Skip to main content Accessibility help
×
Home
  • Print publication year: 2018
  • Online publication date: April 2018

17 - Fast-Wave Devices

Related content

Powered by UNSILO
[1]Petelin, M. I., ‘One century of cyclotron radiation’, IEEE Transactions on Plasma Science, vol. 27, pp. 294302, 1999.
[2]Booske, J. H. et al., ‘Vacuum electronic high power terahertz sources’, IEEE Transactions on Terahertz Science and Technology, vol. 1, pp. 5475, 2011.
[3]Feinstein, J. and Felch, K., ‘Status review of research on millimeter-wave tubes’, IEEE Transactions on Electron Devices, vol. 34, pp. 461467, 1987.
[4]Faillon, G. et al., ‘Microwave tubes’, in Eichmeier, J. A. and Thumm, M. K., eds, Vacuum Electronics: Components and Devices. Berlin: Springer-Verlag, pp. 184, 2008.
[5]Granatstein, V. L. and Alexeff, I., High-Power Microwave Sources. Boston, MA: Artech House, 1987.
[6]Pasour, J. A., ‘Free-electron lasers’, IEEE Circuits and Devices Magazine, vol. 3, pp. 5564, 1987.
[7]Felch, K. L. et al., ‘Characteristics and applications of fast-wave gyrodevices’, Proceedings of the IEEE, vol. 87, pp. 752781, 1999.
[8]Freund, H. P. and Neil, G. R., ‘Free-electron lasers: vacuum electronic generators of coherent radiation’, Proceedings of the IEEE, vol. 87, pp. 782803, 1999.
[9]Danly, B. G. et al., ‘Gyro-amplifiers’, in Barker, R. J. et al., eds, Modern Microwave and Millimetre-Wave Power Electronics. Piscataway, NJ: IEEE Press, pp. 247–287, 2005.
[10]Kartikeyan, M. V. et al., Gyrotrons: High-Power Microwave and Millimeter Wave Technology. Berlin: Springer-Verlag, 2010.
[11]Chu, K., ‘The electron cyclotron maser’, Reviews of Modern Physics, vol. 76, p. 489, 2004.
[12]Granatstein, V. L. et al., ‘A quarter century of gyrotron research and development’, IEEE Transactions on Plasma Science, vol. 25, pp. 13221335, 1997.
[13]Nusinovich, G. et al., ‘The gyrotron at 50: historical overview’, Journal of Infrared, Millimeter, and Terahertz Waves, vol. 35, pp. 325381, 2014.
[14]Glyavin, M. Y. et al., ‘Terahertz gyrotrons: state of the art and prospects’, Journal of Communications Technology and Electronics, vol. 59, pp. 792797, 2014.
[15]Flyagin, V. A. et al., ‘The gyrotron’, IEEE Transactions on Microwave Theory and Techniques, vol. 25, pp. 514521, 1977.
[16]Sturrock, P. A., ‘Kinematics of growing waves’, Physical Review, vol. 112, pp. 14881503, 1958.
[17]Briggs, R. J., Electron-Stream Interaction with Plasmas. Cambridge, MA: MIT Press, 1964.
[18]Chu, K. R. et al., ‘Characteristics and optimum operating parameters of a gyrotron traveling wave amplifier’, IEEE Transactions on Microwave Theory and Techniques, vol. 27, pp. 178187, 1979.
[19]Sangster, A. J., ‘Small-signal analysis of the travelling-wave gyrotron using Pierce parameters’, IEE Proceedings I: Solid-State and Electron Devices, vol. 127, pp. 4552, 1980.
[20]Lindsay, P., ‘Gyrotrons (electron cyclotron masers): different mathematical models’, IEEE Journal of Quantum Electronics, vol. 17, pp. 13271333, 1981.
[21]Lau, Y. Y., ‘Simple macroscopic theory of cyclotron maser instabilities’, IEEE Transactions on Electron Devices, vol. 29, pp. 320335, 1982.
[22]Pierce, J. R., Traveling-Wave Tubes. Princeton, NJ: D. van Nostrand, 1950.
[23]Chu, K. R. and Lin, A. T., ‘Gain and bandwidth of the gyro-TWT and CARM amplifiers’, IEEE Transactions on Plasma Science, vol. 16, pp. 90104, 1988.
[24]Thumm, M., State-of-the-Art of High Power Gyro-Devices and Free Electron Masers. Update 2015 (KIT Scientific Reports; 7717), vol. 7717. KIT Scientific Publishing, 2016.
[25]Borodin, D. and Einat, M., ‘Copper solenoid design for the continuous operation of a second harmonic 95-GHz gyrotron’, IEEE Transactions on Electron Devices, vol. 61, pp. 33093316, 2014.
[26]Neudorfer, J. et al., ‘Efficient parallelization of a three-dimensional high-order particle-in-cell method for the simulation of a 170 GHz gyrotron resonator’, IEEE Transactions on Plasma Science, vol. 41, pp. 8798, 2013.
[27]Botton, M. et al., ‘MAGY: a time-dependent code for simulation of slow and fast microwave sources’, IEEE Transactions on Plasma Science, vol. 26, pp. 882892, 1998.
[28]Danly, B. and Temkin, R. J., ‘Generalized nonlinear harmonic gyrotron theory’, Physics of Fluids, vol. 29, pp. 561567, 1986.
[29]Kreischer, K. E. et al., ‘The design of megawatt gyrotrons’, IEEE Transactions on Plasma Science, vol. 13, pp. 364373, 1985.
[30]Danly, B. and Temkin, R. J., Generalized Nonlinear Harmonic Gyrotron Theory, MIT, Cambridge MA 10706631, 1985.
[31]Thumm, M. et al., ‘EU megawatt-class 140-GHz CW gyrotron’, IEEE Transactions on Plasma Science, vol. 35, pp. 143153, 2007.
[32]Thumm, M., ‘Private communication’, 2015.
[33]Hornstein, M. K. et al., ‘Second harmonic operation at 460 GHz and broadband continuous frequency tuning of a gyrotron oscillator’, IEEE Transactions on Electron Devices, vol. 52, pp. 798807, 2005.
[34]Thumm, M., ‘Recent advances in the worldwide fusion gyrotron development’, IEEE Transactions on Plasma Science, vol. 42, pp. 590599, 2014.
[35]Bratman, V. et al., ‘Review of Subterahertz and Terahertz Gyrodevices at IAP RAS and FIR FU’, IEEE Transactions on Plasma Science, vol. 37, pp. 3643, 2009.
[36]Kartikeyan, M. V. et al., ‘Possible operation of a 1.5-2-MW, CW conventional cavity gyrotron at 140 GHz’, IEEE Transactions on Plasma Science, vol. 28, pp. 645651, 2000.
[37]Dammertz, G. et al., ‘Development of a 140-GHz 1-MW continuous wave gyrotron for the W7-X stellarator’, IEEE Transactions on Plasma Science, vol. 30, pp. 808818, 2002.
[38]Alberti, S. et al., ‘European high-power CW gyrotron development for ECRH systems’, Fusion Engineering and Design, vol. 53, pp. 387397, 2001.
[39]Thumm, M. K. and Kasparek, W., ‘Passive high-power microwave components’, IEEE Transactions on Plasma Science, vol. 30, pp. 755786, 2002.
[40]Nguyen, K. T. et al., ‘Electron gun and collector design for 94-GHz gyro-amplifiers’, IEEE Transactions on Plasma Science, vol. 26, pp. 799813, 1998.
[41]Read, M. E. et al., ‘Depressed collectors for high-power gyrotrons’, IEEE Transactions on Electron Devices, vol. 37, pp. 15791589, 1990.
[42]Saraph, G. P. et al., ‘Design of a single-stage depressed collector for high-power, pulsed gyroklystron amplifiers’, IEEE Transactions on Electron Devices, vol. 45, pp. 986990, 1998.
[43]Ives, R. L. et al., ‘Design of a multistage depressed collector system for 1 MW CW gyrotrons. II. System consideration’, IEEE Transactions on Plasma Science, vol. 27, pp. 503511, 1999.
[44]Singh, A. et al., ‘Design of a multistage depressed collector system for 1-MW CW gyrotrons. I. Trajectory control of primary and secondary electrons in a two-stage depressed collector’, IEEE Transactions on Plasma Science, vol. 27, pp. 490502, 1999.
[45]Read, M. E. et al., ‘Design of a 3-MW 140-GHz gyrotron with a coaxial cavity’, IEEE Transactions on Plasma Science, vol. 24, pp. 586595, 1996.
[46]Advani, R. et al., ‘Experimental investigation of a 140-GHz coaxial gyrotron oscillator’, IEEE Transactions on Plasma Science, vol. 29, pp. 943950, 2001.
[47]Dumbrajs, O. and Nusinovich, G. S., ‘Coaxial gyrotrons: past, present, and future (review) ’, IEEE Transactions on Plasma Science, vol. 32, pp. 934946, 2004.
[48]Bratman, V. L. et al., ‘Large-orbit gyrotron operation in the terahertz frequency range’, Physical Review Letters, vol. 102, p. 245101, 2009.
[49]Bratman, V. L. et al., ‘Moderately relativistic high-harmonic gyrotrons for millimeter/submillimeter wavelength band’, IEEE Transactions on Plasma Science, vol. 27, pp. 456461, 1999.
[50]Fliflet, A. W. et al., ‘Review of quasi-optical gyrotron development’, Journal of Fusion Energy, vol. 9, pp. 3158, 1990.
[51]Levush, B. and Manheim, W. M., ‘Generation of high-frequency radiation by quasi-optical gyrotron at harmonics of the cyclotron frequency’, IEEE Transactions on Microwave Theory and Techniques, vol. 32, pp. 13981401, 1984.
[52]Carter, R. G., ‘Synthesis of the fields of barrel open resonators’, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 657, pp. 15, 2011.
[53]Clarke, R. N. and Ronseberg, C. B., ‘Fabry-Perot and open resonators at microwave and millimetre wave frequencies, 2–300 GHz’, J. Phys. E.: Sci. Instrum., vol. 15, pp. 924, 1982.
[54]Kogelnik, H. and Li, T., ‘Laser beams and resonators’, Applied Optics, vol. 5, pp. 15501567, 1966.
[55]Bratman, V. et al., ‘FEL’s with Bragg reflection resonators: cyclotron autoresonance masers versus ubitrons’, IEEE Journal of Quantum Electronics, vol. 19, pp. 282296, 1983.
[56]Brand, G. F. and Gross, M., ‘A tunable source of linearly-polarized, near-millmeter wave radiation’, International Journal of Infrared and Millimeter Waves, vol. 10, pp. 121136, 1989.
[57]Hong, K. D. et al., ‘Submillimeter wave generation by second harmonic operation of tunable gyrotrons’, International Journal of Infrared and Millimeter Waves, vol. 13, pp. 215227, 1992.
[58]Hong, K. et al., ‘A 150–600 GHz step-tunable gyrotron’, Journal of Applied Physics, vol. 74, pp. 52505258, 1993.
[59]Idehara, T. et al., ‘Development of a high-frequency, second-harmonic gyrotron tunable up to 636 GHz’, Physics of Fluids B: Plasma Physics (1989–1993), vol. 5, pp. 13771379, 1993.
[60]Torrezan, A. C. et al., ‘Operation of a continuously frequency-tunable second-harmonic CW 330-GHz gyrotron for dynamic nuclear polarization’, IEEE Transactions on Electron Devices, vol. 58, pp. 27772783, 2011.
[61]Park, S. Y. et al., ‘Experimental study of a Ka-band gyrotron backward-wave oscillator’, IEEE Transactions on Plasma Science, vol. 18, pp. 321325, 1990.
[62]Samsonov, S. V. et al., ‘Frequency-tunable CW gyro-BWO with a helically rippled operating waveguide’, IEEE Transactions on Plasma Science, vol. 32, pp. 884889, 2004.
[63]Liu, B.-T. et al., ‘Experimental study of a Ku-band gyrotron backward-wave oscillator with a single stage depressed collector’, IEEE Transactions on Plasma Science, vol. 35, pp. 10651069, 2007.
[64]Danly, B. G. et al., ‘Development and testing of a high-average power, 94-GHz gyroklystron’, IEEE Transactions on Plasma Science, vol. 28, pp. 713726, 2000.
[65]Garven, M. et al., ‘Experimental studies of a four-cavity, 35 GHz gyroklystron amplifier’, IEEE Transactions on Plasma Science, vol. 28, pp. 672680, 2000.
[66]Danly, B. G., ‘Gyro-amplifiers for high power millimeter wave radar’, in Third IEEE International Vacuum Electronics Conference, Monterey, CA, pp. 361362, 2002.
[67]Cross, A. et al., ‘Helically corrugated waveguide gyrotron traveling wave amplifier using a thermionic cathode electron gun’, Applied Physics Letters, vol. 90, p. 253501, 2007.
[68]Bratman, V. et al., ‘High-gain wide-band gyrotron traveling wave amplifier with a helically corrugated waveguide’, Physical Review Letters, vol. 84, p. 2746, 2000.
[69]Denisov, G. et al., ‘Gyrotron traveling wave amplifier with a helical interaction waveguide’, Physical Review Letters, vol. 81, p. 5680, 1998.
[70]Samsonov, S. V. et al., ‘CW Ka-band kilowatt-level helical-waveguide gyro-TWT’, IEEE Transactions on Electron Devices, vol. 59, pp. 22502255, 2012.
[71]Dohler, G. and Gallagher, D., ‘The small-signal theory of the cyclotron maser and other gyrotron-type devices’, IEEE Transactions on Electron Devices, vol. 35, pp. 17301745, 1988.
[72]Dohler, G. et al., ‘The peniotron: fast wave device for efficient high power mm-wave generation’, in International Electron Devices Meeting, pp. 400403, 1978.
[73]Dohler, G. and Wilson, B., ‘A small signal theory of the peniotron’, in International Electron Devices Meeting, pp. 810813, 1980.
[74]Dohler, G. et al., ‘Peniotron oscillator operating performance’, in International Electron Devices Meeting, pp. 328331, 1981.
[75]Dohler, G. et al., ‘Peniotron amplifier results’, in International Electron Devices Meeting, pp. 845848, 1984.
[76]Rha, P. S. et al., ‘Self-consistent large theory and simulation of high harmonic gyrotron and peniotron oscillators operating in a magnetron-type cavity’, in International Electron Devices Meeting, pp. 535–538, 1985.
[77]Rha, P. S. et al., ‘Self-consistent simulation of harmonic gyrotron and peniotron oscillators operating in a magnetron-type cavity’, IEEE Transactions on Electron Devices, vol. 36, pp. 789801, 1989.
[78]Shimawaki, H. et al., ‘2nd cyclotron harmonic peniotron experiments’, in International Electron Devices Meeting, pp. 787790, 1991.
[79]Dohler, G. et al., ‘Harmonic high power 95 GHz peniotron’, in International Electron Devices Meeting, pp. 363366, 1993.
[80]Ishihara, T. et al., ‘Experiments of 10th cyclotron harmonic peniotron oscillator’, in International Electron Devices Meeting, pp. 367–370, 1993.
[81]Ganguly, A. K. et al., ‘Nonlinear theory of harmonic peniotron and gyrotron interactions in a rising-sun slotted waveguide’, IEEE Transactions on Plasma Science, vol. 22, pp. 902912, 1994.
[82]Ishihara, T. et al., ‘Space harmonic peniotron in a magnetron waveguide resonator’, IEEE Transactions on Electron Devices, vol. 43, pp. 827833, 1996.
[83]Ishihara, T. et al., ‘Highly efficient operation of space harmonic peniotron at cyclotron high harmonics’, IEEE Transactions on Electron Devices, vol. 46, pp. 798802, 1999.
[84]McDermott, D. B. et al., ‘Efficient Ka-band second-harmonic slotted peniotron’, IEEE Transactions on Plasma Science, vol. 28, pp. 953958, 2000.
[85]Phillips, R. M., ‘History of the ubitron’, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 272, pp. 19, 1988.
[86]Phillips, R. M., ‘The ubitron, a high-power traveling-wave tube based on a periodic beam interaction in unloaded waveguide’, IRE Transactions on Electron Devices, vol. 7, pp. 231241, 1960.
[87]Pershing, D. E. et al., ‘Amplifier performance of the NRL ubitron’, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 358, pp. 104107, 1995.
[88]Bluem, H. et al., ‘Demonstration of a new free-electron laser harmonic interaction’, in International Electron Devices Meeting, pp. 791794, 1991.
[89]Balkcum, A. J. et al., ‘250-MW X-band TE01 ubitron using a coaxial PPM wiggler’, IEEE Transactions on Plasma Science, vol. 24, pp. 802807, 1996.
[90]Balkcum, A. J. et al., ‘High-power coaxial ubitron oscillator: theory and design’, IEEE Transactions on Plasma Science, vol. 26, pp. 548555, 1998.
[91]Freund, H. P. et al., ‘Designs for W-band free-electron masers’, IEEE Transactions on Plasma Science, vol. 27, pp. 243253, 1999.
[92]Bluem, H. P. et al., ‘A compact, high-power THz source’, in IEEE International Conference on Plasma Science, p. 7B-7, 2012.