Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-lvwk9 Total loading time: 0 Render date: 2024-09-30T11:22:18.982Z Has data issue: false hasContentIssue false

Preface

Published online by Cambridge University Press:  02 March 2010

Jonathan Jacky
Affiliation:
University of Washington
Margus Veanes
Affiliation:
Microsoft Research, Redmond, Washington
Colin Campbell
Affiliation:
Modeled Computation LLC, Seattle, Washington
Wolfram Schulte
Affiliation:
Microsoft Research, Redmond, Washington
Get access

Summary

This book teaches new methods for specifying, analyzing, and testing software. They are examples of model-based analysis and model-based testing, which use a model that describes how the program is supposed to behave. The methods provide novel solutions to the problems of expressing and analyzing specifications and designs, generating test cases, and checking the results of test runs. The methods increase the automation in each of these activities, so they can be more timely, more thorough, and (we expect) more effective. The methods integrate concepts that have been investigated in academic and industrial research laboratories for many years and apply them on an industrial scale to commercial software development. Particular attention has been devoted to making these methods acceptable to working software developers. They are based on a familiar programming language, are supported by a well-engineered technology, and have a gentle learning curve.

These methods provide more test automation than do most currently popular testing tools, which only automate test execution and reporting, but still require the tester to code every test case and also to code an oracle to check the results of every test case. Moreover, our methods can sometimes achieve better coverage in less testing time than do hand-coded tests.

Testing (i.e., executing code) is not the only assurance method. Some software failures are caused by deep errors that originate in specifications or designs. Model programs can represent specifications and designs, and our methods can expose problems in them. They can help you visualize aspects of system behavior.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×