Microwave and RF Vacuum Electronic Power Sources

- Print publication year: 2018
- Online publication date: April 2018

- Publisher: Cambridge University Press
- DOI: https://doi.org/10.1017/9780511979231.018
- pp 659-693

Powered by UNSILO

[1]Petelin, M. I., ‘One century of cyclotron radiation’, IEEE Transactions on Plasma Science*,* vol. 27, pp. 294–302, 1999.

[2]Booske, J. H. *et al.*, ‘Vacuum electronic high power terahertz sources’, IEEE Transactions on Terahertz Science and Technology*,* vol. 1, pp. 54–75, 2011.

[3]Feinstein, J. and Felch, K., ‘Status review of research on millimeter-wave tubes’, IEEE Transactions on Electron Devices*,* vol. 34, pp. 461–467, 1987.

[4]Faillon, G. *et al.*, ‘Microwave tubes’, in Eichmeier, J. A. and Thumm, M. K., eds, Vacuum Electronics: Components and Devices. Berlin: Springer-Verlag, pp. 1–84, 2008.

[5]Granatstein, V. L. and Alexeff, I., High-Power Microwave Sources. Boston, MA: Artech House, 1987.

[6]Pasour, J. A., ‘Free-electron lasers’, IEEE Circuits and Devices Magazine*,* vol. 3, pp. 55–64, 1987.

[7]Felch, K. L. *et al.*, ‘Characteristics and applications of fast-wave gyrodevices’, Proceedings of the IEEE*,* vol. 87, pp. 752–781, 1999.

[8]Freund, H. P. and Neil, G. R., ‘Free-electron lasers: vacuum electronic generators of coherent radiation’, Proceedings of the IEEE*,* vol. 87, pp. 782–803, 1999.

[9]Danly, B. G. *et al.*, ‘Gyro-amplifiers’, in Barker, R. J. *et al.*, eds, Modern Microwave and Millimetre-Wave Power Electronics. Piscataway, NJ: IEEE Press, pp. 247–287, 2005.

[10]Kartikeyan, M. V. *et al.*, Gyrotrons: High-Power Microwave and Millimeter Wave Technology. Berlin: Springer-Verlag, 2010.

[11]Chu, K., ‘The electron cyclotron maser’, Reviews of Modern Physics*,* vol. 76, p. 489, 2004.

[12]Granatstein, V. L. *et al.*, ‘A quarter century of gyrotron research and development’, IEEE Transactions on Plasma Science*,* vol. 25, pp. 1322–1335, 1997.

[13]Nusinovich, G. *et al.*, ‘The gyrotron at 50: historical overview’, Journal of Infrared, Millimeter, and Terahertz Waves*,* vol. 35, pp. 325–381, 2014.

[14]Glyavin, M. Y. *et al.*, ‘Terahertz gyrotrons: state of the art and prospects’, Journal of Communications Technology and Electronics*,* vol. 59, pp. 792–797, 2014.

[15]Flyagin, V. A. *et al.*, ‘The gyrotron’, IEEE Transactions on Microwave Theory and Techniques*,* vol. 25, pp. 514–521, 1977.

[16]Sturrock, P. A., ‘Kinematics of growing waves’, Physical Review*,* vol. 112, pp. 1488–1503, 1958.

[17]Briggs, R. J., Electron-Stream Interaction with Plasmas. Cambridge, MA: MIT Press, 1964.

[18]Chu, K. R. *et al.*, ‘Characteristics and optimum operating parameters of a gyrotron traveling wave amplifier’, IEEE Transactions on Microwave Theory and Techniques*,* vol. 27, pp. 178–187, 1979.

[19]Sangster, A. J., ‘Small-signal analysis of the travelling-wave gyrotron using Pierce parameters’, IEE Proceedings I: Solid-State and Electron Devices*,* vol. 127, pp. 45–52, 1980.

[20]Lindsay, P., ‘Gyrotrons (electron cyclotron masers): different mathematical models’, IEEE Journal of Quantum Electronics*,* vol. 17, pp. 1327–1333, 1981.

[21]Lau, Y. Y., ‘Simple macroscopic theory of cyclotron maser instabilities’, IEEE Transactions on Electron Devices*,* vol. 29, pp. 320–335, 1982.

[22]Pierce, J. R., Traveling-Wave Tubes. Princeton, NJ: D. van Nostrand, 1950.

[23]Chu, K. R. and Lin, A. T., ‘Gain and bandwidth of the gyro-TWT and CARM amplifiers’, IEEE Transactions on Plasma Science*,* vol. 16, pp. 90–104, 1988.

[24]Thumm, M., *State-of-the-Art of High Power Gyro-Devices and Free Electron Masers. Update 2015 (KIT Scientific Reports; 7717)*, vol. 7717. KIT Scientific Publishing, 2016.

[25]Borodin, D. and Einat, M., ‘Copper solenoid design for the continuous operation of a second harmonic 95-GHz gyrotron’, IEEE Transactions on Electron Devices*,* vol. 61, pp. 3309–3316, 2014.

[26]Neudorfer, J. *et al.*, ‘Efficient parallelization of a three-dimensional high-order particle-in-cell method for the simulation of a 170 GHz gyrotron resonator’, IEEE Transactions on Plasma Science*,* vol. 41, pp. 87–98, 2013.

[27]Botton, M. *et al.*, ‘MAGY: a time-dependent code for simulation of slow and fast microwave sources’, IEEE Transactions on Plasma Science*,* vol. 26, pp. 882–892, 1998.

[28]Danly, B. and Temkin, R. J., ‘Generalized nonlinear harmonic gyrotron theory’, Physics of Fluids*,* vol. 29, pp. 561–567, 1986.

[29]Kreischer, K. E. *et al.*, ‘The design of megawatt gyrotrons’, IEEE Transactions on Plasma Science*,* vol. 13, pp. 364–373, 1985.

[30]Danly, B. and Temkin, R. J., Generalized Nonlinear Harmonic Gyrotron Theory, MIT, Cambridge MA 1070–6631, 1985.

[31]Thumm, M. *et al.*, ‘EU megawatt-class 140-GHz CW gyrotron’, IEEE Transactions on Plasma Science*,* vol. 35, pp. 143–153, 2007.

[32]Thumm, M., ‘Private communication’, 2015.

[33]Hornstein, M. K. *et al.*, ‘Second harmonic operation at 460 GHz and broadband continuous frequency tuning of a gyrotron oscillator’, IEEE Transactions on Electron Devices*,* vol. 52, pp. 798–807, 2005.

[34]Thumm, M., ‘Recent advances in the worldwide fusion gyrotron development’, IEEE Transactions on Plasma Science*,* vol. 42, pp. 590–599, 2014.

[35]Bratman, V. *et al.*, ‘Review of Subterahertz and Terahertz Gyrodevices at IAP RAS and FIR FU’, IEEE Transactions on Plasma Science*,* vol. 37, pp. 36–43, 2009.

[36]Kartikeyan, M. V. *et al.*, ‘Possible operation of a 1.5-2-MW, CW conventional cavity gyrotron at 140 GHz’, IEEE Transactions on Plasma Science*,* vol. 28, pp. 645–651, 2000.

[37]Dammertz, G. *et al.*, ‘Development of a 140-GHz 1-MW continuous wave gyrotron for the W7-X stellarator’, IEEE Transactions on Plasma Science*,* vol. 30, pp. 808–818, 2002.

[38]Alberti, S. *et al.*, ‘European high-power CW gyrotron development for ECRH systems’, Fusion Engineering and Design*,* vol. 53, pp. 387–397, 2001.

[39]Thumm, M. K. and Kasparek, W., ‘Passive high-power microwave components’, IEEE Transactions on Plasma Science*,* vol. 30, pp. 755–786, 2002.

[40]Nguyen, K. T. *et al.*, ‘Electron gun and collector design for 94-GHz gyro-amplifiers’, IEEE Transactions on Plasma Science*,* vol. 26, pp. 799–813, 1998.

[41]Read, M. E. *et al.*, ‘Depressed collectors for high-power gyrotrons’, IEEE Transactions on Electron Devices*,* vol. 37, pp. 1579–1589, 1990.

[42]Saraph, G. P. *et al.*, ‘Design of a single-stage depressed collector for high-power, pulsed gyroklystron amplifiers’, IEEE Transactions on Electron Devices*,* vol. 45, pp. 986–990, 1998.

[43]Ives, R. L. *et al.*, ‘Design of a multistage depressed collector system for 1 MW CW gyrotrons. II. System consideration’, IEEE Transactions on Plasma Science*,* vol. 27, pp. 503–511, 1999.

[44]Singh, A. *et al.*, ‘Design of a multistage depressed collector system for 1-MW CW gyrotrons. I. Trajectory control of primary and secondary electrons in a two-stage depressed collector’, IEEE Transactions on Plasma Science*,* vol. 27, pp. 490–502, 1999.

[45]Read, M. E. *et al.*, ‘Design of a 3-MW 140-GHz gyrotron with a coaxial cavity’, IEEE Transactions on Plasma Science*,* vol. 24, pp. 586–595, 1996.

[46]Advani, R. *et al.*, ‘Experimental investigation of a 140-GHz coaxial gyrotron oscillator’, IEEE Transactions on Plasma Science*,* vol. 29, pp. 943–950, 2001.

[47]Dumbrajs, O. and Nusinovich, G. S., ‘Coaxial gyrotrons: past, present, and future (review) ’, IEEE Transactions on Plasma Science*,* vol. 32, pp. 934–946, 2004.

[48]Bratman, V. L. *et al.*, ‘Large-orbit gyrotron operation in the terahertz frequency range’, Physical Review Letters*,* vol. 102, p. 245101, 2009.

[49]Bratman, V. L. *et al.*, ‘Moderately relativistic high-harmonic gyrotrons for millimeter/submillimeter wavelength band’, IEEE Transactions on Plasma Science*,* vol. 27, pp. 456–461, 1999.

[50]Fliflet, A. W. *et al.*, ‘Review of quasi-optical gyrotron development’, Journal of Fusion Energy*,* vol. 9, pp. 31–58, 1990.

[51]Levush, B. and Manheim, W. M., ‘Generation of high-frequency radiation by quasi-optical gyrotron at harmonics of the cyclotron frequency’, IEEE Transactions on Microwave Theory and Techniques*,* vol. 32, pp. 1398–1401, 1984.

[52]Carter, R. G., ‘Synthesis of the fields of barrel open resonators’, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment*,* vol. 657, pp. 1–5, 2011.

[53]Clarke, R. N. and Ronseberg, C. B., ‘Fabry-Perot and open resonators at microwave and millimetre wave frequencies, 2–300 GHz’, J. Phys. E.: Sci. Instrum*.,* vol. 15, pp. 9–24, 1982.

[54]Kogelnik, H. and Li, T., ‘Laser beams and resonators’, Applied Optics*,* vol. 5, pp. 1550–1567, 1966.

[55]Bratman, V. *et al.*, ‘FEL’s with Bragg reflection resonators: cyclotron autoresonance masers versus ubitrons’, IEEE Journal of Quantum Electronics*,* vol. 19, pp. 282–296, 1983.

[56]Brand, G. F. and Gross, M., ‘A tunable source of linearly-polarized, near-millmeter wave radiation’, International Journal of Infrared and Millimeter Waves*,* vol. 10, pp. 121–136, 1989.

[57]Hong, K. D. *et al.*, ‘Submillimeter wave generation by second harmonic operation of tunable gyrotrons’, International Journal of Infrared and Millimeter Waves*,* vol. 13, pp. 215–227, 1992.

[58]Hong, K. *et al.*, ‘A 150–600 GHz step-tunable gyrotron’, Journal of Applied Physics*,* vol. 74, pp. 5250–5258, 1993.

[59]Idehara, T. *et al.*, ‘Development of a high-frequency, second-harmonic gyrotron tunable up to 636 GHz’, Physics of Fluids B: Plasma Physics (1989–1993)*,* vol. 5, pp. 1377–1379, 1993.

[60]Torrezan, A. C. *et al.*, ‘Operation of a continuously frequency-tunable second-harmonic CW 330-GHz gyrotron for dynamic nuclear polarization’, IEEE Transactions on Electron Devices*,* vol. 58, pp. 2777–2783, 2011.

[61]Park, S. Y. *et al.*, ‘Experimental study of a Ka-band gyrotron backward-wave oscillator’, IEEE Transactions on Plasma Science*,* vol. 18, pp. 321–325, 1990.

[62]Samsonov, S. V. *et al.*, ‘Frequency-tunable CW gyro-BWO with a helically rippled operating waveguide’, IEEE Transactions on Plasma Science*,* vol. 32, pp. 884–889, 2004.

[63]Liu, B.-T. *et al.*, ‘Experimental study of a Ku-band gyrotron backward-wave oscillator with a single stage depressed collector’, IEEE Transactions on Plasma Science*,* vol. 35, pp. 1065–1069, 2007.

[64]Danly, B. G. *et al.*, ‘Development and testing of a high-average power, 94-GHz gyroklystron’, IEEE Transactions on Plasma Science*,* vol. 28, pp. 713–726, 2000.

[65]Garven, M. *et al.*, ‘Experimental studies of a four-cavity, 35 GHz gyroklystron amplifier’, IEEE Transactions on Plasma Science*,* vol. 28, pp. 672–680, 2000.

[66]Danly, B. G., ‘Gyro-amplifiers for high power millimeter wave radar’, in Third IEEE International Vacuum Electronics Conference, Monterey, CA, pp. 361–362, 2002.

[67]Cross, A. *et al.*, ‘Helically corrugated waveguide gyrotron traveling wave amplifier using a thermionic cathode electron gun’, Applied Physics Letters*,* vol. 90, p. 253501, 2007.

[68]Bratman, V. *et al.*, ‘High-gain wide-band gyrotron traveling wave amplifier with a helically corrugated waveguide’, Physical Review Letters*,* vol. 84, p. 2746, 2000.

[69]Denisov, G. *et al.*, ‘Gyrotron traveling wave amplifier with a helical interaction waveguide’, Physical Review Letters*,* vol. 81, p. 5680, 1998.

[70]Samsonov, S. V. *et al.*, ‘CW Ka-band kilowatt-level helical-waveguide gyro-TWT’, IEEE Transactions on Electron Devices*,* vol. 59, pp. 2250–2255, 2012.

[71]Dohler, G. and Gallagher, D., ‘The small-signal theory of the cyclotron maser and other gyrotron-type devices’, IEEE Transactions on Electron Devices*,* vol. 35, pp. 1730–1745, 1988.

[72]Dohler, G. *et al.*, ‘The peniotron: fast wave device for efficient high power mm-wave generation’, in International Electron Devices Meeting, pp. 400–403, 1978.

[73]Dohler, G. and Wilson, B., ‘A small signal theory of the peniotron’, in International Electron Devices Meeting, pp. 810–813, 1980.

[74]Dohler, G. *et al.*, ‘Peniotron oscillator operating performance’, in International Electron Devices Meeting, pp. 328–331, 1981.

[75]Dohler, G. *et al.*, ‘Peniotron amplifier results’, in International Electron Devices Meeting, pp. 845–848, 1984.

[76]Rha, P. S. *et al.*, ‘Self-consistent large theory and simulation of high harmonic gyrotron and peniotron oscillators operating in a magnetron-type cavity’, in International Electron Devices Meeting, pp. 535–538, 1985.

[77]Rha, P. S. *et al.*, ‘Self-consistent simulation of harmonic gyrotron and peniotron oscillators operating in a magnetron-type cavity’, IEEE Transactions on Electron Devices*,* vol. 36, pp. 789–801, 1989.

[78]Shimawaki, H. *et al.*, ‘2nd cyclotron harmonic peniotron experiments’, in International Electron Devices Meeting, pp. 787–790, 1991.

[79]Dohler, G. *et al.*, ‘Harmonic high power 95 GHz peniotron’, in International Electron Devices Meeting, pp. 363–366, 1993.

[80]Ishihara, T. *et al.*, ‘Experiments of 10th cyclotron harmonic peniotron oscillator’, in International Electron Devices Meeting, pp. 367–370, 1993.

[81]Ganguly, A. K. *et al.*, ‘Nonlinear theory of harmonic peniotron and gyrotron interactions in a rising-sun slotted waveguide’, IEEE Transactions on Plasma Science*,* vol. 22, pp. 902–912, 1994.

[82]Ishihara, T. *et al.*, ‘Space harmonic peniotron in a magnetron waveguide resonator’, IEEE Transactions on Electron Devices*,* vol. 43, pp. 827–833, 1996.

[83]Ishihara, T. *et al.*, ‘Highly efficient operation of space harmonic peniotron at cyclotron high harmonics’, IEEE Transactions on Electron Devices*,* vol. 46, pp. 798–802, 1999.

[84]McDermott, D. B. *et al.*, ‘Efficient Ka-band second-harmonic slotted peniotron’, IEEE Transactions on Plasma Science*,* vol. 28, pp. 953–958, 2000.

[85]Phillips, R. M., ‘History of the ubitron’, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment*,* vol. 272, pp. 1–9, 1988.

[86]Phillips, R. M., ‘The ubitron, a high-power traveling-wave tube based on a periodic beam interaction in unloaded waveguide’, IRE Transactions on Electron Devices*,* vol. 7, pp. 231–241, 1960.

[87]Pershing, D. E. *et al.*, ‘Amplifier performance of the NRL ubitron’, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment*,* vol. 358, pp. 104–107, 1995.

[88]Bluem, H. *et al.*, ‘Demonstration of a new free-electron laser harmonic interaction’, in International Electron Devices Meeting, pp. 791–794, 1991.

[89]Balkcum, A. J. *et al.*, ‘250-MW X-band TE_{01} ubitron using a coaxial PPM wiggler’, IEEE Transactions on Plasma Science*,* vol. 24, pp. 802–807, 1996.

[90]Balkcum, A. J. *et al.*, ‘High-power coaxial ubitron oscillator: theory and design’, IEEE Transactions on Plasma Science*,* vol. 26, pp. 548–555, 1998.

[91]Freund, H. P. *et al.*, ‘Designs for W-band free-electron masers’, IEEE Transactions on Plasma Science*,* vol. 27, pp. 243–253, 1999.

[92]Bluem, H. P. *et al.*, ‘A compact, high-power THz source’, in IEEE International Conference on Plasma Science, p. 7B-7, 2012.