, 59295941.
Prusa, J. M., Smolarkiewicz, P. K., and Garcia, R. R. (1996) On the propagation and breaking at high altitudes of gravity waves excited by tropospheric forcing, J. Atmos. Sci., 53 (15), 21862216.
Rastigejev, Y., Park, R., Brenner, M. P., and Jacob, D. J. (2010) Resolving intercontinental pollution plumes in global models of atmospheric transport, J. Geophys. Res., 115, D02302.
Richardson, L. F. (1922) Weather Prediction by Numerical Process. Cambridge University Press, Cambridge, reprinted 1965.
Sauvage, B., Martin, R. V., van Donkelaar, A., et al. (2007) Remote sensed and in situ constraints on processes affecting tropical tropospheric ozone, Atmos. Chem. Phys., 7, 815838.
Schumann, U. and Huntrieser, H. (2007) The global lightning-induced nitrogen oxides source, Atmos. Chem. Phys., 7, 38233907.
Seinfeld, J. H. and Pandis, S. N. (1996) Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, Wiley, New York.
Seinfeld, J. H. and Pandis, S. N. (2006) Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, Wiley, Chichester.
Solomon, S., Qin, D., Manning, M., et al. (eds.) (2007) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge.
Stensrud, D. J. (2007) Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models, Cambridge University Press, Cambridge.
Stuart, A. L. and Jacobson, M. Z. (2006). A numerical model of the partitioning of trace chemical solutes during drop freezing, J. Atmos. Chem., 53(1), 1342.
Stull, R. B. (1988) An Introduction to Boundary Layer Meteorology, Kluwer, Dordrecht.
Théry, C., Laroche, P., and Blanchet, P. (2000) EULINOX: The European lightning nitrogen oxides experiment. In EULINOX Final Report (Höller, H. and Schumann, U., eds.), Deutches Zentrum für Luft- und Raumfahrt, Köln.
Thomson, D. J. and Wilson, J. D. (2012) History of Lagrangian stochastic models for turbulent dispersion. In Lagrangian Modeling of the Atmosphere (Lin, J., Brunner, D., Gerbig, C., et al., eds.), American Geophysical Union, Washington, DC.
Thouret, V., Cho, J., Newell, R., Marenco, A., and Smit, H. (2000) General characteristics of tropospheric trace constituent layers observed in the MOZAIC program, J. Geophys. Res., 105, 1737917392.
Troen, L. and Mahrt, L. (1986) A simple model of the atmospheric boundary layer: Sensitivity to surface evaporation, Bound. Layer Meteorol., 37, 129148.
Valiño, L. (1998) A field Monte-Carlo formulation for calculating the probability density function of a single scalar in a turbulent flow, Flow, Turbulence and Combustion, 60, 157. doi:10.1023/A:1009968902446
Van Mieghem, J. (1973) Atmospheric Energetics, Oxford University Press, Oxford.
Verver, G. H. L., van Dop, H., and Holtslag, A. A. M. (1997) Turbulent mixing of reactive gases in the convective boundary layer, Bound. Layer Meteorol., 85, 197222.
Vilà-Guerau de Arellano, J. (1992) A review of turbulent flow studies relating to the atmosphere, ACTA Chimica Hungarica-Models in Chemistry, 129 (6), 889902.
Vinuesa, J.-F. and Vilà-Guerau de Arellano, J. (2005) Introducing effective reaction rates to account for the inefficient mixing of the convective boundary layer, Atmos. Environ., 39, 445461.
Wallace, J. M. and Hobbs, P. V. (2006) Atmospheric Science: An Introductory Survey, Academic Press, New York.
Wild, O. and Prather, M. J. (2006) Global tropospheric ozone modeling: Quantifying errors due to grid resolution, J. Geophys. Res., 111, D11305, doi: 10.1029/2005JD006605.
Wyngaard, J. C. (1982) Planetary boundary layer modeling. In Atmospheric Turbulence and Air Pollution Modelling, (Nieuwstadt, F. T. M. and Van Dop, H., eds.), Reidel, Norwell, MA.