Skip to main content Accessibility help
×
Home
  • Print publication year: 2013
  • Online publication date: January 2013

3 - Biological Methods for Metabolic Research

from Section 1 - Basic Methodological Strategies in Metabolomic Research

References

[1] Cascante, M., L.G. Boros, B. Comin-Anduix, P. de Atauri, J.J. Centelles, and P.W. Lee. Metabolic control analysis in drug discovery and disease. Nat Biotechnol, 2002. 20(3):243–249.
[2] Kobayashi, N., R.J. Barnard, S.M. Henning, D. Elashoff, S.T. Reddy, P. Cohen, P. Leung, J. Hong-Gonzalez, S.J. Freedland, J. Said, D. Gui, N.P. Seeram, L.M. Popoviciu, D. Bagga, D. Heber, J.A. Glaspy, and W.J. Aronson. Effect of altering dietary omega-6/omega-3 fatty acid ratios on prostate cancer membrane composition, cyclooxygenase-2, and prostaglandin E2. ClinCancer Res, 2006. 12(15):4662–4670.
[3] Menendez, J.A., and R. Lupu. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer, 2007. 7(10):763–777.
[4] Ramirez de Molina, A., D. Gallego-Ortega, J. Sarmentero-Estrada, D. Lagares, T. Gomez Del Pulgar, E. Bandres, J. Garcia-Foncillas, and J.C. Lacal. Choline kinase as a link connecting phospholipid metabolism and cell cycle regulation: implications in cancer therapy. Int J Biochem Cell Biol, 2008. 40(9):1753–1763.
[5] Medina-Gomez, G., S.L. Gray, L. Yetukuri, K. Shimomura, S. Virtue, M. Campbell, R.K. Curtis, M. Jimenez-Linan, M. Blount, G.S. Yeo, M. Lopez, T. Seppanen-Laakso, F.M. Ashcroft, M. Oresic, and A. Vidal-Puig. PPAR gamma 2 prevents lipotoxicity by controlling adipose tissue expandability and peripheral lipid metabolism. PLoS Genet, 2007. 3(4):e64.
[6] Oresic, M., S. Simell, M. Sysi-Aho, K. Nanto-Salonen, T. Seppanen-Laakso, V. Parikka, M. Katajamaa, A. Hekkala, I. Mattila, P. Keskinen, L. Yetukuri, A. Reinikainen, J. Lahde, T. Suortti, J. Hakalax, T. Simell, H. Hyoty, R. Veijola, J. Ilonen, R. Lahesmaa, M. Knip, and O. Simell. Dysregulation of lipid and amino acid metabolism precedes islet autoimmunity in children who later progress to type 1 diabetes. J Exp Med, 2008. 205(13):2975–2984.
[7] Unger, R.H. Lipotoxic diseases. Annu Rev Med, 2002. 53:319–336.
[8] Lusis, A.J.Atherosclerosis. Nature, 2000. 407(6801):233–241.
[9] Han, X., D.M. Holtzman, and D.W. McKeel, Jr.Plasmalogen deficiency in early Alzheimer's disease subjects and in animal models: molecular characterization using electrospray ionization mass spectrometry. J Neurochem, 2001. 77(4):1168–1180.
[10] Hartmann, T., J. Kuchenbecker, and M.O. Grimm. Alzheimer's disease: the lipid connection. J Neurochem, 2007. 103(Suppl 1):159–170.
[11] Kaddurah-Daouk, R., J. McEvoy, R.A. Baillie, D. Lee, J.K. Yao, P.M. Doraiswamy, and K.R. Krishnan. Metabolomic mapping of atypical antipsychotic effects in schizophrenia. Mol Psychiatry, 2007. 12(10):934–945.
[12] Schwarz, E., S. Prabakaran, P. Whitfield, H. Major, F.M. Leweke, D. Koethe, P. McKenna, and S. Bahn. High throughput lipidomic profiling of schizophrenia and bipolar disorder brain tissue reveals alterations of free fatty acids, phosphatidylcholines, and ceramides. J Proteome Res, 2008. 7(10):4266–4277.
[13] Griffin, J.L., and J.P. Shockcor. Metabolic profiles of cancer cells. Nat Rev Cancer, 2004. 4(7):551–561.
[14] Mendes, P., D.B. Kell, and H.V. Westerhoff. Channelling can decrease pool size. Eur J Biochem, 1992. 204(1):257–266.
[15] Mendes, P., D.B. Kell, and H.V. Westerhoff. Why and when channelling can decrease pool size at constant net flux in a simple dynamic channel. Biochim Biophys Acta, 1996. 1289(2):175–186.
[16] Bonetta, L. The inside scoop – evaluating gene delivery methods. Nat Methods, 2005. (2):875–883.
[17] Shen, Y., L. Post. Viral vectors and their applications. In Fields Virology, edited by D. M. H. Knipe, P. M. Howley and D. E. GriffinPhiladelphia: Lippincott Williams & Wilkins, 2007. p 540–558.
[18] SalmonP., D. Trono. Production and titration of lentiviral vectors. Curr Protoc Neurosci, 2006. Chapter 4:Unit 4.21.
[19] Sandy, P., A. Ventura, T. Jacks. Mammalian RNAi: a practical guide. BioTechniques, 2005. (39):215–224.
[20] Schmittgen, T.D., and K.J. Livak. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc, 2008. 3(6):1101–1108.
[21] Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976. 72:248–254.
[22] Lowry, O.H., N.J. Rosebrough, A.L. Farr, and R.J. Randall. Protein measurement with the Folin phenol reagent. J Biol Chem, 1951. 193(1):265–275.
[23] Smith, P.K., R.I. Krohn, G.T. Hermanson, A.K. Mallia, F.H. Gartner, M.D. Provenzano, E.K. Fujimoto, N.M. Goeke, B.J. Olson, and D.C. Klenk. Measurement of protein using bicinchoninic acid. Anal Biochem, 1985. 150(1):76–85.
[24] Laemmli, U.K.Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970. 227(5259):680–685.
[25] Schnell, S., M.J. Chappell, N.D. Evans, and M.R. Roussel. The mechanism distinguishability problem in biochemical kinetics: the single-enzyme, single-substrate reaction as a case study. C R Biol, 2006. 329(1):51–61.
[26] Al-Saffar, N.M., H. Troy, A. Ramirez de Molina, L.E. Jackson, B. Madhu, J.R. Griffiths, M.O. Leach, P. Workman, J.C. Lacal, I.R. Judson, and Y.L. Chung. Noninvasive magnetic resonance spectroscopic pharmacodynamic markers of the choline kinase inhibitor MN58b in human carcinoma models. Cancer Res, 2006. 66(1):427–434.
[27] Carnero, A., A. Cuadrado, L. del Peso, and J.C. Lacal. Activation of type D phospholipase by serum stimulation and ras-induced transformation in NIH3T3 cells. Oncogene, 1994. 9(5):1387–1395.
[28] Rodriguez-Gonzalez, A., A. Ramirez de Molina, F. Fernandez, and J.C. Lacal. Choline kinase inhibition induces the increase in ceramides resulting in a highly specific and selective cytotoxic antitumoral strategy as a potential mechanism of action. Oncogene, 2004. 23(50):8247–8259.
[29] Chua, B.T., D. Gallego-Ortega, A. Ramirez de Molina, A. Ullrich, J.C. Lacal, and J. Downward. Regulation of Akt(ser473) phosphorylation by choline kinase in breast carcinoma cells. Mol Cancer, 2009. 8:131.
[30] Yalcin, A., B. Clem, S. Makoni, A. Clem, K. Nelson, J. Thornburg, D. Siow, A.N. Lane, S.E. Brock, U. Goswami, J.W. Eaton, S. Telang, and J. Chesney. Selective inhibition of choline kinase simultaneously attenuates MAPK and PI3K/AKT signaling. Oncogene, 29(1):139–149.
[31] Fang, Y., M. Vilella-Bach, R. Bachmann, A. Flanigan, and J. Chen. Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science, 2001. 294(5548):1942–1945.
[32] Al-Saffar, N.M., L.E. Jackson, F.I. Raynaud, P.A. Clarke, A. Ramirez de Molina, J.C. Lacal, P. Workman, and M.O. Leach. The phosphoinositide 3-kinase inhibitor PI-103 downregulates choline kinase alpha leading to phosphocholine and total choline decrease detected by magnetic resonance spectroscopy. Cancer Res, 70(13):5507–5517.
[33] Jimenez, B., L. del Peso, S. Montaner, P. Esteve, and J.C. Lacal. Generation of phosphorylcholine as an essential event in the activation of Raf-1 and MAP-kinases in growth factors-induced mitogenic stimulation. J Cell Biochem, 1995. 57(1):141–149.
[34] Bligh, E.G., and W.J. Dyer. A rapid method of total lipid extraction and purification. Can J Biochem Physiol, 1959. 37(8):911–917.
[35] Casado-Vela, J., E.J. Ruiz, A.R. Nebreda, and J.I. Casal. A combination of neutral loss and targeted product ion scanning with two enzymatic digestions facilitates the comprehensive mapping of phosphorylation sites. Proteomics, 2007. 7(15):2522–2529.
[36] Ejsing, C.S., E. Duchoslav, J. Sampaio, K. Simons, R. Bonner, C. Thiele, K. Ekroos, and A. Shevchenko. Automated identification and quantification of glycerophospholipid molecular species by multiple precursor ion scanning. Anal Chem, 2006. 78(17):6202–6214.
[37] Ejsing, C.S., J.L. Sampaio, V. Surendranath, E. Duchoslav, K. Ekroos, R.W. Klemm, K. Simons, and A. Shevchenko. Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. Proc Natl Acad Sci U S A, 2009. 106(7):2136–2141.