Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-02T20:29:17.604Z Has data issue: false hasContentIssue false

4 - Specificity of Memory: Implications for Individual and Collective Remembering

Published online by Cambridge University Press:  05 June 2012

Pascal Boyer
Affiliation:
Washington University, St. Louis
James V. Wertsch
Affiliation:
Washington University, St Louis
Get access

Summary

A great deal of research has attempted to clarify the nature and mechanisms underlying memory in individuals, and there is an increasing amount of work concerning collective remembering by societies and cultures. However, there have been few attempts to bridge the gap between these two levels of analysis, and the present volume represents a welcome step in that direction. There are, of course, many possible ways to try to bridge the divide between individual and collective memory. In the present chapter, we adopt an approach that reflects our backgrounds as researchers in the area of individual memory: we focus on a broad concept that has important implications for how we think about individual memory and that, we suggest, might also be relevant to the understanding of collective memory.

We refer to this concept as the specificity of memory: the extent to which, and sense in which, an individual's memory is based on retention of specific features of a past experience, or reflects the operation of specialized, highly specific memory processes. In some situations, memory is highly specific, and may include the precise details of a previous experience; in other situations, memory may be much more generic, including retention of only the general sense or gist of what happened. For example, when asked about last year's summer vacation, we may be able to recall in detail the exact meal we ate at a favorite restaurant, where we sat, who else was present, what the room looked like, and how we felt about the food we ate.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atance, C. M., & O'Neill, D. K. (2005). The emergence of episodic future thinking in humans. Learning and Motivation, 36, 126–144.CrossRefGoogle Scholar
Bechara, A., Damasio, H., & Damasio, A. R. (2000). Emotion, decision making and the orbitofrontal cortex. Cerebral Cortex, 10, 295–307.CrossRefGoogle ScholarPubMed
Bower, G. H., & Gilligan, S. G. (1979). Remembering information related to one's self. Journal of Research in Personality, 13, 420–432.CrossRefGoogle Scholar
Bowers, J. S. (2000). In defense of abstractionist theories of repetition priming and word identification. Psychonomic Bulletin and Review, 7, 83–99.CrossRefGoogle ScholarPubMed
Brown, R., & Kulik, J. (1977). Flashbulb memories. Cognition, 5, 73–99.CrossRefGoogle Scholar
Buckner, R. L., & Carroll, D. C. (2007). Self-projection and the brain. Trends in Cognitive Sciences, 11, 49–57.CrossRef
Budson, A. E., Simons, J. S., Sullivan, A. L., Beier, J. S., Solomon, P. R., Scinto, , et al. (2004). Memory and emotions for the 9/11/01 terrorist attacks in patients with Alzheimer's disease, mild cognitive impairment, and healthy older adults. Neuropsychology, 18, 315–327.CrossRefGoogle Scholar
Cantor, N., & Mischel, W. (1977). Traits as prototypes: Effects on recognition memory. Journal of Personality and Social Psychology, 35, 38–48.CrossRefGoogle Scholar
Christianson, S.-A. (1989). Flashbulb memories: Special, but not so special. Memory and Cognition, 17, 435–443.CrossRefGoogle ScholarPubMed
Craik, F. I. M., & Lockhart, R. S. (1972). Levels of processing: A framework for memory research. Journal of Verbal Learning & Verbal Behavior, 11, 671–684.CrossRefGoogle Scholar
Craik, F. I. M., Moroz, T. M., Moscovitch, M., Stuss, D. T., Winocur, G., Tulving, E., et al. (1999). In search of the self: A positron emission tomography study. Psychological Science, 10, 26–34.CrossRefGoogle Scholar
Craik, F. I. M., & Tulving, E. (1975). Depth of processing and the retention of words in episodic memory. Journal of Experimental Psychology: General, 104, 268–294.CrossRefGoogle Scholar
D'Argembeau, A., & Linden, M. (2004). Influence of affective meaning on memory for contextual information. Emotion, 4, 173–188.CrossRefGoogle ScholarPubMed
Dobbins, I. G., Schnyer, D. M., Verfaellie, M, & Schacter, D. L. (2004). Cortical activity reductions during repetition priming can result from rapid response learning. Nature, 428, 316–319.CrossRefGoogle ScholarPubMed
Doerksen, S., & Shimamura, A. (2001). Source memory enhancement for emotional words. Emotion, 1, 5–11.CrossRefGoogle ScholarPubMed
Dolcos, F., LaBar, K. S, & Cabeza, R. (2004). Interaction between the amygdala and the medial temporal lobe memory system predicts better memory for emotional events. Neuron, 5, 855–63.CrossRefGoogle Scholar
Einstein, G. O., & Hunt, R. R. (1980). Levels of processing and organization: Additive effects of individual-item and relational processing. Journal of Experimental Psychology: Human Learning and Memory, 6, 588–598.Google Scholar
Ferguson, T. J., Rule, B. G., & Carlson, D. (1983). Memory for personally relevant information. Journal of Personality and Social Psychology, 44, 251–261.CrossRefGoogle Scholar
Fossati, P., Hevenor, S. J., Graham, S. J., Grady, C., Keightley, M L., Craik, F., et al. (2003). In search of the emotional self: An fMRI study using positive and negative emotional words. American Journal of Psychiatry, 160, 1938–1945.CrossRefGoogle ScholarPubMed
Fossati, P., Hevenor, S. J., Lepage, M., Graham, S. J., Grady, C., Keightley, M. L., et al. (2004). Distributed self in episodic memory: Neural correlates of successful retrieval of self-encoded positive and negative personality traits. NeuroImage, 22, 1596–1604.CrossRefGoogle ScholarPubMed
Garoff, R. J., Slotnick, S. D., & Schacter, D. L. (2005). The neural origins of specific and general memory: The role of fusiform cortex. Neuropsychologia, 43, 847–859.CrossRefGoogle ScholarPubMed
Gillihan, S. J., & Farah, M. J. (2005). Is self special? A critical review of evidence from experimental psychology and cognitive neuroscience. Psychological Bulletin, 131, 76–97.CrossRefGoogle ScholarPubMed
Gonsalves, B., & Paller, K. A. (2000). Neural events that underlie remembering something that never happened. Nature Neuroscience, 3, 1316–1321.CrossRefGoogle ScholarPubMed
Graf, P., & Mandler, G. (1984). Activation makes words more accessible, but not necessarily more retrievable. Journal of Verbal Learning and Verbal Behavior, 23, 553–568.CrossRefGoogle Scholar
Graf, P., & Schacter, D. L. (1985). Implicit and explicit memory for new associations in normal and amnesic subjects. Journal of Experimental Psychology: Learning, Memory, and Cognition, 11, 501–518.Google ScholarPubMed
Graf, P., Squire, L. R., & Mandler, G. (1984). The information that amnesic patients do not forget. Journal of Experimental Psychology: Learning, Memory, and Cognition, 10, 164–178.Google Scholar
Greenwald, A. G., & Banaji, M. R. (1989). The self as a memory system: Powerful, but Ordinary. Journal of Personality and Social Psychology, 57, 41–54.CrossRefGoogle Scholar
Grill-Spector, K., Henson, R., & Martin, A. (2006). Repetition and the brain: Neural models of stimulus-specific effects. Trends in Cognitive Sciences, 10, 14–23.CrossRefGoogle ScholarPubMed
Grill-Spector, K., & Malach, R. (2001). Fmr-adaptation: A tool for studying the functional properties of neurons. Acta Psychologica, 107, 293–321.CrossRefGoogle ScholarPubMed
Gutchess, A. H., Kensinger, E. A., & Schacter, D. L. (2006). Aging and memory for self and social contexs. Presentation at the 4th International Conference on Memory, Sydney, Australia.
Henson, R. N. (2003). Neuroimaging studies of priming. Progress in Neurobiology, 70, 53–81.CrossRefGoogle ScholarPubMed
Jacoby, L. L., & Dallas, M. (1981). On the relationship between autobiographical memory and perceptual learning. Journal of Experimental Psychology: General, 110, 306–340.CrossRefGoogle ScholarPubMed
Johnson, M. K., Hashtroudi, S., & Lindsay, D. S. (1993). Source monitoring. Psychological Bulletin, 114, 3–28.CrossRefGoogle ScholarPubMed
Johnson, M. K., & Raye, C. L. (1981). Reality monitoring. Psychological Review, 88, 67–85.CrossRefGoogle Scholar
Keenan, J. P., Nelson, A., O'Connor, M., & Pascual-Leone, A. (2001). Self-recognition and the right hemisphere. Nature, 409, 305.CrossRefGoogle ScholarPubMed
Keenan, J. P., Wheeler, M., Platek, S. M., Lardi, G., & Lassonde, M. (2003). Self-face processing in a callosotomy patient. European Journal of Neuroscience, 18, 2391–2395.CrossRefGoogle Scholar
Kelley, W. M., Macrae, C. N., Wyland, C. L., Caglar, S., Inati, S., & Heatherton, T. F. (2002). Finding the self? An event-related fMRI study. Journal of Cognitive Neuroscience, 14, 785–794.CrossRefGoogle ScholarPubMed
Kensinger, E. A., & Corkin, S. (2004a). The effects of emotional content and aging on false memories. Cognitive, Affective, and Behavioral Neuroscience, 4, 1–9.CrossRefGoogle ScholarPubMed
Kensinger, E. A., & Corkin, S. (2004b). Two routes to emotional memory: Distinct neural processes for valence and arousal. Proceedings of the National Academy of Sciences, USA, 101, 3310–3315.CrossRefGoogle ScholarPubMed
Kensinger, E. A., & Corkin, S. (2003). Memory enhancement for emotional words: Are emotional words more vividly remembered than neutral words?Memory and Cognition, 31, 1169–1180.CrossRefGoogle ScholarPubMed
Kensinger, E. A., Garoff-Eaton, R. J., & Schacter, D. L. (2006). Memory for specific visual details can be enhanced by negative arousing content. Journal of Memory and Language, 54, 99–112.CrossRefGoogle Scholar
Kensinger, E. A., Krendl, A. C., & Corkin, S. (2006). Memories of an emotional and a nonemotional event: Effects of aging and delay interval. Experimental Aging Research, 32, 23–45.CrossRefGoogle Scholar
Kensinger, E. A., & Schacter, D. L. (2005a). Emotional content and reality-monitoring ability: FMRI evidence for the influence of encoding processes. Neuropsychologia, 43, 1429–1443.CrossRefGoogle Scholar
Kensinger, E. A., & Schacter, D. L. (2005b). Retrieving accurate and distorted memories: Neuroimaging evidence for effects of emotion. NeuroImage, 27, 167–177.CrossRefGoogle ScholarPubMed
Kensinger, E. A., & Schacter, D. L. (2006a). Amygdala activity is associated with the successful encoding of item, but not source, information for positive and negative stimuli. Journal of Neuroscience, 26, 2564–70.CrossRefGoogle Scholar
Kensinger, E. A., & Schacter, D. L. (2006b). Neural processes underlying memory attribution on a reality-monitoring task. Cerebral Cortex, 16, 1126–1133.CrossRefGoogle ScholarPubMed
Kensinger, E. A., & Schacter, D. L. (2006c). Processing emotional pictures and words: Effects of valence and arousal. Cognitive, Affective, and Behavioral Neuroscience, 6, 110–127.CrossRefGoogle ScholarPubMed
Kensinger, E. A., & Schacter, D. L. (2006d). Reality monitoring and memory distortion: Effects of negative, arousing content. Memory and Cognition, 34, 251–260.CrossRefGoogle ScholarPubMed
Kensinger, E. A., & Schacter, D. L. (2006e). When the Red Sox shocked the Yankees: Comparing negative and positive memories. Psychonomic Bulletin and Review, 13, 757–763.
Kilpatrick, L., & Cahill, L. (2003). Amygdala modulation of parahippocampal and frontal regions during emotionally influenced memory storage. NeuroImage, 20, 2091–2099.CrossRefGoogle ScholarPubMed
Klein, S. B., & Kihlstrom, J. F. (1986). Elaboration, organization, and the self-reference effect in memory. Journal of Experimental Psychology: General, 115, 26–38.CrossRefGoogle ScholarPubMed
Klein, S. B., & Loftus, J. (1988). The nature of self-referent encoding: The contribution of elaborative and organizational processes. Journal of Personality and Social Psychology, 55, 5–11.CrossRefGoogle Scholar
Koutstaal, W., Wagner, A. D., Rotte, M., Maril, A., Buckner, R. L., & Schacter, D. L. (2001). Perceptual specificity in visual object priming: fMRI evidence for a laterality difference in fusiform cortex. Neuropsychologia, 39,184–199.CrossRefGoogle ScholarPubMed
Kuiper, N. A., & Rogers, T. B. (1979). Encoding of personal information: Self-other differences. Journal of Personality and Social Psychology, 37, 499–514.CrossRefGoogle Scholar
Levine, L. J., & Bluck, S. (2004). Painting with broad strokes: Happiness and the malleability of event memory. Cognition and Emotion, 18, 559–574.CrossRefGoogle Scholar
MacKay, D. G., & Ahmetzanov, (2005). Emotion, memory and attention in the taboo Stroop paradigm: An experimental analogue of flashbulb memories. Psychological Science, 16, 25–32.CrossRefGoogle Scholar
MacKay, D. G., Shafto, M., Taylor, J. K., Marian, D. E., Abrams, L., & Dyer, J. R. (2004). Relations between emotion, memory, and attention: Evidence from taboo stroop, lexical decision, and immediate memory tasks. Memory and Cognition, 32, 474–488.CrossRefGoogle ScholarPubMed
Macrae, C. N., Moran, J. M., Heatherton, T. F., Banfield, J. F., & Kelley, W. M. (2004). Medial prefrontal activity predicts memory for self. Cerebral Cortex, 14, 647–654.CrossRefGoogle Scholar
Markus, H. (1977). Self-schemata and processing information about the self. Journal of Personality and Social Psychology, 35, 63–78.CrossRefGoogle Scholar
Markus, H. R., & Kitayama, S. (1991). Culture and the self: Implications for cognition, emotion, and motivation. Psychological Review, 98, 224–253.CrossRefGoogle Scholar
Marsolek, C. J, Schacter, D. L., & Nicholas, C. (1996). Form-specific visual priming for new associations in the right cerebral hemisphere. Memory and Cognition, 24, 539–556.CrossRefGoogle ScholarPubMed
McCaul, K. D., & Maki, R. H. (1984). Self-reference versus desirability ratings and memory for traits. Journal of Personality and Social Psychology, 47, 953–955.CrossRefGoogle Scholar
Mitchell, J. P., Heatherton, T. F., & Macrae, C. N. (2002). Distinct neural systems subserve person and object knowledge. Proceedings of the National Academy of Sciences USA, 99, 15238–15243.CrossRefGoogle ScholarPubMed
Moran, J. M., Macrae, C. N., Heatherton, T. F., Wyland, C. L., & Kelley, W. M. (2006). Neuroanatomical evidence for distinct cognitive and affective components of self. Journal of Cognitive Neuroscience, 18, 1586–1594.CrossRefGoogle Scholar
Neisser, U., & Harsch, N. (1992). Phantom flashbulbs: False recollections of hearing the news about Challenger. In Winograd, E. & Neisser, U. (Eds.), Affect and accuracy in recall: Studies of “flashbulb” memories. New York: Cambridge University Press.Google Scholar
Paradis, C. M., Solomon, L. Z., Florer, F., & Thompson, T. (2004). Flashbulb memories of personal events of 9/11 and the day after for a sample of New York City residents. Psychological Reports, 95, 304–310.CrossRefGoogle ScholarPubMed
Pesta, B. J., Murphy, M. D., & Sanders, R. E. (2001). Are emotionally charged lures immune to false memory?Journal of Experimental Psychology: Learning, Memory, and Cognition, 27, 328–338.Google ScholarPubMed
Phan, K. L., Wager, T., Taylor, S. F., & Liberzon, I. (2002). Functional neuroanatomy of emotion: A meta-analysis of emotion activation studies in PET and fMRI. Neuroimage, 16, 331–348.CrossRefGoogle ScholarPubMed
Raichle, M. E., Fiez, J. A., Videen, T. O., Macleod, A. M., Pardo, J. V., Fox, P. T., et al. (1994). Practice-related changes in human brain functional anatomy during nonmotor learning. Cerebral Cortex, 4, 8–26.CrossRefGoogle ScholarPubMed
Richardson, M. P., Strange, B. A., & Dolan, R. J. (2004). Encoding of emotional memories depends on amygdala and hippocampus and their interactions. Nature Neuroscience, 7, 278–285.CrossRefGoogle ScholarPubMed
Roediger, H. L., & Blaxton, T. A. (1987). Effects of varying modality, surface features, and retention interval on priming in word fragment completion. Memory & Cognition, 15, 379–388.CrossRefGoogle ScholarPubMed
Rogers, T. B., Kuiper, N. A., & Kirker, W. S. (1977). Self-reference and the encoding of personal information. Journal of Personality and Social Psychology, 35, 677–688.CrossRefGoogle ScholarPubMed
Rogers, T. B., Rogers, P. J., & Kuiper, N. A. (1979). Evidence for the self as a cognitive prototype: The “false alarms effect”. Personality and Social Psychology Bulletin, 5, 53–56.CrossRefGoogle Scholar
Scarborough, D., Cortese, C., & Scarborough, H. (1977). Frequency and repetition effects in lexical memory. Journal of Experimental Psychology: Human Perception and Performance, 3, 1–17.Google Scholar
Schacter, D. L. (1985). Priming of old and new knowledge in amnesic patients and normal subjects. Annals of the New York Academy of Sciences, 444, 44–53.CrossRefGoogle ScholarPubMed
Schacter, D. L. (1987). Implicit memory: History and current status. Journal of Experimental Psychology: Learning, Memory, and Cognition, 13, 501–518.Google Scholar
Schacter, D. L., & Addis, D. R. (2007). The cognitive neuroscience of constructive memory: Remembering the past and imagining the future. Philosophical Transactions of the Royal Scoeity (B), 362, 773–86.CrossRef
Schacter, D. L., & Buckner, R. L. (1998). Priming and the brain. Neuron, 20, 185–195.CrossRefGoogle Scholar
Schacter, D. L., Dobbins, I. G., & Schnyer, D. M. (2004). Specificity of priming: A cognitive neuroscience perspective. Nature Reviews Neuroscience, 5, 853–862.CrossRefGoogle ScholarPubMed
Schacter, D. L., Gallo, D. A., & Kensinger, E. A. (2006). The cognitive neuroscience of implicit and false memories: Perspectives on processing specificity. In Naime, J. S. (Ed.), The foundations of remembering: Essays honoring Henry L. Roediger III (pp. 353–377). New York: Psychology Press.Google Scholar
Schmidt, S. R. (2004). Autobiographical memories for the September 11th attacks: Reconstructive errors and emotional impairment of memory. Memory and Cognition, 32, 443–454.CrossRefGoogle Scholar
Schmolck, H., Buffalo, E. A., & Squire, L. R. (2000). Memory distortions develop over time: Recollections of the O.J. Simpson trial verdict after 15 and 32 months. Psychological Science, 11, 39–45.CrossRefGoogle ScholarPubMed
Schnyer, D. M., Dobbins, I. G., Nicholls, L., Davis, S., Verfaellie, M., & Schacter, D. L. (2007). Item to decision mapping in rapid response learning. Memory and Cognition, 35, 1472–1482.CrossRefGoogle ScholarPubMed
Schnyer, D. M., Dobbins, I. G., Nicholls, L., Schacter, D. L., & Verfaellie, M. (2006). Rapid response learning in amnesia: Delineating associative learning components in repetition priming. Neuropsychologia, 44, 140–149.CrossRefGoogle ScholarPubMed
Simons, J. S., Koutstaal, W., Prince, S., Wagner, A. D., & Schacter, D. L. (2003). Neural mechanisms of visual object priming: Evidence for perceptual and semantic distinctions in fusiform cortex. NeuroImage, 19, 613–626.CrossRefGoogle ScholarPubMed
Suddendorf, T., & Busby, J. (2005). Making decisions with the future in mind: Developmental and comparative identification of mental time travel. Learning and Motivation, 36, 110–125.CrossRefGoogle Scholar
Squire, L. R., Stark, C. E. L., & Clark, R. E. (2004). The medial temporal lobe. Annual Review of Neuroscience, 27, 279–306.CrossRefGoogle ScholarPubMed
Symons, C. S., & Johnson, B. T. (1997). The self-reference effect in memory: A meta-analysis. Psychological Bulletin, 121, 371–394.CrossRefGoogle ScholarPubMed
Talarico, J. M., LaBar, K. S., & Rubin, D. C. (2004). Emotional intensity predicts autobiographical memory experience. Memory and Cognition, 32, 1118–1132.CrossRefGoogle ScholarPubMed
Tenpenny, P. L. (1995). Abstractionist versus episodic theories of repetition priming and word identification. Psychonomic Bulletin & Review, 2, 339–363.CrossRefGoogle ScholarPubMed
Tulving, E., Kapur, S., Craik, F. I. M., Moscovitch, M., & Houle, S. (1994). Hemispheric encoding retrieval asymmetry in episodic memory: Positron emission tomography findings. Proceedings of the National Academy of Sciences, USA, 91, 2016–2020.CrossRefGoogle ScholarPubMed
Tulving, E., & Schacter, D. L. (1990). Priming and human memory systems. Science, 247, 301–306.CrossRefGoogle ScholarPubMed
Tulving, E., Schacter, D. L., & Stark, H. (1982). Priming effects in word-fragment completion are independent of recognition memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 8, 336–342.Google Scholar
Turk, D. J., Heatherton, T. F., Kelley, W. M., Funnell, M. G., Gazzaniga, M. S., & Macrae, C. N. (2002). Mike or me? Self-recognition in a split-brain patient. Nature Neuroscience, 5, 841–842.CrossRefGoogle ScholarPubMed
Uddin, L. Q., Molnar-Szakacs, I., Zaidel, E., & Iacoboni, M. (2006). rTMS to the right inferior parietal lobule disrupts self-other discrimination. Social Cognitive and Affective Neuroscience, 1, 65–71.CrossRefGoogle ScholarPubMed
Vuilleumier, P., Henson, R. N., Driver, J., & Dolan, R. J. (2002). Multiple levels of visual object constancy revealed by event-related fMRI of repetition priming. Nature Neuroscience, 5, 491–499.CrossRefGoogle ScholarPubMed
Wagner, A. D., Schacter, D. L., Rotte, M., Koutstaal, W., Maril, A., Dale, A. M., et al. (1998). Building memories: Remembering and forgetting of verbal experiences as predicted by brain activity. Science, 281, 1188–1190.CrossRefGoogle ScholarPubMed
Warrington, E. K., & Weiskrantz, L. (1974). The effect of prior learning on subsequent retention in amnesic patients. Neuropsychologia, 12, 419–428.CrossRefGoogle ScholarPubMed
Weldon, M. S., & Roediger, H. L. (1987). Altering retrieval demands reverses the picture superiority effect. Memory & Cognition, 15, 269–280.CrossRefGoogle ScholarPubMed
Wiggs, C. L., & Martin, A. (1998). Properties and mechanisms of perceptual priming. Current Opinion in Neurobiology, 8, 227–33.CrossRefGoogle ScholarPubMed
Williams, J. M., Ellis, N. C., Tyers, C., Healy, H., Rose, G., & MacLeod, A. K. (1996). The specificity of autobiographical memory and imageability of the future. Memory & Cognition, 24, 116–125.CrossRefGoogle Scholar
Zald, D. H. (2003). The human amygdala and the emotional evaluation of sensory stimuli. Brain Research: Brain Research Review, 41, 88–123.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×