Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-08T13:32:58.692Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 August 2012

Janet Franklin
Affiliation:
San Diego State University
Get access
Type
Chapter
Information
Mapping Species Distributions
Spatial Inference and Prediction
, pp. 262 - 317
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdulla, F. A. & Lettenmaier, D. P. (1997) Development of regional parameter estimation equations for a macroscale hydrologic model. Journal of Hydrology, 197, 230–257.CrossRefGoogle Scholar
Accad, A. & Neil, D. T. (2006) Modelling pre-clearing vegetation distribution using GIS-integrated statistical, ecological and data models: a case study from the wet tropics of Northeastern Australia. Ecological Modelling, 198, 85–100.CrossRefGoogle Scholar
Ackerly, D. D. (2003) Community assembly, niche conservatism, and adaptive evolution in changing environments. International Journal of Plant Sciences, 164, S165–S184.CrossRefGoogle Scholar
Ackerly, D. D. (2004) Adaptation, niche conservatism, and convergence: comparative studies of leaf evolution in the California chaparral. American Naturalist, 163, 654–671.CrossRefGoogle ScholarPubMed
Adjemian, J. C. Z., Girvetz, E. H., Beckett, L., & Foley, J. E. (2006) Analysis of Genetic Algorithm for Rule-Set Production (GARP) modeling approach for predicting distributions of fleas implicated as vectors of plague, Yersinia pestis, in California. Journal of Medical Entomology, 43, 93–103.Google ScholarPubMed
Agresti, A. (1996) An Introduction to Categorical Data Analysis. New York: John Wiley and Sons.Google Scholar
Ahlqvist, O. (2005) Using uncertain conceptual spaces to translate between land cover categories. International Journal of Geographical Information Science, 19, 831–857.CrossRefGoogle Scholar
Akçakaya, H. R. (2001) Linking population-level risk assessment with landscape and habitat models. Science of the Total Environment, 274, 283–291.CrossRefGoogle ScholarPubMed
Akçakaya, H. R. (2000) Viability analyses with habitat-based metapopulation models. Population Ecology, 42, 45–53.CrossRefGoogle Scholar
Akçakaya, H. R. & Atwood, J. L. (1997) A habitat based metapopulation model of the California gnatcatcher. Conservation Biology, 11, 422–434.CrossRefGoogle Scholar
Akçakaya, H. R., Butchart, S. H. M., Mace, G. M., Stuart, S. N., & Hilton-Taylor, C. (2006) Use and misuse of the IUCN Red List Criteria in projecting climate change impacts on biodiversity. Global Change Biology, 12, 2037–2043.CrossRefGoogle Scholar
Akçakaya, H. R., Franklin, J., Syphard, A. D., & Stephenson, J. R. (2005) Viability of Bell's Sage Sparrow (Amphispiza belli ssp. belli) under altered fire regimes. Ecological Applications, 15, 521–531.CrossRefGoogle Scholar
Akçakaya, H. R., Radeloff, V. C., Mladenoff, D. J., & He, H. S. (2004) Integrating landscape and metapopulation modeling approaches: viability of the sharp-tailed grouse in a dynamic landscape. Conservation Biology, 18, 526–537.CrossRefGoogle Scholar
Albert, P. S. & McShane, L. M. (1995) A generalized estimating equations approach for spatially correlated binary data: applications to the analysis of neuroimaging data. Biometrics, 51, 627–638.CrossRefGoogle ScholarPubMed
Aldridge, C. L. & Boyce, M. S. (2007) Linking occurrence and fitness to persistence: habitat-based approach for endangered Greater Sage-Grouse. Ecological Applications, 17, 508–526.CrossRefGoogle ScholarPubMed
Alexander, S. M., Logan, T. B., & Paquet, P. C. (2006) Spatio-temporal co-occurrence of cougars (Felis concolor) and wolves (Canis lupis) and their prey during winter: a comparison of two analytical methods. Journal of Biogeography, 33, 2001–2012.CrossRefGoogle Scholar
Allouche, O., Tsoar, A., & Kadmon, R. (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43, 1223–1232.CrossRefGoogle Scholar
Andersen, M. C., Adams, H., Hope, B., & Powell, M. (2004) Risk analysis for invasive species: general framework and research needs. Risk Analysis, 24, 893–900.CrossRefGoogle ScholarPubMed
Anderson, D. R. & Burnham, K. P. (2002) Avoiding pitfalls when using information-theoretic methods. Journal of Wildlife Management, 66, 912–918.CrossRefGoogle Scholar
Anderson, R. P., Lew, D., & Peterson, A. T. (2003) Evaluating predictive models of species distributions: criteria for selecting optimal models. Ecological Modelling, 162, 211–232.CrossRefGoogle Scholar
Anselin, A., Meire, P. M., & Anselin, L. (1989) Multicriteria techniques in ecological evaluation: an example using the analytical hierarchy process. Biological Conservation, 49, 215–229.CrossRefGoogle Scholar
Anselin, L. (2002) Under the hood – Issues in the specification and interpretation of spatial regression models. Agricultural Economics, 27, 247–267.CrossRefGoogle Scholar
Anselin, L. & Rey, S. J. (1991) Properties of tests for spatial dependence in linear regression models. Geographical Analysis, 23, 112–131.CrossRefGoogle Scholar
Anselin, L., Florax, R. J. G. M., & Rey, S. J. (2004) Advances in Spatial Econometrics: Methodology, Tools and Applications. Berlin: Springer.CrossRefGoogle Scholar
AraÚjo, M. B. & Guisan, A. (2006) Five (or so) challenges for species distribution modeling. Journal of Biogeography, 33, 1677–1688.CrossRefGoogle Scholar
AraÚjo, M. B. & Luoto, M. (2007) The importance of biotic interactions for modelling species distributions under climate change. Global Ecology and Biogeography, 16, 743–753.CrossRefGoogle Scholar
AraÚjo, M. B. & New, M. (2007) Ensemble forecasting of species distributions. Trends in Ecology & Evolution, 22, 42–47.CrossRefGoogle ScholarPubMed
AraÚjo, M. B. & Williams, P. H. (2000) Selecting areas for species persistence using occurrence data. Biological Conservation, 96, 331–345.CrossRefGoogle Scholar
AraÚjo, M. B., Pearson, R. G., Thuiller, W., & Erhard, M. (2005a) Validation of species-climate impact models under climate change. Global Change Biology, 11, 1504–1513.CrossRefGoogle Scholar
AraÚjo, M. B., Thuiller, W., & Pearson, R. G. (2006) Climate warming and the decline of amphibians and reptiles in Europe. Journal of Biogeography, 33, 1712–1728.CrossRefGoogle Scholar
AraÚjo, M. B., Thuiller, W., Williams, P. H., & Reginster, I. (2005b) Downscaling European species atlas distributions to a finer resolution: implications for conservation planning. Global Ecology and Biogeography, 14, 17–30.CrossRefGoogle Scholar
Armstrong, J. S. & Collopy, F. (1992) Error measures for generalizing about forecasting methods: empirical comparisons. International Journal of Forecasting, 8, 69–80.CrossRefGoogle Scholar
Ashcroft, M. B. (2006) A method for improving landscape scale temperature predictions and the implications for vegetation modelling. Ecological Modelling, 197, 394–404.CrossRefGoogle Scholar
Asher, J., Warren, M., Fox, R., Harding, P., Jeffcoate, G., & Jeffcoat, S. (Eds.) (2001) The Millennium Atlas of Butterflies in Britain and Ireland. Oxford, UK: Oxford University Press.
Asner, G. P., Martin, R. E., Ford, A. J., Metcalfe, D. J., & Liddell, M. J. (2009) Leaf chemical and spectral diversity in Australian tropical forests. Ecological Applications, 19, 236–253.CrossRefGoogle ScholarPubMed
Aspinall, R. & Veitch, N. (1993) Habitat mapping from satellite imagery and wildlife survey data using a Bayesian modeling procedure in GIS. Photogrammetric Engineering and Remote Sensing, 59, 537–543.Google Scholar
Aspinall, R. J. & Pearson, D. M. (1996) Data quality and spatial analysis: analytical use of GIS for ecological modeling. In Goodchild, M. F., Steyaert, L. T., Parks, B. O.et al. (Eds.) GIS and Environmental Modeling: Progress and Research Issues. Fort Collins, CO: GIS World Books, pp. 35–38.Google Scholar
Augustin, N., Mugglestone, M., & Buckland, S. (1996) An autologistic model for the spatial distribution of wildlife. Journal of Applied Ecology, 33, 339–347.CrossRefGoogle Scholar
Augustin, N., Mugglestone, M., & Buckland, S. (1998) The role of simulation in modelling spatially correlated data. Environmetrics, 9, 175–196.3.0.CO;2-2>CrossRefGoogle Scholar
Austin, M. (1971) The role of regression analysis in plant ecology. Proceedings of the Ecological Society of Australia, 6, 63–75.Google Scholar
Austin, M. P. (1980) Searching for a model for use in vegetation analysis. Vegetatio, 42, 11–21.CrossRefGoogle Scholar
Austin, M. P. (1985) Continuum concept, ordination methods, and niche theory. Annual Review of Ecology and Systematics, 16, 39–61.CrossRefGoogle Scholar
Austin, M. P. (1990) Community theory and competition in vegetation. In Grace, J. B. & Tilman, D. (Eds.) Perspectives on Plant Competition. San Diego, CA: Academic Press, pp. 215–238.Google Scholar
Austin, M. P. (1992) Modelling the environmental niche of plants: some implications for plant community response to elevation CO2 levels. Australian Journal of Botany, 40, 615–630.CrossRefGoogle Scholar
Austin, M. P. (1998) An ecological perspective on biodiversity investigations: examples from Australian eucalypt forests. Annals of the Missouri Botanical Garden, 85, 2–17.CrossRefGoogle Scholar
Austin, M. (1999) A silent clash of paradigms: some inconsistencies in community ecology. Oikos, 86, 170–178.CrossRefGoogle Scholar
Austin, M. P. (2002) Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecological Modelling, 157, 101–118.CrossRefGoogle Scholar
Austin, M. P. (2007) Species distribution models and ecological theory: a critical assessment and some possible new approaches. Ecological Modelling, 200, 1–19.CrossRefGoogle Scholar
Austin, M. & Cunningham, R. (1981) Observational analysis of environmental gradients. Proceedings of the Ecological Society of Australia, 11, 109–119.Google Scholar
Austin, M. P. & Heyligers, P. C. (1989) Vegetation survey design for conservation: gradsect sampling of forests in North-eastern New South Wales. Biological Conservation, 50, 13–32.CrossRefGoogle Scholar
Austin, M. P. & Heyligers, P. C. (1991) New approach to vegetation survey design: gradsect sampling. In Margules, C. R. & Austin, M. P. (Eds.) Nature Conservation: Cost Effective Biological Surveys and Data Analysis. East Melbourne, Australia: CSIRO, pp. 31–36.Google Scholar
Austin, M. P. & Meyers, J. (1996) Current approaches to modelling the environmental niche of eucalypts: implication for management of forest biodiversity. Forest Ecology and Management, 85, 95–106.CrossRefGoogle Scholar
Austin, M. P. & Smith, T. M. (1989) A new model for the continuum concept. Vegetatio, 83, 35–47.CrossRefGoogle Scholar
Austin, M. P., Belbin, L., Meyers, J. A., Doherty, M. D., & Luoto, M. (2006) Evaluation of statistical models used for predicting plant species distributions: Role of artificial data and theory. Ecological Modelling, 199, 197–216.CrossRefGoogle Scholar
Austin, M. P., Cunningham, R. B., & Fleming, P. M. (1984) New approaches to direct gradient analysis using environmental scalars and statistical curve-fitting procedures. Vegetatio, 55, 11–27.CrossRefGoogle Scholar
Austin, M. P., Nicholls, A. O., Doherty, M. D., & Meyers, J. A. (1994) Determining species response functions to an environmental gradient by means of a beta-function. Journal of Vegetation Science, 5, 215–228.CrossRefGoogle Scholar
Austin, M. P., Nicholls, A. O., & Margules, C. R. (1990) Determining the realised qualitative niche: environmental niches of five Eucalyptus species. Ecological Monographs, 60, 161–177.CrossRefGoogle Scholar
Austin, M. P., Pausas, J. G., & Nicholls, A. O. (1996) Patterns of tree species richness in relation to environment in southeastern New South Wales, Australia. Australian Journal of Ecology, 21, 154–164.CrossRefGoogle Scholar
Bach, M., Breuer, L., Frede, H. G., Huisman, J. A., Otte, A., & Waldhardt, R. (2006) Accuracy and congruency of three different digital land-use maps. Landscape and Urban Planning, 78, 289–299.CrossRefGoogle Scholar
Bailey, L. L., Simons, T. R., & Pollock, K. H. (2004) Estimating site occupancy and species detection probability parameters for terrestrial salamanders. Ecological Applications, 14, 692–702.CrossRefGoogle Scholar
Bailey, T. C. & Gatrell, A. C. (1995) Interactive spatial data analysis, Harlow, England, Longman.Google Scholar
Band, L. E. (1986) Topographic partitioning of watersheds with digital elevation models. Water Resources Research, 22, 15–24.CrossRefGoogle Scholar
Banks, W. E., D'errico, F., Peterson, A. T.et al. (2008) Human ecological niches and ranges during the LGM in Europe derived from an application of eco-cultural niche modeling. Journal of Archaeological Science, 35, 481–491.CrossRefGoogle Scholar
Barnes, T. K., Volety, A. K., Chartier, K., Mazzotti, F. J., & Pearlstine, L. (2007) A habitat suitability index model for the eastern oyster (Crassostrea virginica), a tool for restoration of the Caloosahatchee Estuary, Florida. Journal of Shellfish Research, 26, 949–959.CrossRefGoogle Scholar
Barnett, V. (2002) Sample Survey: Principles and Methods. London: Arnold.Google Scholar
Barrows, C. W. (1997) Habitat relationships of the Coachella Valley fringe-toed lizard (Uma inornata). Southwestern Naturalist, 42, 218–223.Google Scholar
Barrows, C. W., Swartz, M. B., Hodges, W. L.et al. (2005) A framework for monitoring multiple-species conservation plants. Journal of Wildlife Management, 69, 1333–1345.CrossRefGoogle Scholar
Barry, S. & Elith, J. (2006) Error and uncertainty in habitat models. Journal of Applied Ecology, 43, 413–423.CrossRefGoogle Scholar
Barry, S. C. & Welsh, A. H. (2002) Generalized additive modelling and zero inflated count data. Ecological Modelling, 157, 179–188.CrossRefGoogle Scholar
Bazzaz, F. A. & Pickett, S. T. A. (1980) Physiological ecology of tropical succession: A comparative review. Annual Review of Ecology and Systematics, 11, 287–310.CrossRefGoogle Scholar
Beale, C. M., Lennon, J. J., Elston, D. A., Brewer, M. J., & Yearsley, J. M. (2007) Red herrings remain in geographical ecology: a reply to Hawkins et al. (2007). Ecography, 30, 845–847.CrossRefGoogle Scholar
Beaumont, L. J. (2008) Why is the choice of future climate scenarios for species distribution modelling important?Ecology Letters, 11, 1135–1146.CrossRefGoogle ScholarPubMed
Beck-Worner, C., Raso, G., Vounatsou, P.et al. (2007) Bayesian spatial risk prediction of Schistosoma mansoni infection in western Côte d'Ivoire using a remotely-sensed digital elevation model. American Journal of Tropical Medicine and Hygiene, 76, 956–963.Google ScholarPubMed
Beerling, D., Huntley, B., & Bailey, J. (1995) Climate and the distribution of Fallopia japonica: use of an introduced species to test the predictive capacity of response surfaces. Journal of Vegetation Science, 6, 269–282.CrossRefGoogle Scholar
Beger, M. & Possingham, H. P. (2008) Environmental factors that influence the distribution of coral reef fishes: modeling occurrence data for broad-scale conservation and management. Marine Ecology-Progress Series, 361, 1–13.CrossRefGoogle Scholar
Beissinger, S. R. & McCullough, D. R. (Eds.) (2002) Population Viability Analysis. Chicago: University of Chicago Press.
Bell, J. F. (1996) Application of classification trees to the habitat preference of upland birds. Journal of Applied Statistics, 23, 349–359.CrossRefGoogle Scholar
Bellis, L. M., Pidgeon, A. M., Radeloff, V. C., St-Louis, V., Navarro, J. L., & Martella, M. B. (2008) Modeling habitat suitability for greater rheas based on satellite image texture. Ecological Applications, 18, 1956–1966.CrossRefGoogle ScholarPubMed
Benedict, M. Q., Levine, R. S., Hawley, W. A., & Lounibos, L. P. (2007) Spread of the tiger: global risk of invasion by the mosquito Aedes albopictus. Vector-Borne and Zoonotic Diseases, 7, 76–85.CrossRefGoogle ScholarPubMed
Benediktsson, J. A., Swain, P. H., & Ersoy, O. K. (1993) Conjugate-gradient neural networks in classification of multisource and very-high-dimensional remote sensing data. International Journal of Remote Sensing, 14, 2883–2903.CrossRefGoogle Scholar
Benito Garzón, M., Blazek, R., Neteler, M., Sónchez de Dios, R., Ollero, H. S., & Furlanello, C. (2006) Predicting habitat suitability with machine learning models: the potential area of Pinus sylvestris L. in the Iberian Peninsula. Ecological Modelling, 197, 383–393.CrossRefGoogle Scholar
Benito Garzón, M., Sanchez de Dios, R., & Sainz Ollero, H. (2008) Effects of climate change on the distribution of Iberian tree species. Applied Vegetation Science, 11, 169–178.CrossRefGoogle Scholar
Besag, J. (1972) Nearest-neighbour systems and the autologistic model for binary data. Journal of the Royal Statistical Society B, 34, 75–83.Google Scholar
Besag, J. (1974) Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society, Series B, 36, 192–236.Google Scholar
Bickford, S. A. & Laffan, S. W. (2006) Multi-extent analysis of the relationship between pteridophyte species richness and climate. Global Ecology and Biogeography, 15, 588–601.CrossRefGoogle Scholar
Bio, A. M. F., Alkemade, R., & Barendregt, A. (1998) Determining alternative models for vegetation response analysis: a non-parametric approach. Journal of Vegetation Science, 9, 5–16.CrossRefGoogle Scholar
Borcard, D., Legendre, P., & Drapeau, P. (1992) Partialling out the spatial component of ecological variation. Ecology, 73, 1045–1055.CrossRefGoogle Scholar
Boitani, L., Sinibaldi, I., Corsi, F.et al. (2008) Distribution of medium- to large-sized African mammals based on habitat suitability models. Biodiversity and Conservation, 17, 605–621.CrossRefGoogle Scholar
Bojorquez-Tapia, L. A., Brower, L. P., Castilleja, G.et al. (2003) Mapping expert knowledge: redesigning the Monarch Butterfly Biosphere Reserve. Conservation Biology, 17, 367–379.CrossRefGoogle Scholar
Bolker, B. M., Brooks, M. E., Clark, C. J.et al. (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology and Evolution, 24, 127–35.CrossRefGoogle ScholarPubMed
Bolstad, P. V. & Lillesand, T. M. (1992) Improved classification of forest vegetation in northern Wisconsin through a rule-based combination of soils, terrain, and Landsat Thematic Mapper data. Forest Science, 38, 5–20.Google Scholar
Bond, J. E. & Stockman, A. K. (2008) An integrative method for delimiting cohesion species: finding the population-species interface in a group of Californian trapdoor spiders with extreme genetic divergence in geographic structuring. Systematic Biology, 57, 628–646.CrossRefGoogle Scholar
Botkin, D. B., Saxe, H., AraÚjo, M. B.et al. (2007) Forecasting the effects of global warming on biodiversity. Bioscience, 57, 227–236.CrossRefGoogle Scholar
Bourgeron, P. S., Humphries, C. J., & Jensen, M. E. (2001) General data collection and sampling design considerations for integrated ecological assessment. In Bourgeron, P., Jensen, M. & Lessard, G. (Eds.) An Integrated Ecological Assessment Protocols Guidebook. New York: Springer-Verlag, pp. 92–107.CrossRefGoogle Scholar
Box, E. (1981) Macroclimate and Plant Forms: An Introduction to Predictive Modeling in Phytogeography. The Hague: Dr. W. Junk.CrossRefGoogle Scholar
Boyce, M. S. (2006) Scale for resource selection functions. Diversity and Distributions, 12, 269–276.CrossRefGoogle Scholar
Boyce, M. S., Vernier, P. R., Nielsen, S. E., & Schmiegelow, F. K. A. (2002) Evaluating resource selection functions. Ecological Modelling, 157, 281–300.CrossRefGoogle Scholar
Bradbury, R. B., Kyrkos, A., Morris, A. J., Clark, S. C., Perkins, A. J., & Wilson, J. D. (2000) Habitat associations and breeding success of yellowhammers on lowland farmland. Journal of Applied Ecology, 37, 789–805.CrossRefGoogle Scholar
Bradley, B. A. & Fleishman, E. (2008) Can remote sensing of land cover improve species distribution modelling?Journal of Biogeography, 35, 1158–1159.CrossRefGoogle Scholar
Braunisch, V., Bollmann, K., Graf, R. F., & Hirzel, A. H. (2008) Living on the edge – modelling habitat suitability for species at the edge of their fundamental niche. Ecological Modelling, 214, 153–167.CrossRefGoogle Scholar
Breiman, L. (1996) Bagging predictors. Machine Learning, 26, 123–140.CrossRefGoogle Scholar
Breiman, L. (2001a) Statistical modeling: the two cultures. Statistical Science, 16, 199–215.CrossRefGoogle Scholar
Breiman, L. (2001b) Random forests. Machine Learning, 45, 15–32.Google Scholar
Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984) Classification and Regression Trees. Belmont, CA: Wadsworth.Google Scholar
Brigham, C. A., Thomson, D. M., Brigham, C. A., & Schwartz, M. W. (2003) Approaches to modeling population viability in plants: an overview. Population viability in plants: Conservation, management and modeling of rare plants, 145–171.CrossRefGoogle Scholar
Brodley, C. & Utgoff, P. (1995) Multivariate decision trees. Machine Learning, 19, 45–77.CrossRefGoogle Scholar
Broennimann, O. & Guisan, A. (2008) Predicting current and future biological invasions: both native and invaded ranges matter. Biology Letters, 4, 585–589.CrossRefGoogle ScholarPubMed
Broennimann, O., Thuiller, W., Hughes, G., Midgley, G. F., Alkemade, J. M. R., & Guisan, A. (2006) Do geographic distribution, niche property and life form explain plants' vulnerability to global change?Global Change Biology, 12, 1079–1093.CrossRefGoogle Scholar
Broennimann, O., Treier, U. A., Muller-Scharer, H., Thuiller, W., Peterson, A. T., & Guisan, A. (2007) Evidence of climatic niche shift during biological invasion. Ecology Letters, 10, 701–709.CrossRefGoogle ScholarPubMed
Brotons, L., Herrando, S., & Pla, M. (2007) Updating bird species distribution at large spatial scales: applications of habitat modelling to data from long-term monitoring programs. Diversity and Distributions, 13, 276–288.CrossRefGoogle Scholar
Brotons, L., Thuiller, W., AraÚjo, M. B., & Hirzel, A. H. (2004) Presence-absence versus presence-only modelling methods for predicting bird habitat suitability. Ecography, 27, 437–448.CrossRefGoogle Scholar
Brown, D. (1994) Predicting vegetation types at treeline using topography and biophysical disturbance variables. Journal of Vegetation Science, 5, 641–656.CrossRefGoogle Scholar
Brown, D. B. & Bara, T. J. (1994) Recognition and reduction of systematic error in elevation and derivative surfaces from 7 1/2-minute DEMs. Photogrammetric Engineering and Remote Sensing, 60, 189–194.Google Scholar
Browning, D. M., Beaupre, S. J., & Duncan, L. (2005) Using partitioned Mahalanobis D-2(K) to formulate a GIS-based model of timber rattlesnake hibernacula. Journal of Wildlife Management, 69, 33–44.2.0.CO;2>CrossRefGoogle Scholar
Brzeziecki, B., Kienast, F., & Wildi, O. (1993) A simulated map of the potential natural forest vegetation of Switzerland. Journal of Vegetation Science, 4, 499–508.CrossRefGoogle Scholar
Buckley, L. B. & Roughgarden, J. (2004) Biodiversity conservation: effects of changes in climate and land use. Nature, 430, 2 pp. following 33; discussion following 33.CrossRefGoogle ScholarPubMed
Buermann, W., Saatchi, S., Smith, T. B.et al. (2008) Predicting species distributions across the Amazonian and Andean regions using remote sensing data. Journal of Biogeography, 35, 1160–1176.CrossRefGoogle Scholar
Burgman, M. A. (2005) Risks and Decisions for Conservation and Environmental Management. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Burgman, M. A. & Fox, J. C. (2003) Bias in species range estimates from minimum convex polygons: implications for conservation and options for improved planning. Animal Conservation, 6, 19–28.CrossRefGoogle Scholar
Burgman, M. A., Lindenmayer, D. B., & Elith, J. (2005) Managing landscapes for conservation under uncertainty. Ecology, 86, 2007–2017.CrossRefGoogle Scholar
Burnham, K. P. & Anderson, D. R. (1998) Model Selection and Multimodel Inference: A Practical Information – Theoretic Approach. New York, USA: Springer-Verlag.CrossRefGoogle Scholar
Burrough, P. & McDonnell, R. (1998) Principles of Geographical Information Systems, Oxford: Oxford University Press.Google Scholar
Busby, J. R. (1986) A biogeoclimatic analysis of Nothofagus cunninghamii (Hook.) Oerst. in southeastern Australia. Australian Journal of Ecology, 11, 1–7.CrossRefGoogle Scholar
Busby, J. R. (1991) BIOCLIM – a bioclimatic analysis and prediction system. In Margules, C. R. & Austin, M. P. (Eds.) Nature Conservation: Cost Effective Biological Surveys and Data Analysis. East Melbourne, Australia: CSIRO, pp. 64–68.Google Scholar
Callaway, R. M. & Pennings, S. C. (2000) Facilitation may buffer competitive effects: Indirect and diffuse interactions among salt marsh plants. American Naturalist, 156, 416–424.CrossRefGoogle ScholarPubMed
Cantor, S. B., Sun, C. C., Tortolero-Luna, G., Richards-Kortum, R., & Follen, M. (1999) A comparison of C/B ratios from studies using receiver operating characteristic curve analysis. Journal of Clinical Epidemiology, 52, 885–892.CrossRefGoogle ScholarPubMed
Card, D. H. (1982) Using known map category marginal frequencies to improve estimates of thematic map accuracy. Photogrammetric Engineering and Remote Sensing, 48, 431–439.Google Scholar
Carlson, K. M., Asner, G. P., Hughes, R. F., Ostertag, R., & Martin, R. E. (2007) Hyperspectral remote sensing of canopy biodiversity in Hawaiian lowland rainforests. Ecosystems, 10, 536–549.CrossRefGoogle Scholar
Carmel, Y. & Flather, C. H. (2006) Constrained range expansion and climate change assessments. Frontiers in Ecology and the Environment, 4, 178–179.Google Scholar
Carpenter, G., Gillison, A. N., & Winter, J. (1993) DOMAIN: a flexible modeling procedure for mapping potential distributions of plants and animals. Biodiversity and Conservation, 2, 667–680.CrossRefGoogle Scholar
Carpenter, G. A., Gopal, S., Macomber, S., Martens, S., Woodcock, C. E., & Franklin, J. (1999) A neural network method for efficient vegetation mapping. Remote Sensing of Environment, 70, 326–338.CrossRefGoogle Scholar
Carroll, C. & Johnson, D. S. (2008) The importance of being spatial (and reserved): Assessing Northern Spotted Owl habitat relationships with hierarchical Bayesian Models. Conservation Biology, 22, 1026–1036.CrossRefGoogle ScholarPubMed
Carroll, C., Phillips, M. K., Schumaker, N. H., & Smith, D. W. (2003) Impacts of landscape change on wolf restoration success: Planning a reintroduction program based on static and dynamic spatial models. Conservation Biology, 17, 536–548.CrossRefGoogle Scholar
Carroll, C., Zielinski, W. J., & Noss, R. F. (1999) Using presence-absence data to build and test spatial habitat models for the fisher in the Klamath Region, U.S.A. Conservation Biology, 13, 1344–1359.CrossRefGoogle Scholar
Carstens, B. C. & Richards, C. L. (2007) Integrating coalescent and ecological niche modeling in comparative phylogeography. Evolution, 61, 1439–1454.CrossRefGoogle ScholarPubMed
Carter, G. M., Stolen, E. D., & Breininger, D. R. (2006) A rapid approach to modeling species–habitat relationships. Biological Conservation, 127, 237–244.CrossRefGoogle Scholar
Cawsey, E. M., Austin, M. P., & Baker, B. L. (2002) Regional vegetation mapping in Australia: a case study in the practical use of statistical modelling. Biodiversity and Conservation, 11, 2239–2274.CrossRefGoogle Scholar
Chambers, J. M. & Hastie, T. J. (1992) Statistical Models in S. Pacific Grove, CA: Wadsworth.Google Scholar
Chase, J. M. & Leibold, M. A. (2003) Ecological Niches: Linking Classical and Contemporary Approaches. Chicago: Chicago University Press.CrossRefGoogle Scholar
Chatfield, C. (1995) Model uncertainty, data mining and statistical inference. Journal of the Royal Statistical Society, 158, 419–466.CrossRefGoogle Scholar
Chefaoui, R. M. & Lobo, J. M. (2008) Assessing the effects of pseudo-absences on predictive distribution model performance. Ecological Modelling, 210, 478–486.CrossRefGoogle Scholar
Chen, D. M. & Stow, D. (2003) Strategies for integrating information from multiple spatial resolutions into land-use/land-cover classification routines. Photogrammetric Engineering and Remote Sensing, 69, 1279–1287.CrossRefGoogle Scholar
Ciarniello, L. M., Boyce, M. S., Seip, D. R., & Heard, D. C. (2007) Grizzly bear habitat selection is scale dependent. Ecological Applications, 17, 1424–1440.CrossRefGoogle ScholarPubMed
Civco, D. L. (1993) Artificial neural networks for land-cover classification and mapping. International Journal of Geographic Information Systems, 7, 173–186.CrossRefGoogle Scholar
Clark, J. D., Dunn, J. E., & Smith, K. G. (1993) A multivariate model of female black bear habitat use for a geographic information system. Journal of Wildlife Management, 57, 519–526.CrossRefGoogle Scholar
Clark, L. A. & Pregibon, D. (1992) Tree-based models. In Chambers, J. & Hastie, T. J. (Eds.) Statistical Models in S. PacificGrove, CA: Wadsworth and Brooks/Cole Advanced Books and Software, pp. 377–419.Google Scholar
Clark, M. L., Roberts, D. A., & Clark, D. B. (2005) Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales. Remote Sensing of Environment, 96, 375–398.CrossRefGoogle Scholar
Clarke, K. C. (1997) Getting Started with Geographic Information Systems. Upper Saddle River, NJ: Prentice Hall.Google Scholar
Clarke, K. C. & Gaydos, L. J. (1998) Loose-coupling a cellular automaton model and GIS: long-term urban growth prediction for San Francisco and Washington/Baltimore. International Journal of Geographic Information Science, 12, 699–714.CrossRefGoogle ScholarPubMed
Clevenger, A. P., Wierzchowski, J., Chruszcz, B., & Gunson, K. (2002) GIS-generated, expert-based models for identifying wildlife habitat linkages and planning mitigation passages. Conservation Biology, 16, 503–514.CrossRefGoogle Scholar
Cochran, W. G. (1977) Sampling Techniques. New York: Wiley.Google Scholar
Collins, S. L., Glenn, S. M., & Roberts, D. W. (1993) The hierarchical continuum concept. Journal of Vegetation Science, 4, 149–156.CrossRefGoogle Scholar
Congalton, R. G. (1991) A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37, 35–46.CrossRefGoogle Scholar
Cohen, W. B. & Goward, S. N. (2004) Landsat's role in ecological applications of remote sensing. Bioscience, 54, 535–545.CrossRefGoogle Scholar
Cooperrider, A. Y., Boyd, R. J., & Stuart, H. R. (Eds.) (1986) Inventory and Monitoring of Wildlife Habitat. Denver, CO: US Department of the Interior, Bureau of Land Management, Service Center.
Cord, P. L. (2008) Using species-environmental amplitudes to predict pH values from vegetation. Journal of Vegetation Science, 19, 437–444.Google Scholar
Cordellier, M. & Pfenninger, M. (2009) Inferring the past to predict the future: climate modelling predictions and phylogeography for the freshwater gastropod Radix balthica (Pulmonata, Basommatophora). Molecular Ecology, 18, 534–544.CrossRefGoogle Scholar
Corsi, F., Dupre, E., & Biotani, L. (1999) A large-scale model of wolf distribution in Italy for conservation planning. Conservation Biology, 13, 150–159.CrossRefGoogle Scholar
Costa, J., Peterson, A. T., & Beard, C. B. (2002) Ecologic niche modeling and differentiation of populations of Triatoma brasiliensis neiva, 1911, the most important Chagas' disease vector in northeastern Brazil (Hemiptera, Reduviidae, Triatominae). American Journal of Tropical Medicine and Hygiene, 67, 516–520.CrossRefGoogle Scholar
Coudun, C. & Gégout, J.-C. (2007) Quantitative prediction of the distribution and abundance of Vaccinium myrtillus with climatic and edaphic factors. Journal of Vegetation Science, 18, 517–524.CrossRefGoogle Scholar
Coudun, C., Gégout, J.-C., Piedallu, C., & Rameau, J.-C. (2006) Soil nutritional factors improve models of plant species distribution: an illustration with Acer campestre (L.) in France. Journal of Biogeography, 33, 1750–1763.CrossRefGoogle Scholar
Cramer, J. S. (2003) Logit Models from Economics and Other Fields. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Cramer, W., Bondeau, A., Woodward, F. I.et al. (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biology, 7, 357–373.CrossRefGoogle Scholar
Crawley, M. J. (2005) Statistics: An Introduction Using R. Chichester, UK: John Wiley & Sons, Ltd.CrossRefGoogle Scholar
Cressie, N. (1991) Statistics for Spatial Data. New York: John Wiley and Sons.Google Scholar
Crossman, N. D. & Bass, D. A. (2008) Application of common predictive habitat techniques for post-border weed risk management. Diversity and Distributions, 14, 213–224.CrossRefGoogle Scholar
Culvenor, D. S. (2002) TIDA: an algorithm for the delineation of tree crowns in high spatial resolution remotely sensed imagery. Computers & Geosciences, 28, 33–44.CrossRefGoogle Scholar
Cumming, G. S. (2000a) Using between-model comparisons to fine-tune linear models of species ranges. Journal of Biogeography, 27, 441–455.CrossRefGoogle Scholar
Cumming, G. S. (2000b) Using habitat models to map diversity: pan-African species richness of ticks (Acari: Ixodida). Journal of Biogeography, 27, 425–440.CrossRefGoogle Scholar
Cumming, G. S. (2002) Comparing climate and vegetation as limiting factors for species ranges of African ticks. Ecology, 83, 255–268.CrossRefGoogle Scholar
Cunningham, H. R., Rissler, L. J., & Apodaca, J. J. (2009) Competition at the range boundary in the slimy salamander: using reciprocal transplants for studies on the role of biotic interactions in spatial distributions. Journal of Animal Ecology, 78, 52–62.CrossRefGoogle ScholarPubMed
Curran, P. (1980) Multispectral remote sensing of vegetation amount. Progress in Physical Geography, 4, 315–341.CrossRefGoogle Scholar
Currie, D. J. (1991) Energy and large-scale patterns of animal-species and plant-species richness. American Naturalist, 137, 27–49.CrossRefGoogle Scholar
Cutler, D. R., EdwardsJr., T. C., Beard, K. H.et al. (2007) Random forests for classification in ecology. Ecology, 88, 2783–2792.CrossRefGoogle ScholarPubMed
Daly, C. (2006) Guidelines for assessing the suitability of spatial climate data sets. International Journal of Climatology, 26, 707–721.CrossRefGoogle Scholar
Daly, C. & Taylor, G. H. (1996) Development of a new Oregon precipitation map using the PRISM model. In Goodchild, M. F., Steyaert, L. T., Park, B. O.et al. (Eds.) GIS and Environmental Modeling: Progress and Research issues. Fort Collins, CO: GIS World Books, pp. 91–92.Google Scholar
Daly, C., Halbleib, M., Smith, J. I.et al. (2008) Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. International Journal of Climatology, 28, 2031–2064.CrossRefGoogle Scholar
Daly, C., Neilson, R. P., & Phillips, D. L. (1994) A statistical-topographic model for mapping climatological precipitation over mountainous terrain. Applied Meteorology, 33, 140–158.2.0.CO;2>CrossRefGoogle Scholar
Das, A., Lele, S. R., Glass, G. E., Shields, T., & Patz, J. (2002) Modeling as a discrete spatial response using generalized linear mixed models: application to Lyme disease. International Journal of Geographic Information Science, 16, 152–166.CrossRefGoogle Scholar
Davis, F. W. & Goetz, S. (1990) Modeling vegetation pattern using digital terrain data. Landscape Ecology, 4, 69–80.CrossRefGoogle Scholar
Davis, F. W., Seo, C., & Zielinski, W. J. (2007) Regional variation in home-range-scale habitat models for fisher (Martes pennanti) in California. Ecological Applications, 17, 2195–2213.CrossRefGoogle Scholar
Davis, F. W., Stine, P. A., Stoms, D. M., Borchert, M. I., & Hollander, A. (1995) Gap analysis of the actual vegetation of California: 1. The southwestern region. Madroño, 42, 40–78.Google Scholar
De'ath, G. (2002) Multivariate regression trees: a new technique for modeling species–environment relationships. Ecology, 83, 1105–1117.Google Scholar
De'ath, G. (2007) Boosted trees for ecological modeling and prediction. Ecology, 88, 243–251.CrossRefGoogle ScholarPubMed
De'ath, G. & Fabricius, K. E. (2000) Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology, 81, 3178–3192.CrossRefGoogle Scholar
Dechka, J. A., Franklin, S. E., Watmough, M. D., Bennett, R. P., & Ingstrup, D. W. (2002) Classification of wetland habitat and vegetation communities using multi-temporal Ikonos imagery in southern Saskatchewan. Canadian Journal of Remote Sensing, 28, 679–685.CrossRefGoogle Scholar
Dedecker, A. P., Goethals, P. L. M., Gabriels, W., & De Pauw, N. (2004) Optimization of Artificial Neural Network (ANN) model design for prediction of macroinvertebrates in the Zwalm river basin (Flanders, Belgium). Ecological Modelling, 174, 161–173.CrossRefGoogle Scholar
DeFries, R. S. & Townshend, J. R. G. (1999) Global land cover characterization from satellite data: from research to operational implementation?Global Ecology and Biogeography, 8, 367–379.CrossRefGoogle Scholar
DeMatteo, K. E. & Loiselle, B. A. (2008) New data on the status and distribution of the bush dog (Speothos venaticus): evaluating its quality of protection and directing research efforts. Biological Conservation, 141, 2494–2505.CrossRefGoogle Scholar
DeMers, M. (1991) Classification and purpose in automated vegetation maps. Geographical Review, 81, 267–280.CrossRefGoogle Scholar
DeMers, M. (2009) Fundamentals of Geographic Information Systems, Hoboken, NJ: Wiley.Google Scholar
Deng, Y., Wilson, J. P., & Bauer, B. O. (2007) DEM resolution dependencies of terrain attributes across a landscape. International Journal of Geographical Information Science, 21, 187–213.CrossRefGoogle Scholar
Dettmers, R., Buehler, D. A. & Bartlett, J. B. (2002) A test and comparison of wildlife-habitat modeling techniques for predicting bird occurrence at a regional scale. In Scott, J. M., Heglund, P. J., Morrison, M., Raphael, M., Haufler, J., & Wall, B. (Eds.) Predicting Species Occurrences: Issues of Accuracy and Scale. Covelo, CA: Island Press, pp. 607–615.Google Scholar
Diggle, P. (1983) Statistical Analysis of Spatial Point Patterns. London: Academic Press.Google Scholar
Di Luzio, M., Johnson, G. L., Daly, C., Eischeid, J. K., & Arnold, J. G. (2008) Constructing retrospective gridded daily precipitation and temperature datasets for the conterminous United States. Journal of Applied Meteorology and Climatology, 47, 475–497.CrossRefGoogle Scholar
Diniz-Filho, J. A. F. & Bini, L. M., (2005) Modelling geographical patterns in species richness using eigenvector-based spatial filters. Global Ecology and Biogeography, 14, 177–185.CrossRefGoogle Scholar
Diniz-Filho, J. A. F., Bini, L. M., & Hawkins, B. A. (2003) Spatial autocorrelation and red herrings in geographical ecology. Global Ecology & Biogeography, 12, 53–64.CrossRefGoogle Scholar
Diniz-Filho, J. A. F., Hawkins, B. A., Bini, L. M., De Marco, P., & Blackburn, T. M. (2007a) Are spatial regression methods a panacea or a Pandora's box? A reply to Beale et al. (2007). Ecography, 30, 848–851.CrossRefGoogle Scholar
Diniz-Filho, J. A. F., Rangel, T. F. L. V. B., Bini, L. M., & Hawkins, B. A. (2007b) Macroevolutionary dynamics in environmental space and the latitudinal diversity gradient in New World birds. Proceedings of the Royal Society Biological Sciences Series B, 274, 43–52.CrossRefGoogle ScholarPubMed
Dirnböck, T., Dullinger, S., Gottfried, M., Ginzler, C., & Grabherr, G. (2003) Mapping alpine vegetation based on image analysis, topographic variables and Canonical Correspondence Analysis. Applied Vegetation Science, 6, 85–96.Google Scholar
Donald, P. F. & Fuller, R. J. (1998) Ornithological atlas data: a review of uses and limitations. Bird Study, 45, 129–145.CrossRefGoogle Scholar
Dormann, C. F. (2007a) Assessing the validity of autologistic regression. Ecological Modelling, 207, 234–242.CrossRefGoogle Scholar
Dormann, C. F. (2007b) Effects of incorporating spatial autocorrelation into the analysis of species distribution data. Global Ecology and Biogeography, 16, 129–138.CrossRefGoogle Scholar
Dormann, C. F. (2007c) Promising the future? Global change projections of species distributions. Basic and Applied Ecology, 8, 387–397.CrossRefGoogle Scholar
Dormann, C. F., McPherson, J. M., AraÚjo, M. B.et al. (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography, 30, 609–628.CrossRefGoogle Scholar
Dormann, C. F., Purschke, O., Garcĺa-Marquez, J., Lautenbach, S., & Schröder, B. (2008) Components of uncertainty in species distribution analysis: a case study of the Great Grey Shrike. Ecology 89, 3371–3386.CrossRefGoogle ScholarPubMed
Doswald, N., Zimmermann, F., & Breitenmoser, U. (2007) Testing expert groups for a habitat suitability model for the lynx Lynx lynx in the Swiss Alps. Wildlife Biology, 13, 430–446.CrossRefGoogle Scholar
Dozier, J. (1980) A clear-sky spectral solar radiation model for snow-covered mountainous terrain. Water Resources Research, 16, 709–718.CrossRefGoogle Scholar
Dozier, J. & Frew, J. (1990) Rapid calculation of terrain parameters for radiation modeling from digital elevation data. IEEE Transactions on Geoscience and Remote Sensing, 28, 963–969.CrossRefGoogle Scholar
Drake, J. M., Randin, C., & Guisan, A. (2006) Modelling ecological niches with support vector machines. Journal of Applied Ecology, 43, 424–432.CrossRefGoogle Scholar
Dray, S., Legendre, P., & Peres-Neto, P. R. (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecological Modelling, 196, 483–493.CrossRefGoogle Scholar
Dreisbach, T. A., Smith, J. A., & Molina, R. (2002) Challenges of modeling fungal habitats: when and where do you find chanterelles? In Scott, J. M., Heglund, P. J., Morrison, M. L.et al. (Eds.) Predicting Species Occurrences: Issues of Accuracy and Scale. Covelo, CA: Island Press, pp. 475–481.Google Scholar
Dubayah, R. & Rich, P. M. (1995) Topographic solar radiation for GIS. International Journal of Geographic Information Systems, 9, 405–419.CrossRefGoogle Scholar
Dubayah, R. & Rich, P. M. (1996) GIS-based solar radiation modeling. In Goodchild, M. F., Steyaert, L. T., Parks, B. O.et al. (Eds.) GIS and Environmental Modeling: Progress and Research Issues. Fort Collins, CO: GIS World Books, pp. 129–134.Google Scholar
Dudĺk, M., Phillips, S. J., & Schapire, R. E. (2007) Maximum entropy density estimation with generalized regularization and an application to species distribution modeling. Journal of Machine Learning Research, 8, 1217–1260.Google Scholar
Duncan, B. W., Breininger, D. R., Schmalzer, P. A., & Larson, V. L. (1995) Validating a Florida scrub jay habitat suitability model using demographic data on Kennedy Space Center. Photogrammetric Engineering & Remote Sensing, 61, 1361–1370.Google Scholar
Dunk, J. R., Zielinski, W. J., & Preisler, H. K. (2004) Predicting the occurrence of rare mollusks in northern California forests. Ecological Applications, 14, 713–729.CrossRefGoogle Scholar
Dutilleul, P. (1993) Modifying the t-Test for assessing the correlation between two spatial processes. Biometrics, 49, 305–314.CrossRefGoogle Scholar
Early, R., Anderson, B., & Thomas, C. D. (2008) Using habitat distribution models to evaluate large-scale landscape priorities for spatially dynamic species. Journal of Applied Ecology, 45, 228–238.CrossRefGoogle Scholar
Echarri, F., Tambussi, C., & Hospitaleche, C. A. (2009) Predicting the distribution of the crested tinamous, Eudromia spp. (Aves, Tinamiformes). Journal of Ornithology, 150, doi:10.1007/s10336–008-0319–5.CrossRefGoogle Scholar
Edwards, T. C.., Cutler, D. R., Zimmermann, N. E., Geiser, L., & Alegria, J. (2005) Model-based stratifications for enhancing the detection of rare ecological events. Ecology, 86, 1081–1090.CrossRefGoogle Scholar
Edwards, T. C.., Cutler, D. R., Zimmermann, N. E., Geiser, L., & Moisen, G. G. (2006) Effects of sample survey design on the accuracy of classification tree models in species distribution models. Ecological Modelling, 199, 132–141.CrossRefGoogle Scholar
Eisen, R. J., Reynolds, P. J., Ettestad, P.et al. (2007) Residence-linked human plague in New Mexico: a habitat-suitability model. American Journal of Tropical Medicine and Hygiene, 77, 121–125.Google ScholarPubMed
Elder, J. F. (2003) The generalization paradox of ensembles. Journal of Computational and Graphical Statistics, 12, 853–864.CrossRefGoogle Scholar
Elith, J. & Burgman, M. A. (2002) Predictions and their validation: rare plants in the Central Highlands, Victoria, Australia. In Scott, J. M., Heglund, P. J., Morrison, M. L.et al. (Eds.) Predicting Species Occurrences: Issues of Accuracy and Scale. Covelo, CA: Island Press, pp. 303–313.Google Scholar
Elith, J. & Graham, C. (2009) Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models. Ecography, 32, 1–12.CrossRefGoogle Scholar
Elith, J., Graham, C. H., Anderson, R. P.et al. (2006) Novel methods improve prediction of species distributions from occurrence data. Ecography, 29, 129–151.CrossRefGoogle Scholar
Elith, J. & Leathwick, J. (2007) Predicting species distributions from museum and herbarium records using multiresponse models fitted with multivariate adaptive regression splines. Diversity and Distributions, 13, 265–275.CrossRefGoogle Scholar
Elith, J., Burgman, M. A., & Regan, H. M. (2002) Mapping epistemic uncertainties and vague concepts in predictions of species distribution. Ecological Modelling, 157, 313–329.CrossRefGoogle Scholar
Elith, J. & Leathwick, J. (2009) Conservation prioritisation using species distribution modelling. In Moilanen, A., Wilson, K. A., & Possingham, H. (Eds.) Spatial Conservation Prioritization: Quantitative Methods and Computational Tools. Oxford, UK: Oxford University Press, pp. 70–93.Google Scholar
Elith, J., Leathwick, J. R., & Hastie, T. (2008) A working guide to boosted regression trees. Journal of Animal Ecology, 77, 802–813.CrossRefGoogle ScholarPubMed
Ellenberg, H. (1988) Vegetation Ecology of Central Europe. Cambridge, UK: Cambridge University Press.Google Scholar
Ellenberg, H., Weber, H. E., Duell, R., Wirth, V., Werner, W., & Paulissen, D. (1991) Indicator Values of Plants in Central Europe. Goettingen (Germany, F.R.): Goltze.Google Scholar
Ellison, A. M. (2004) Bayesian inference in ecology. Ecology Letters, 7, 509–520.CrossRefGoogle Scholar
Elton, C. (1927) Animal Ecology. Chicago: University of Chicago Press.Google Scholar
Engler, R., Guisan, A., & Rechsteiner, L. (2004) An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. Journal of Applied Ecology, 41, 263–274.CrossRefGoogle Scholar
Epstein, H. E., Lauenroth, W. K., Burke, I. C., & Coffin, D. P. (1997) Productivity patterns of C-3 and C-4 functional types in the US Great Plains. Ecology, 78, 722–731.Google Scholar
Erasmus, B. F. N., van Jaarsveld, A. S., Chown, S. L., Kshatriya, M., & Wessels, K. J. (2002) Vulnerability of South African animal taxa to climate change. Global Change Biology, 8, 679–693.CrossRefGoogle Scholar
Ertsen, A. C. D., Alkemade, J. R. M., & Wassen, M. J. (1998) Calibrating Ellenberg indicator values for moisture, acidity, nutrient availability and salinity in the Netherlands. Plant Ecology, 135, 113–124.CrossRefGoogle Scholar
Estes, J. E. & Mooneyhan, D. W. (1994) Of maps and myths. Photogrammetric Engineering and Remote Sensing, 60, 517–524.Google Scholar
Estes, L. D., Okin, G. S., Mwangi, A. G., & Shugart, H. H. (2008) Habitat selection by a rare forest antelope: a multi-scale approach combining field data and imagery from three sensors. Remote Sensing of Environment, 112, 2033–2050.CrossRefGoogle Scholar
Evangelista, P. H., Kumar, S., Stohlgren, T. J.et al. (2008) Modelling invasion for a habitat generalist and a specialist plant species. Diversity and Distributions, 14, 808–817.CrossRefGoogle Scholar
Fairbanks, D. H. K. & McGwire, K. C. (2004) Patterns of floristic richness in vegetation communities of California: regional scale analysis with multi-temporal NDVI. Global Ecology and Biogeography, 13, 221–235.CrossRefGoogle Scholar
Farber, O. & Kadmon, R. (2003) Assessment of alternative approaches for bioclimatic modeling with special emphasis on the Mahalanobis distance. Ecological Modelling, 160, 115–130.CrossRefGoogle Scholar
Fels, J. E. (1994) Modeling and mapping potential vegetation using digital terrain data. Unpublished Ph.D. Thesis, College of Forest Resource, North Carolina State University.
Feranec, J., Hazeu, G., Christensen, S., & Jaffrain, G., (2007) CORINE land cover change detection in Europe (case studies of the Netherlands and Slovakia). Land Use Policy, 24, 234–247.CrossRefGoogle Scholar
Fernandez, N., Delibes, M., & Palomares, F. (2006) Landscape evaluation in conservation: Molecular sampling and habitat modeling for the Iberian lynx. Ecological Applications, 16, 1037–1049.CrossRefGoogle ScholarPubMed
Ferrer-Castan, D. & Vetaas, O. R. (2005) Pteridophyte richness, climate and topography in the Iberian Peninsula: comparing spatial and nonspatial models of richness patterns. Global Ecology and Biogeography, 14, 155–165.CrossRefGoogle Scholar
Ferrier, S. (2002) Mapping spatial pattern in biodiversity for regional conservation planning: where to from here?Systematic Biology, 51, 331–363.CrossRefGoogle Scholar
Ferrier, S. & Guisan, A. (2006) Spatial modelling of biodiversity at the community level. Journal of Applied Ecology, 43, 393–404.CrossRefGoogle Scholar
Ferrier, S., Drielsma, M., Manion, G., & Watson, G. (2002a) Extended statistical approaches to modelling spatial pattern in biodiversity in northeast New South Wales. II. Community-level modeling. Biodiversity and Conservation, 11, 2309–2338.CrossRefGoogle Scholar
Ferrier, S., Manion, G., Elith, J., & Richardson, K. (2007) Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Diversity and Distributions, 13, 252–264.CrossRefGoogle Scholar
Ferrier, S., Watson, G., Pearce, J., & Drielsma, M. (2002b) Extended statistical approaches to modelling spatial pattern in biodiversity in northeast New South Wales. I. Species-level modelling. Biodiversity and Conservation, 11, 2275–2307.CrossRefGoogle Scholar
Fertig, W. & Reiners, W. A. (2002) Predicting Presence/Absence of plant species for range mapping: a case study from Wyoming. In Scott, J. M., Heglund, P. J., Morrison, M. L.et al. (Eds.) Predicting Species Occurrences: Issues of Accuracy and Scale. Covelo, CA: Island Press, pp. 483–489.Google Scholar
Ficetola, G. F., Thuiller, W., & Miaud, C. (2007) Prediction and validation of the potential global distribution of a problematic alien invasive species – the American bullfrog. Diversity and Distributions, 13, 476–485.CrossRefGoogle Scholar
Ficetola, G. F., Thuiller, W., & Padoa-Schioppa, E. (2009) From introduction to the establishment of alien species: bioclimatic differences between presence and reproduction localities in the slider turtle. Diversity and Distributions, 15, 108–116.CrossRefGoogle Scholar
Fielding, A. H. & Bell, J. F. (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24, 38–49.CrossRefGoogle Scholar
Fielding, A. H. (Ed.) (1999) Machine learning methods for ecological applications, Boston, Kluwer.CrossRef
Fielding, A. H. & Haworth, P. F. (1995) Testing the generality of bird-habitat models. Conservation Biology, 9, 1466–1481.CrossRefGoogle Scholar
Fischer, H. (1990) Simulating the distribution of plant communities in an alpine landscape. Coenoses, 5, 37–43.Google Scholar
Fisher, R. N., Suarez, A. V., & Case, T. J. (2002) Spatial patterns in the abundance of the coastal horned lizard. Conservation Biology, 16, 205–215.CrossRefGoogle Scholar
Fitzgerald, R. W. & Lees, B. G. (1992) The application of neural networks to floristic classification of remote sensing and GIS data in complex terrain. Proceedings of the XVII Congress ISPRS. Bethesda, MD, American Society of Photogrammetry and Remote Sensing.Google Scholar
Fitzpatrick, M. C., Gove, A. D., Sanders, N. J., & Dunn, R. R. (2008) Climate change, plant migration, and range collapse in a global biodiversity hotspot: the Banksia (Proteaceae) of Western Australia. Global Change Biology, 14, 1337–1352.CrossRefGoogle Scholar
Fleishman, E., Murphy, D. D., & Sjögren-Gulve, P. (2002) Modeling species richness and habitat suitability for taxa of conservation interest. In Scott, J. M., Heglund, P. J., Morrison, M. L.et al. (Eds.) Predicting Species Occurrences: Issues of Accuracy and Scale. Covelo, CA: Island Press, pp. 507–517.Google Scholar
Fleming, G., Merwe, M., & McFerren, G. (2007) Fuzzy expert systems and GIS for cholera health risk prediction in southern Africa. Environmental Modelling & Software, 22, 442–448.CrossRefGoogle Scholar
Flesch, A. D. & Hahn, L. A. (2005) Distribution of birds and plants at the western and southern edges of the Madrean Sky Islands in Sonora, Mexico. U S Forest Service Rocky Mountain Research Station Proceedings RMRS-P, 36, 80–87.Google Scholar
Florinsky, I. V. (1998) Combined analysis of digital terrain models and remotely sensed data in landscape investigation. Progress in Physical Geography, 22, 33–60.CrossRefGoogle Scholar
Foley, J. A., DeFries, R., Asner, G. P.et al. (2005) Global consequences of land use. Science, 309, 570–574.CrossRefGoogle ScholarPubMed
Fonseca, R. L., Guimaraes, P. R., Morbiolo, S. R., Scachetti-Pereira, R., & Peterson, A. T. (2006) Predicting invasive potential of smooth crotalaria (Crotalaria pallida) in Brazilian national parks based on African records. Weed Science, 54, 458–463.CrossRefGoogle Scholar
Foody, G. M. (2004) Spatial nonstationarity and scale-dependency in the relationship between species richness and environmental determinants for the sub-Saharan endemic avifauna. Global Ecology and Biogeography, 13, 315–320.CrossRefGoogle Scholar
Foody, G. M. & Cutler, M. E. J. (2003) Tree biodiversity in protected and logged Bornean tropical rain forests and its measurement by satellite remote sensing. Journal of Biogeography, 30, 1053–1066.CrossRefGoogle Scholar
Fornes, G. L. (2004) Habitat use by loggerhead shrikes (Lanius ludovicianus) at Midewin National Tallgrass Prairie, Illinois: an application of Brooks and Temple's habitat suitability index. American Midland Naturalist, 151, 338–345.CrossRefGoogle Scholar
Fortin, M.-J. & Dale, M. R. T. (2005) Spatial Analysis: A Guide for Ecologists. Cambridge, UK: Cambridge University Press.Google Scholar
Fortin, M. J., Keitt, T. H., Maurer, B. A., Taper, M. L., Kaufman, D. M., & Blackburn, T. M. (2005) Species geographic ranges and distributional limits: pattern analysis and statistical issues. Oikos, 108, 7–17.CrossRefGoogle Scholar
Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2002) Geographically Weighted Regression: The Analysis of Spatially Varying Relationships. Chichester, UK: Wiley & Sons.Google Scholar
Franklin, J. (1995) Predictive vegetation mapping: geographic modeling of biospatial patterns in relation to environmental gradients. Progress in Physical Geography, 19, 474–499.CrossRefGoogle Scholar
Franklin, J. (1998) Predicting the distribution of shrub species in southern California from climate and terrain-derived variables. Journal of Vegetation Science, 9, 733–748.CrossRefGoogle Scholar
Franklin, J. (2001) Geographic information science and ecological assessment. In Bourgeron, P., Jensen, M. & Lessard, G. (Eds.) An Integrated Ecological Assessment Protocols Guidebook. New York: Springer-Verlag, pp. 151–161.CrossRefGoogle Scholar
Franklin, J. (2002) Enhancing a regional vegetation map with predictive models of dominant plant species in chaparral. Applied Vegetation Science, 5, 135–146.CrossRefGoogle Scholar
Franklin, J. (in press) Spatial point pattern analysis of plants. In Rey, S. J. & Anselin, L. (Eds.) Perspectives on Spatial Data Analysis. New York: Springer.
Franklin, J. & Woodcock, C. E. (1997) Multiscale vegetation data for the mountains of Southern California: spatial and categorical resolution. In Quattrochi, D. A. & Goodchild, M. F. (Eds.) Scale in Remote Sensing and GIS. Boca Raton, FL, CRC/Lewis Publishers Inc., pp. 141–168.Google Scholar
Franklin, J., Keeler-Wolf, T., Thomas, K.et al. (2001) Stratified sampling for field survey of environmental gradients in the Mojave Desert Ecoregion. In Millington, A., Walsh, S., & Osborne, P. (Eds.) GIS and Remote Sensing Applications in Biogeography and Ecology. Netherlands: Kluwer Academic Publishers, pp. 229–253.CrossRefGoogle Scholar
Franklin, J., Logan, T., Woodcock, C. E., & Strahler, A. H. (1986) Coniferous forest classification and inventory using Landsat and digital terrain data. IEEE Transactions on Geoscience and Remote Sensing, GE-24, 139–149.CrossRefGoogle Scholar
Franklin, J., McCullough, P., & Gray, C. (2000) Terrain variables used for predictive mapping of vegetation communities in Southern California. In Wilson, J. & Gallant, J. (Eds.) Terrain Analysis: Principles and Applications. New York: Wiley & Sons, pp. 331–353.Google Scholar
Franklin, J., Phinn, S. R., Woodcock, C. E., & Rogan, J. (2003) Rationale and conceptual framework for classification approaches to assess forest resources and properties. In Wulder, M. A. & Franklin, S. E. (Eds.) Remote Sensing of Forest Environments: Concepts and Case Studies. Boston, MA: Kluwer Academic Publishers, pp. 279–300.CrossRefGoogle Scholar
Franklin, J., Syphard, A. D., He, H. S., & Mladenoff, D. J. (2005) The effects of altered fire regimes on patterns of plant succession in the foothills and mountains of southern California. Ecosystems, 8, 885–898.CrossRefGoogle Scholar
Franklin, J., Wejnert, K. E., Hathaway, S. A., Rochester, C. J., & Fisher, R. N. (2009) Effect of species rarity on the accuracy of species distribution models for reptiles and amphibians in southern California. Diversity and Distributions 15, 167–177.CrossRefGoogle Scholar
Franklin, S. E. & Wulder, M. A. (2002) Remote sensing methods in medium spatial resolution satellite data land cover classification of large areas. Progress in Physical Geography, 26, 173–205.CrossRefGoogle Scholar
Freeman, E. A. & Moisen, G. G. (2008a) A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence. Ecological Modelling, 217, 48–58.CrossRefGoogle Scholar
Freeman, E. A. & Moisen, G. (2008b) PresenceAbsence: An R package for presence absence analysis. Journal of Statistical Software, 23.CrossRefGoogle Scholar
Frescino, T. S., Edwards, T. C.., & Moisen, G. G. (2001) Modeling spatially explicit forest structural attributes using Generalized Additive Models. Journal of Vegetation Science, 12, 15–26.CrossRefGoogle Scholar
Freund, Y. & Schapire, R. (1996) Experiments with a new boosting algorithm. Machine Learning: Proceedings of the 13th International Conference. San Francisco: Morgan Kauffman, pp. 148–156.Google Scholar
Friedman, J. H. (1991) Multivariate adaptive regression splines. Annals of Statistics, 19, 1–141.CrossRefGoogle Scholar
Friedman, J. H. (2001) Greedy function approximation: a gradient boosting machine. Annals of Statistics, 29, 1189–1232.CrossRefGoogle Scholar
Friedman, J. H. (2002) Stochastic gradient boosting. Computational Statistics and Data Analysis, 38, 367–378.CrossRefGoogle Scholar
Friedman, J. H. & Roosen, C. B. (1995) An introduction to multivariate adaptive regression splines. Statistical Methods in Medical Research, 4, 197–217.CrossRefGoogle ScholarPubMed
Gahegan, M. (2003) Is inductive machine learning just another wild goose (or might it lay the golden egg)?International Journal of Geographical Information Science, 17, 69–92.CrossRefGoogle Scholar
Gallagher, R. V., Beaumont, L. J., Downey, P. O., Hughes, L., & Leishman, M. R. (2008) Projecting the impact of climate change on bitou bush and boneseed distributions in Australia. Plant Protection Quarterly, 23, 37.Google Scholar
Gamon, J. A. & Qiu, H.-L. (1999) Ecological applications of remote sensing at multiple scales. In Pugnaire, F. I. & Valladares, F. (Eds.) Handbook of Functional Plant Ecology. New York: Marcel Dekker, Inc., pp. 805–846.Google Scholar
Gasc, J. P., Cabela, A., Crnobrnja-Isailovic, J.et al. (1997) Atlas of amphibians and reptiles in Europe. Atlas of amphibians and reptiles in Europe, 1–496.Google Scholar
Gaston, K. J. (2003) The Structure and Dynamics of Geographic Ranges. Oxford, UK: Oxford University Press.Google Scholar
Gauch, H. G. & Whittaker, R. H. (1972) Coencline simulation. Ecology, 53.CrossRefGoogle Scholar
Gause, G. F. (1934) The Struggle for Existence. Baltimore, MD: Williams and Wilkins.CrossRefGoogle ScholarPubMed
Gégout, J.-C., Coudun, C., Bailly, G., & Jabiol, B. (2005) EcoPlant: a forest site database to link floristic data with soil resources and climate conditions. Journal of Vegetation Science, 16, 257–260.CrossRefGoogle Scholar
German, G. & Gahegan, M. (1996) Neural network architectures for the classification of temporal image sequences. Computers & Geosciences, 22, 969–979.CrossRefGoogle Scholar
Gerrard, R., Stine, P., Church, R., & Gilpin, M., (2001) Habitat evaluation using GIS: a case study applied to the San Joaquin Kit Fox. Landscape and Urban Planning, 52, 239–255.CrossRefGoogle Scholar
Gibson, L., Barrett, B., & Burbidge, A. (2007) Dealing with uncertain absences in habitat modelling: a case study of a rare ground-dwelling parrot. Diversity and Distributions, 13, 704–713.CrossRefGoogle Scholar
Gibson, L. A., Wilson, B. A., Cahill, D. M., & Hill, J. (2004) Modelling habitat suitability of the swamp antechinus (Antechinus minimus maritimus) in the coastal heathlands of southern Victoria, Australia. Biological Conservation, 117, 143–150.CrossRefGoogle Scholar
Gillespie, T. W. (2005) Predicting woody-plant species richness in tropical dry forests: A case study from south Florida, USA. Ecological Applications, 15, 27–37.CrossRefGoogle Scholar
Gillespie, T. W., Foody, G. M., Rocchini, D., Giorgi, A. P., & Saatchi, S. (2008) Measuring and modelling biodiversity from space. Progress in Physical Geography, 32, 203–221.CrossRefGoogle Scholar
Gillison, A. N. & Brewer, K. R. W. (1985) The use of gradient directed transects or gradsect in natural resources survey. Journal of Environmental Management, 20, 103–127.Google Scholar
Gleason, H. A. (1926) The individualistic concept of the plant association. Bulletin of the Torrey Botanical Club, 53, 7–26.CrossRefGoogle Scholar
Godinho, R., Teixeira, J., Rebelo, R.et al. (1999) Atlas of the continental Portuguese herpetofauna: an assemblage of published and new data. Revista Espanola de Herpetologia, 13, 61–82.Google Scholar
Goetz, S., Steinberg, D., Dubayah, R., & Blair, B. (2007) Laser remote sensing of canopy habitat heterogeneity as a predictor of bird species richness in an eastern temperate forest, USA. Remote Sensing of Environment, 108, 254–263.CrossRefGoogle Scholar
Goodchild, M. F. (1988) Stepping over the line: technological constraints and the new cartography. American Cartographer, 15, 311–319.CrossRefGoogle Scholar
Goodchild, M. F. (1992) Geographical data modeling. Computers & Geosciences, 18, 401–408.CrossRefGoogle Scholar
Goodchild, M. F. (1994) Integrating GIS and remote sensing for vegetation analysis and modeling: methodological issues. Journal of Vegetation Science, 5, 615–626.CrossRefGoogle Scholar
Goodchild, M. F. (1996) The spatial data infrastructure of environmental modeling. In Goodchild, M. F., Steyaert, L. T., Parks, B. O.et al. (Eds.) GIS and Environmental Modeling: Progress and Research Issues. Fort Collins, CO: GIS World Books, pp. 11–15.Google Scholar
Goodchild, M. F. & Gopal, S. (1989) The accuracy of spatial databases, London, Taylor & Francis.Google Scholar
Goodchild, M. F. & Tate, N. J. (1992) Description of terrain as a fractal surface, and application to digital elevation model quality assessment. Photogrammetric Engineering and Remote Sensing, 58, 1568–1570.Google Scholar
Goodchild, M. F., Parks, B. O., & Steyaert, L. T. (1993) Environmental Modeling with GIS: New York: Oxford University Press.Google Scholar
Goodchild, M. F., Steyaert, L. T., Parks, B. O.et al. (Eds.) (1996) GIS and Environmental Modeling: Progress and Research Issues. Fort Collins, CO: GIS World Books.
Gottschalk, T. K., Huettmann, F., & Ehlers, M. (2005) Thirty years of analysing and modelling avian habitat relationships using satellite imagery data: a review. International Journal of Remote Sensing, 26, 2631–2656.CrossRefGoogle Scholar
Gotway, C. & Stroup, W. (1997) A generalized linear model approach to spatial data analysis and prediction. Journal of Agricultural, Biological, and Environmental Statistics, 2, 152–178.CrossRefGoogle Scholar
Gould, W. (2000) Remote sensing of vegetation, plant species richness, and regional biodiversity hotspots. Ecological Applications, 10, 1861–1870.CrossRefGoogle Scholar
Graham, C. H. & Blake, J. G. (2001) Influence of patch- and landscape-level factors on bird assemblages in a fragmented tropical landscape. Ecological Applications, 11, 1709–1721.CrossRefGoogle Scholar
Graham, C. H. & Fine, P. V. A. (in press) Phylogenetic beta diversity: linking ecological and evolutionary processes across space in time. Trends in Ecology & Evolution.
Graham, C. H. & Hijmans, R. J. (2006) A comparison of methods for mapping species ranges and species richness. Global Ecology and Biogeography, 15, 578–587.CrossRefGoogle Scholar
Graham, C. H., Elith, J., Hijmans, R. J.et al. (2008) The influence of spatial errors in species occurrence data used in distribution models. Journal of Applied Ecology, 45, 239–247.CrossRefGoogle Scholar
Graham, C. H., Ferrier, S., Huettman, F., Moritz, C., & Peterson, A. T. (2004) New developments in museum-based informatics and applications in biodiversity analysis. Trends in Ecology & Evolution, 19, 497–503.CrossRefGoogle ScholarPubMed
Granadeiro, J. P., Andrade, J., & Palmeirim, J. M. (2004) Modelling the distribution of shorebirds in estuarine areas using generalised additive models. Journal of Sea Research, 52, 227–240.CrossRefGoogle Scholar
Greenberg, J. A., Dobrowski, S. Z., Ramirez, C. M., Tuil, J. L., & Ustin, S. L. (2006) A bottom-up approach to vegetation mapping of the Lake Tahoe Basin using hyperspatial image analysis. Photogrammetric Engineering and Remote Sensing, 72, 581–589.CrossRefGoogle Scholar
Greig-Smith, P. (1983) Quantitative Plant Ecology. Oxford, UK: Blackwell Scientific Publications.Google Scholar
Gret-Regamey, A. & Straub, D. (2006) Spatially explicit avalanche risk assessment linking Bayesian networks to a GIS. Natural Hazards and Earth System Sciences, 6, 911–926.CrossRefGoogle Scholar
Griffith, D. A. (2006) Assessing spatial dependence in count data: Winsorized and spatial filter specification alternatives to the auto-Poisson model. Geographical Analysis, 38, 160–179.CrossRefGoogle Scholar
Griffith, D. A. & Peres-Neto, P. R. (2006) Spatial modeling in ecology: The flexibility of eigenfunction spatial analyses. Ecology, 87, 2603–2613.CrossRefGoogle ScholarPubMed
Grinnell, J. (1917a) The niche-relationships of the California thrasher. Auk, 34, 427–433.CrossRefGoogle Scholar
Grinnell, J. (1917b) Field tests and theories concerning distributional control. The American Naturalist, 51, 115–128.CrossRefGoogle Scholar
Grossman, D. H., Faber-Langendeon, D., Weakley, A. S.et al. (1998) International Classification of Ecological Communities: Terrestrial Vegetation of the United States Volume 1. The National Vegetation Classification System: Development, Status and Applications. http://consci.tnc.org/library/pubs/class/index.html. Washington, DC: The Nature Conservancy.Google Scholar
Gu, W. D. & Swihart, R. K. (2004) Absent or undetected? Effects of non-detection of species occurrence on wildlife-habitat models. Biological Conservation, 116, 195–203.CrossRefGoogle Scholar
Guisan, A. & Harrell, F. E. (2000) Ordinal response regression models in ecology. Journal of Vegetation Science, 11, 617–626.CrossRefGoogle Scholar
Guisan, A. & Thuiller, W. (2005) Predicting species distributions: offering more than simple habitat models. Ecology Letters, 8, 993–1009.CrossRefGoogle Scholar
Guisan, A. & Zimmermann, N. E. (2000) Predictive habitat distribution models in ecology. Ecological Modelling, 135, 147–186.CrossRefGoogle Scholar
Guisan, A., Edwards, T. C.., & Hastie, T. (2002) Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecological Modelling, 157, 89–100.CrossRefGoogle Scholar
Guisan, A., Lehmann, A., Ferrier, S.et al. (2006) Making better biogeographical predictions of species distributions. Journal of Applied Ecology, 43, 386–392.CrossRefGoogle Scholar
Guisan, A., Theurillat, J.-P., & Kienast, F. (1998) Predicting the potential distribution of plant species in an alpine environment. Journal of Vegetation Science, 9, 65–74.CrossRefGoogle Scholar
Guisan, A., Weiss, S., & Weiss, A. (1999) GLM versus CCA spatial modeling of plant species distributions. Plant Ecology, 143, 107–122.CrossRefGoogle Scholar
Guisan, A., Zimmermann, N. E., Elith, J., Graham, C. H., Phillips, S., & Peterson, A. T. (2007) What matters for predicting the occurrences of trees: Techniques, data, or species characteristics?Ecological Monographs, 77, 615–630.CrossRefGoogle Scholar
Gumpertz, M., Graham, J., & Ristaino, J. (1997) Autologistic model of spatial pattern of Phytophthora epidemic in bell pepper: Effects of soil variation on disease presence. Journal of Agricultural, Biological and Environmental Statistics, 2, 131–156.CrossRefGoogle Scholar
Gumpertz, M., Wu, C., & Pye, H. (2000) Logistic regression for southern pine beetle outbreaks with spatial and temporal autocorrelation. Forest Science, 46, 95–107.Google Scholar
Guo, Q. H., Kelly, M., Gong, P., & Liu, D. S. (2007) An object-based classification approach in mapping tree mortality using high spatial resolution imagery. GIScience & Remote Sensing, 44, 24–47.CrossRefGoogle Scholar
Guo, Q. H., Kelly, M., & Graham, C. H. (2005) Support vector machines for predicting distribution of sudden oak death in California. Ecological Modelling, 182, 75–90.CrossRefGoogle Scholar
Gurevitch, J., Scheiner, S. M., & Fox, G. A. (2006) The Ecology of Plants, Sunderland, MA, Sinauer Associates.Google Scholar
Gustafson, E. J. (1998) Quantifying landscape spatial pattern: What is the state of the art?Ecosystems, 1, 143–156.CrossRefGoogle Scholar
Hagemeijer, W. J. M. & Blair, M. J. (1997) The EBCC Atlas of European Breeding Birds. Their Distribution and Abundance. London: Poyser.Google Scholar
Haining, R. P. (1990) Spatial Data Analysis in the Social and Environmental Sciences. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Hanley, J. A. & McNeil, B. J. (1982) The meaning and use of the area under a receiver operating characteristics curve. Radiology, 143, 29–36.CrossRefGoogle Scholar
Hannah, L. & Phillips, B. (2004) Extinction-risk coverage is worth inaccuracies. Nature, 430, 141.CrossRefGoogle ScholarPubMed
Hanski, I. (1999) Metapopulation Ecology. Oxford, UK: Oxford University Press.Google Scholar
Harrell, F. E. (2001) Regression Modelling Strategies: with Applications to Linear Models, Logistic Regression and Survival Analysis. New York: Springer.CrossRefGoogle Scholar
Hastie, T. J. & Pregibon, D. (1992) Generalized linear models. In Chambers, J. & Hastie, T. (Eds.) In Statistical Models in S. Pacific Grove, CA: Wadsworth, pp. 195–247.Google Scholar
Hastie, T., Tibshirani, R. J., & Buja, A. (1994) Flexible discriminant analysis by optimal scoring. Journal of the American Statistical Association, 89, 1255–1270.CrossRefGoogle Scholar
Hastie, T., Tibshirani, R., & Friedman, J. (2009) The Elements of Statistical Learning: Data Mining, Inference and Prediction. 2nd edn., New York: Springer-Verlag.CrossRefGoogle Scholar
Hastie, T., Tibshirani, R., & Friedman, J. (2001) The Elements of Statistical Learning: Data Mining, Inference and Prediction. New York: Springer-Verlag.CrossRefGoogle Scholar
Hastie, T. J. & Tibshirani, R. J. (1990) Generalized Additive Models. London: Chapman and Hall.Google Scholar
Hathaway, S. A. (2000) An exploratory analysis of the biogeographic distribution of herpetofauna (reptiles and amphibians) and environmental variation in San Diego County using museum records and survey data. Unpublished Masters Thesis, Geography Department, San Diego State University.
Hawkins, B. A., Diniz-Filho, J. A. F., Bini, L. M., Marco, P., & Blackburn, T. M. (2007) Red herrings revisited: spatial autocorrelation and parameter estimation in geographical ecology. Ecography, 30, 375–384.CrossRefGoogle Scholar
Hazin, H. & Erzini, K. (2008) Assessing swordfish distribution in the South Atlantic from spatial predictions. Fisheries Research, 90, 45–55.CrossRefGoogle Scholar
He, H. S. & Mladenoff, D. J. (1999) Spatially explicit and stochastic simulation of forest-landscape fire disturbance and succession. Ecology, 80, 81–90.CrossRefGoogle Scholar
Heath, L. S., Birdsey, R. A., & Williams, D. W. (2002) Methodology for estimating soil carbon for the forest carbon budget model of the United States, 2001. Environmental Pollution, 116, 373–380.CrossRefGoogle ScholarPubMed
Heikkinen, R. K., Luoto, M., Araújo, M. B., Virkkala, R., Thuiller, W., & Sykes, M. T. (2006) Methods and uncertainties in bioclimatic envelope modelling under climate change. Progress in Physical Geography, 30, 751–777.CrossRefGoogle Scholar
Heikkinen, R. K., Luoto, M., Virkkala, R., Pearson, R. G., & Korber, J. H. (2007) Biotic interactions improve prediction of boreal bird distributions at macro-scales. Global Ecology and Biogeography, 16, 754–763.CrossRefGoogle Scholar
Heikkinen, R. K., Luoto, M., Virkkala, R., & Rainio, K. (2004) Effects of habitat cover, landscape structure and spatial variables on the abundance of birds in an agricultural-forest mosaic. Journal of Applied Ecology, 41, 824–835.CrossRefGoogle Scholar
Hellgren, E. C., Bales, S. L., Gregory, M. S., Leslie, D. M., & Clark, J. D. (2007) Testing a Mahalanobis distance model of black bear habitat use in the Ouachita Mountains of Oklahoma. Journal of Wildlife Management, 71, 924–928.CrossRefGoogle Scholar
Henle, K., Lindenmayer, D. B., Margules, C. R., Saunders, D. A., & Wissel, C. (2004) Species survival in fragmented landscapes: where are we now?Biodiversity and Conservation, 13, 1–8.CrossRefGoogle Scholar
Hennig, C. & Hausdorf, B. (2006) Design of dissimilarity measures: a new dissimilarity between species distribution areas. In Batagelj, V., Bock, H.-H., Ferligoj, A., & Žiberna, A. (Eds.) Data Science and Classification. Berlin, Heidelberg: Springer, pp. 29–37.CrossRefGoogle Scholar
Hepinstall, J. A., Krohn, W. B., & Sader, S. A. (2002) Effects of niche width on the performance and agreement of avian habitat models. In Scott, J. M., Heglund, P. J., Morrison, M. L.et al. (Eds.) Predicting Species Occurrences: Issues of Accuracy and Scale. Covelo, CA: Island Press, pp. 593–606.Google Scholar
Herborg, L. M., Jerde, C. L., Lodge, D. M., Ruiz, G. M., & Macisaac, H. J. (2007) Predicting invasion risk using measures of introduction effort and environmental niche models. Ecological Applications, 17, 663–674.CrossRefGoogle ScholarPubMed
Hernandez, M., Miller, S. N., Goodrich, D. C.et al. (2000) Modeling runoff response to land cover and rainfall spatial variability in semi-arid watersheds. Environmental Monitoring and Assessment, 64, 285–298.CrossRefGoogle Scholar
Hernandez, P. A., Franke, I., Herzog, S. K.et al. (2008) Predicting species distributions in poorly-studied landscapes. Biodiversity and Conservation, 17, 1353–1366.CrossRefGoogle Scholar
Hernandez, P. A., Graham, C. H., Master, L. L., & Albert, D. L. (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography, 29, 773–785.CrossRefGoogle Scholar
Hershey, R. R. (2000) Modeling the spatial distribution of ten tree species in Pennsylvania. In Mowrer, H. T. & Congalton, R. G. (Eds.) Quantifying Spatial Uncertainty in Natural Resources: Theory and Applications for GIS and Remote Sensing. Chelsea, MI: Ann Arbor Press, pp. 119–136.Google Scholar
Hestir, E. L., Khanna, S., Andrew, M. E.et al. (2008) Identification of invasive vegetation using hyperspectral remote sensing in the California Delta ecosystem. Remote Sensing of Environment, 112, 4034–4047.CrossRefGoogle Scholar
Hijmans, R. J. & Graham, C. H. (2006) The ability of climate envelope models to predict the effect of climate change on species distributions. Global Change Biology, 12, 2272–2281.CrossRefGoogle Scholar
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978.CrossRefGoogle Scholar
Hijmans, R. J., Guarino, L., Cruz, M., & Rojas, E. (2001) Computer tools for spatial analysis of plant genetic resources data: 1. DIVA-GIS. Plant Genetic Resources Newsletter, 127, 15–19.Google Scholar
Hilbert, D. W. & Ostendorf, B. (2001) The utility of artificial neural networks for modelling the distribution of vegetation in past, present and future climates. Ecological Modelling, 146, 311–327.CrossRefGoogle Scholar
Hilbert, D. W. & Muyzenberg, J. (1999) Using an artificial neural network to characterise the relative suitability of environments for forest types in a complex tropical vegetation mosaic. Diversity and Distributions, 5, 263–274.CrossRefGoogle Scholar
Hill, M. O., Roy, D. B., Mountford, J. O., & Bunce, R. G. H. (2000) Extending Ellenberg's indicator values to a new area: an algorithmic approach. Journal of Applied Ecology, 37, 3–15.CrossRefGoogle Scholar
Hirzel, A. & Guisan, A. (2002) Which is the optimal sampling strategy for habitat suitability modelling?Ecological Modelling, 157, 331–341.CrossRefGoogle Scholar
Hirzel, A. H. & Arlettaz, R. (2003) Modeling habitat suitability for complex species distributions by environmental-distance geometric mean. Environmental Management, 32, 614–623.CrossRefGoogle ScholarPubMed
Hirzel, A. H. & Lay, G. (2008) Habitat suitability modelling and niche theory. Journal of Applied Ecology, 45, 1372–1381.CrossRefGoogle Scholar
Hirzel, A. H., Hausser, J., Chessel, D., & Perrin, N. (2002) Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data?Ecology, 83, 2027–2036.CrossRefGoogle Scholar
Hirzel, A. H., Helfer, V., & Métral, F. (2001) Assessing habitat-suitability models with a virtual species. Ecological Modelling, 145.CrossRefGoogle Scholar
Hirzel, A. H., Lay, G., Helfer, V., Randin, C., & Guisan, A. (2006) Evaluating the ability of habitat suitability models to predict species presences. Ecological Modelling, 199, 142–152.CrossRefGoogle Scholar
Hirzel, A. H., Posse, B., Oggier, P. A., Crettenand, Y., Glenz, C., & Arlettaz, R. (2004) Ecological requirements of reintroduced species and the implications for release policy: the case of the bearded vulture. Journal of Applied Ecology, 41, 1103–1116.CrossRefGoogle Scholar
Hobbs, N. T. (2003) Challenges and opportunities in integrating ecological knowledge across scales. Forest Ecology and Management, 181, 223–238.CrossRefGoogle Scholar
Hoeting, J. A., Davis, R. A., Merton, A. A., & Thompson, S. E. (2006) Model selection for geostatistical models. Ecological Applications, 16, 87–98.CrossRefGoogle ScholarPubMed
Hoeting, J. A., Madigan, D., Raftery, A. E., & Volinsky, C. T. (2000) Bayesian model averaging: a tutorial. Statistical Science, 14, 382–417.Google Scholar
Hoffer, R. M. E. A. (1975) Natural resource mapping in mountainous terrain by computer analysis of ERTS-1 satellite data, Purdue University, Lafayette, W., In Agricultural Experimental Station Research Bulletin 919, and LARS Contract Report 061575.
Holdridge, L. (1947) Determination of world plant formations from simple climatic data. Science, 105, 367–368.CrossRefGoogle ScholarPubMed
Holling, C. S. (1992) Cross-scale morphology, geometry, and dynamics of ecosystems. Ecological Monographs, 62, 447–502.CrossRefGoogle Scholar
Homann, P. S., Sollins, P., Fiorella, M., Thorson, T., & Kern, J. S. (1998) Regional soil organic carbon storage estimates for western Oregon by multiple approaches. Soil Science Society of America Journal, 62, 789–796.CrossRefGoogle Scholar
Hooten, M. B., Larsen, D. R., & Wikle, C. K. (2003) Predicting the spatial distribution of ground flora on large domains using a hierarchical Bayesian model. Landscape Ecology, 18, 487–502.CrossRefGoogle Scholar
Hosmer, D. & Lemeshow, S. (2000) Applied Logistic Regression, New York, Wiley.CrossRefGoogle Scholar
Howell, J. E., Peterson, J. T., & Conroy, M. J. (2008) Building hierarchical models of avian distributions for the state of Georgia. Journal of Wildlife Management, 72, 168–178.CrossRefGoogle Scholar
Huang, C. Y. & Geiger, E. L. (2008) Climate anomalies provide opportunities for large-scale mapping of non-native plant abundance in desert grasslands. Diversity and Distributions, 14, 875–884.CrossRefGoogle Scholar
Hubbell, S. P. (2001) The Unified Neutral Theory of Biodiversity and Biogeography. Princeton: Princeton University Press.Google Scholar
Huberty, C. J. (1994) Applied Discriminant Analysis. New York, USA: Wiley Interscience.Google Scholar
Hugall, A., Moritz, C., Moussalli, A., & Stanisic, J. (2002) Reconciling paleodistribution models and comparative phylogeography in the Wet Tropics rainforest land snail Gnarosophia bellendenkerensis (Brazier 1875). Proceedings of the National Academy of Sciences of the United States of America, 99, 6112–6117.CrossRefGoogle Scholar
Hunsaker, C. T., Nisbet, R. A., Lam, D. C. L.et al. (1993) Spatial models of ecological systems and processes: the role of GIS. In Goodchild, M. F., Parks, B. O., & Steyaert, L. T. (Eds.) Environmental Modeling with GIS. New York, NY: Oxford University Press, pp. 248–264.Google Scholar
Hunter, G. J. & Goodchild, M. F. (1997) Modeling the uncertainty of slope and aspect estimates derived from spatial databases. Geographical Analysis, 29, 35–49.CrossRefGoogle Scholar
Huntley, B. & Webb, T. (1988) Vegetation History. Dordrecht: Kluwer.CrossRefGoogle Scholar
Huntley, B., Bartlein, P. J. & Prentice, I. C. (1989) Climate control of the distribution and abundance of beech (Fagus L.) in Europe and North America. Journal of Biogeography, 16, 551–560.CrossRefGoogle Scholar
Huntley, B., Green, R. E., Collingham, Y. C.et al. (2004) The performance of models relating species geographical distributions to climate is independent of trophic level. Ecology Letters, 7, 417–426.CrossRefGoogle Scholar
Hurlbert, A. H. & Haskell, J. P. (2003) The effect of energy and seasonality on avian species richness and community composition. American Naturalist, 161, 83–97.CrossRefGoogle ScholarPubMed
Hurtt, G. C., Rosentrater, L., Frolking, S., & Moore, B., III, (2001) Linking remote-sensing estimates of land cover and census statistics on land use to produce maps of land use of the conterminous United States. Global Biogeochemical Cycles, 15, 673–685.CrossRefGoogle Scholar
Huston, M. A. (2002) Introductory essay: critical issues for improving predictions. In Scott, J. M., Heglund, P. J., Morrison, M. L.et al. (Eds.) Predicting Species Occurrences: Issues of Accuracy and Scale. Covelo, CA: Island Press, pp. 7–21.Google Scholar
Hutchinson, C. F. (1982) Techniques for combining Landsat and ancillary data for digital classification improvement. Photogrammetric Engineering and Remote Sensing, 48, 123–130.Google Scholar
Hutchinson, M. F. (1987) Methods for generation of weather sequences. In Bunting, A. H. (Ed.) Agricultural environments: characterisation, classification and mapping. Wallingford: CAB, International, 149–157.Google Scholar
Hutchinson, M. F. (1996) Thin plate spline interpolation of mean rainfall. In Goodchild, M. F., Steyaert, L. T. & Park, B. O. (Eds.) GIS and Environmental Modeling: Progress and Research Issues. Fort Collins, CO: GIS World Books, pp. 85–90.Google Scholar
Hutchinson, M. F. & Gallant, J. (2000) Digital elevation models and representation of terrain shape. In Wilson, J. & Gallant, J. (Eds.) Terrain Analysis: Principles and Applications. New York: John Wiley & Sons, pp. 29–50.Google Scholar
Hutchinson, M. F. & Gessler, P. E. (1994) Splines – more than just a smooth interpolator. Geoderma, 62, 45–67.CrossRefGoogle Scholar
Ibáñez, I., Silander, J. A.., Wilson, A. M., Lafleur, N., Tanaka, N., & Tsuyama, I. (2009) Multivariate forecasts of potential distributions of invasive plant species. Ecological Applications, 19, 359–375.CrossRefGoogle ScholarPubMed
Inglis, G. J., Huren, H., Oldman, J., & Haskew, R. (2006) Using habitat suitability index and particle dispersion models for early detection of marine invaders. Ecological Applications, 16, 1377–1390.CrossRefGoogle ScholarPubMed
Iverson, L. R. & Prasad, A. M. (1998) Predicting abundance of 80 tree species following climate change in the eastern United States. Ecological Monographs, 68, 465–485.CrossRefGoogle Scholar
Iverson, L. R., Prasad, A. M., Matthews, S. N., & Peters, M. (2008) Estimating potential habitat for 134 eastern US tree species under six climate scenarios. Forest Ecology and Management, 254, 390–406.CrossRefGoogle Scholar
Iverson, L. R., Prasad, A., & Schwartz, M. W. (1999) Modeling potential future individual tree-species distributions in the eastern United States under a climate change scenario: a case study with Pinus virginiana. Ecological Modelling, 115, 77–93.CrossRefGoogle Scholar
Iverson, L. R., Schwartz, M. W., & Prasad, A. M. (2004a) How fast and far might tree species migrate in the eastern United States due to climate change?Global Ecology and Biogeography, 13, 209–219.CrossRefGoogle Scholar
Iverson, L. R., Schwartz, M. W., & Prasad, A. M. (2004b) Potential colonization of newly available tree-species habitat under climate change: an analysis for five eastern US species. Landscape Ecology, 19, 787–799.CrossRefGoogle Scholar
Jaberg, C. & Guisan, A. (2001) Modeling the influence of landscape structure on bat species distribution and community composition in the Swiss Jura Mountains. Journal of Applied Ecology, 38, 1169–1181.CrossRefGoogle Scholar
Jackson, S. T. & Overpeck, J. T. (2000) Responses of plant populations and communities to environmental changes of the late Quaternary. Paleobiology, 26.CrossRefGoogle Scholar
Jacobs, B. F., Romme, W. H., & Allen, C. D. (2008) Mapping “old” vs. “young” piñon-juniper stands with a predictive topo-climatic model. Ecological Applications, 18, 1627–1641.CrossRefGoogle ScholarPubMed
Jeffers, J. N. R. (1999) Genetic algorithms I: Ecological applications of the Beagle and Gafer genetic algorithms. In Fielding, A. H. (Ed.) Machine Learning Methods for Ecological Applications. Dordrecht: Kluwer Academic Publishing, pp. 107–121.CrossRefGoogle Scholar
Jenny, H. (1941) Factors of Soil Formation. New York: McGraw Hill.Google Scholar
Jenson, S. K. & Domingue, J. O. (1988) Extracting topographic structure from digital elevation data for geographic information system analysis. Photogrammetric Engineering & Remote Sensing, 54, 1593–1600.Google Scholar
Jetz, W. & Rahbek, C. (2002) Geographic range size and determinants of avian species richness. Science, 297, 1548–1551.CrossRefGoogle ScholarPubMed
Jetz, W., Rahbek, C. & Lichstein, J. W. (2005) Local and global approaches to spatial data analysis in ecology. Global Ecology and Biogeography, 14, 97–98.CrossRefGoogle Scholar
Jiménez-Valverde, A., Lobo, J. M., & Hortal, J. (2008) Not as good as they seem: the importance of concepts in species distribution modeling. Diversity and Distributions, 14, 885–890.CrossRefGoogle Scholar
Jiménez-Valverde, A., Ortuno, V. M., & Lobo, J. M. (2007) Exploring the distribution of Sterocorax Ortuno, 1990 (Coleoptera, Carabidae) species in the Iberian peninsula. Journal of Biogeography, 34, 1426–1438.CrossRefGoogle Scholar
Johnson, C. J. & Gillingham, M. P. (2005) An evaluation of mapped species distribution models used for conservation planning. Environmental Conservation, 32, 117–128.CrossRefGoogle Scholar
Johnson, C. M. & Krohn, W. B. (2002) Dynamics patterns of associations between environmental factors and island use by breeding seabirds. In Scott, J. M., Heglund, P. J., Morrison, M. L.et al. (Eds.) Predicting Species Occurrences: Issues of Scale and Accuracy. Covelo, CA: Island Press, pp. 171–182.Google Scholar
Johnson, C. J., Nielsen, S. E., Merrill, E. H., McDonald, T. L., & Boyce, M. S. (2006) Resource selection functions based on use-availability data: Theoretical motivation and evaluation methods. Journal of Wildlife Management, 70, 347–357.CrossRefGoogle Scholar
Johnson, C. M., Johnson, L. B., Richards, C., & Beasley, V. (2002) Predicting the occurrence of amphibians: an assessment of multiple-scale models. In Scott, J. M., Heglund, P. J., Morrison, M. L.et al. (Eds.) Predicting Species Occurrences: Issues of Accuracy and Scale. Covelo, CA: Island Press, pp. 157–170.Google Scholar
Johnson, D. H. (1980) The comparison of usage and availability measurements for evaluating resource preference. Ecology, 61, 65–71.CrossRefGoogle Scholar
Jones, J. P. & Cassetti, E. (1992) Applications of the Expansion Method. London: Routledge.Google Scholar
Jones, M. M., Olivas Rojas, P., Tuomisto, H., & Clark, D. B. (2007) Environmental and neighborhood effects on tree fern distributions in a neotropical lowland rain forest. Journal of Vegetation Science, 18, 13–24.CrossRefGoogle Scholar
Jones, M. T., Niemi, G. J., Hanowski, J. M., & Regal, R. R. (2002) Poisson regression: a better approach to modeling abundance data? In Scott, J. M., Heglund, P. J., Morrison, M. L.et al. (Eds.) Predicting Species Occurrences: Issues of Accuracy and Scale. Covelo, CA: Island Press, pp. 411–418.Google Scholar
Justice, C. O., Vermote, E., Townshend, J. R. G.et al. (1998) The Moderate Resolution Imaging Spectroradiometer (MODIS): land remote sensing for global change research. IEEE Transactions on Geoscience and Remote Sensing, 36, 1228–1249.CrossRefGoogle Scholar
Kadmon, R., Farber, O., & Danin, A. (2003) A systematic analysis of factors affecting the performance of climatic envelope models. Ecological Applications, 13, 853–867.CrossRefGoogle Scholar
Kadmon, R., Farber, O., & Danin, A. (2004) Effect of roadside bias on the accuracy of predictive maps produced by bioclimatic models. Ecological Applications, 14, 401–413.CrossRefGoogle Scholar
Kambhampati, S. & Peterson, A. T. (2007) Ecological niche conservation and differentiation in the wood-feeding cockroaches, Cryptocercus, in the United States. Biological Journal of the Linnean Society, 90, 457–466.CrossRefGoogle Scholar
Karl, J. W., Svancara, L. K., Heglund, P. J., Wright, N. M., & Scott, J. M. (2002) Species commonness and the accuracy of habitat-relationship models. In Scott, J. M., Heglund, P. J., Morrison, M. L.et al. (Eds.) Predicting Species Occurrences: Issues of Accuracy and Scale. Covelo, CA: Island Press, pp. 573–580.Google Scholar
Kearney, M. (2006) Habitat, environment and niche: what are we modelling?Oikos, 115, 186–191.CrossRefGoogle Scholar
Keating, K. A. & Cherry, S. (2004) Use and interpretation of logistic regression in habitat selection studies. Journal of Wildlife Management, 68, 774–789.CrossRefGoogle Scholar
Keith, D. A., Akçakaya, H. R., Thuiller, W.et al. (2008) Predicting extinction risks under climate change: coupling stochastic population models with dynamic bioclimatic habitat models. Biology Letters, 4, 560–563.CrossRefGoogle ScholarPubMed
Keitt, T. H., Bjørnstad, O. N., Dixon, P. M., & Citron-Pousty, S. (2002) Accounting for spatial pattern when modeling organism–environment interactions. Ecography, 25, 616–625.CrossRefGoogle Scholar
Kelly, M. & Meentemeyer, R. K. (2002) Landscape dynamics of the spread of sudden oak death. Photogrammetric Engineering and Remote Sensing, 68, 1001–1009.Google Scholar
Kelly, M., Allen-Diaz, B., & Kobzina, N. (2005) Digitization of a historic dataset: the Wieslander California vegetation type mapping project. Madroño, 52, 191–201.CrossRefGoogle Scholar
Kelly, M., Guo, Q., Liu, D., & Shaari, D. (2007) Modeling the risk for a new invasive forest disease in the United States: An evaluation of five environmental niche models. Computers Environment and Urban Systems, 31, 689–710.CrossRefGoogle Scholar
Kerr, J. T. & Ostrovsky, M. (2003) From space to species: ecological applications for remote sensing. Trends in Ecology & Evolution, 16, 299–305.CrossRefGoogle Scholar
Kerr, J. T., Southwood, T. R. E., & Cihlar, J. (2001) Remotely sensed habitat diversity predicts butterfly species richness and community similarity. Proceedings of the National Academy of Science, USA, 98, 11365–11370.CrossRefGoogle ScholarPubMed
Kessell, S. R. (1976) Gradient modeling: a new approach to fire modeling and wilderness resource management. Environmental Management, 1, 39–48.CrossRefGoogle Scholar
Kessell, S. R. (1978) Forum: perspectives in fire research. Environmental Management, 2, 291–312.CrossRefGoogle Scholar
Kessell, S. R. (1979) Gradient Modeling: Resource and Fire Management. New York: Springer-Verlag.CrossRefGoogle Scholar
Kindvall, O., Bergman, K.-O., Akçakaya, H. R.et al. (2004) Woodland brown butterfly (Lopinga achine) in Sweden: viability in a dynamic landscape maintained by grazing. Species Conservation and Management: Case Studies, 171–178.Google Scholar
Kissling, W. D. & Carl, G. (2008) Spatial autocorrelation and the selection of simultaneous autoregressive models. Global Ecology and Biogeography, 17, 59–71.Google Scholar
Knick, S. T. & Dyer, D. L. (1997) Spatial distribution of black-tailed jackrabbit habitat determined by GIS in southwestern Idaho. Journal of Wildlife Management, 61, 75–85.CrossRefGoogle Scholar
Knick, S. T. & Rotenberry, J. T. (1998) Limitations to mapping habitat areas in changing landscapes using the Mahalanobis distance statistic. Journal of Agricultural Biological and Environmental Statistics, 3, 311–322.CrossRefGoogle Scholar
Knowles, L. L., Carstens, B. C., & Keat, M. L. (2007) Coupling genetic and ecological-niche models to examine how past population distributions contribute to divergence. Current Biology, 17, 940–946.CrossRefGoogle ScholarPubMed
Köppen, W. P. (1923) Die Klimate der Erde : Grundriss der Klimakunde. Berlin; Leipzig: Walter de Gruyter & So.Google Scholar
Kozak, K. H. & Wiens, J. J. (2006) Does niche conservatism promote speciation? A case study in North American salamanders. Evolution, 60, 2604–2621.CrossRefGoogle ScholarPubMed
Kozak, K. H., Graham, C. H., & Wiens, J. J. (2008) Integrating GIS-based environmental data into evolutionary biology. Trends in Ecology & Evolution, 23, 141–148.CrossRefGoogle ScholarPubMed
Kremen, C., Cameron, A., Moilanen, A.et al. (2008) Aligning conservation priorities across taxa in Madagascar with high-resolution planning tools. Science, 320, 222–226.CrossRefGoogle ScholarPubMed
Köchler, A. W. (1973) Problems in classifying and mapping vegetation for ecological regionalization. Ecology, 54, 512–523.CrossRefGoogle Scholar
Köchler, A. W. & Zonneveld, I. S. (Eds.) (1998) Vegetation Mapping. Boston: Kluwer Academic Publishers.
Kueppers, L. M., Snyder, M. A., Sloan, L. C., Zavaleta, E. S., & Fulfrost, B. (2005) Modeled regional climate change and California endemic oak ranges. Proceedings of the National Academy of Sciences of the United States of America, 102, 16281–16286.CrossRefGoogle ScholarPubMed
Kueppers, L. M., Zavaleta, E., Fulfrost, B., Snyder, M. A., & Sloan, L. C. (2006) Constrained range expansion and climate change assessments – The authors reply. Frontiers in Ecology and the Environment, 4, 179–179.Google Scholar
Kühn, I. (2007) Incorporating spatial autocorrelation may invert observed patterns. Diversity and Distributions, 13, 66–69.Google Scholar
Kuhnert, P. M., Do, K.-A., & McClure, R. (2000) Combining non-parametric models with logistic regression: an application to motor vehicle injury data. Computational Statistics and Data Analysis, 34, 371–386.CrossRefGoogle Scholar
Kupfer, J. A. & Farris, C. A. (2007) Incorporating spatial non-stationarity of regression coefficients into predictive vegetation models. Landscape Ecology, 22, 837–852.CrossRefGoogle Scholar
Kyriakidis, P. C. & Dungan, J. L. (2001) A geostatistical approach for mapping thematic classification accuracy and evaluating the impact of inaccurate spatial data on ecological model predictions. Environmental and Ecological Statistics, 8, 311–330.CrossRefGoogle Scholar
Ladle, R. J., Jepson, P., Araújo, M. B., & Whittaker, T. J. (2004) Dangers of crying wolf over risk of extinctions. Nature, 428, 799–799.CrossRefGoogle ScholarPubMed
Morgia, V., Bona, F., & Badino, G. (2008) Bayesian modelling procedures for the evaluation of changes in wildlife habitat suitability: a case study of roe deer in the Italian Alps. Journal of Applied Ecology, 45, 863–872.CrossRefGoogle Scholar
Lane, S. N., Richards, K. S., & Chandler, J. H. (1998) Landform Monitoring, Modelling and Analysis. Chichester, UK: John Wiley and Sons.Google Scholar
Larson, M. A., Thompson, F. R., Millspaugh, J. J., Dijak, W. D., & Shifley, S. R. (2004) Linking population viability, habitat suitability, and landscape simulation models for conservation planning. Ecological Modelling, 180, 103–118.CrossRefGoogle Scholar
Lassalle, G., Beguer, M., Beaulaton, L., & Rochard, E. (2008) Diadromous fish conservation plans need to consider global warming issues: an approach using biogeographical models. Biological Conservation, 141, 1105–1118.CrossRefGoogle Scholar
Lassau, S. A. & Hochuli, D. F. (2007) Associations between wasp communities and forest structure: do strong local patterns hold across landscapes?Austral Ecology, 32, 656–662.CrossRefGoogle Scholar
Lassueur, T., Joost, S., & Randin, C. F. (2006) Very high resolution digital elevation models: do they improve models of plant species distribution?Ecological Modelling, 198, 139–153.CrossRefGoogle Scholar
Lathrop, R. G., Aber, J. D., & Bognar, J. A. (1995) Spatial variability of digital soil maps and its impact on regional ecosystem modeling. Ecological Modelling, 82, 1–10.CrossRefGoogle Scholar
Latifovic, R., Zhu, Z.-L., Cihlar, J., & Giri, C. (2002) Land cover of North America 2000. Natural Resources Canada, Canada Center for Remote Sensing. US Geological Survey, EROS Data Center.
Latimer, A. M., Wu, S. S., Gelfand, A. E., & Silander, J. A. (2006) Building statistical models to analyze species distributions. Ecological Applications, 16, 33–50.CrossRefGoogle ScholarPubMed
Laurent, E. J., Shi, H. J., Gatziolis, D., Lebouton, J. P., Walters, M. B., & Liu, J. G. (2005) Using the spatial and spectral precision of satellite imagery to predict wildlife occurrence patterns. Remote Sensing of Environment, 97, 249–262.CrossRefGoogle Scholar
Lawler, J. J., White, D., Neilson, R. P., & Blaustein, A. R. (2006) Predicting climate-induced range shifts: model differences and model reliability. Global Change Biology, 12, 1568–1584.CrossRefGoogle Scholar
Lawler, J. J., Shafer, S. L., White, D. (2009) Projected climate-induced faunal changes in the Western Hemisphere. Ecology, 90, 588–597.CrossRefGoogle ScholarPubMed
Leathwick, J. R. (1995) Climatic relationships of some New Zealand forest tree species. Journal of Vegetation Science, 6, 237–248.CrossRefGoogle Scholar
Leathwick, J. R. (1998) Are New Zealand's Nothofagus species in equilibrium with their environment?Journal of Vegetation Science, 9, 719–732.CrossRefGoogle Scholar
Leathwick, J. R. (2001) New Zealand's potential forest pattern as predicted from current species-environment relationships. New Zealand Journal of Botany, 39, 447–464.CrossRefGoogle Scholar
Leathwick, J. R. & Austin, M. P. (2001) Competitive interactions between tree species in New Zealand's old-growth indigenous forests. Ecology, 82, 2560–2573.CrossRefGoogle Scholar
Leathwick, J. R., Elith, J., Francis, M. P., Hastie, T., & Taylor, P. (2006a) Variation in demersal fish species richness in the oceans surrounding New Zealand: an analysis using boosted regression trees. Marine Ecology-Progress Series, 321, 267–281.CrossRefGoogle Scholar
Leathwick, J. R., Elith, J., & Hastie, T. (2006b) Comparative performance of generalized additive models and multivariate adaptive regression splines for statistical modelling of species distributions. Ecological Modelling, 199, 188–196.CrossRefGoogle Scholar
Leathwick, J. R., Rowe, D., Richardson, J., Elith, J., & Hastie, T. (2005) Using multivariate adaptive regression splines to predict the distributions of New Zealand's freshwater diadromous fish. Freshwater Biology, 50, 2034–2052.CrossRefGoogle Scholar
Lee, D. R. & Sallee, G. T. (1970) A method of measuring shape. Geographical Review, 60, 555–563.CrossRefGoogle Scholar
Lee, M., Fahrig, L., Freemark, K., & Currie, D. J. (2002) Importance of patch scale vs landscape scale on selected forest birds. Oikos, 96, 110–118.CrossRefGoogle Scholar
Lee, S. & Choi, J. (2004) Landslide susceptibility mapping using GIS and the weight-of-evidence model. International Journal of Geographical Information Science, 18, 789–814.CrossRefGoogle Scholar
Lees, B. G. & Ritman, K. (1991) Decision-tree and rule-induction approach to integration of remotely sensed and GIS data in mapping vegetation in disturbed or hilly environments. Environmental Management, 15, 823–831.CrossRefGoogle Scholar
Lefsky, M. A., Cohen, W. B., & Spies, T. A. (2001) An evaluation of alternate remote sensing products for forest inventory, monitoring, and mapping of Douglas-fir forests in western Oregon. Canadian Journal of Forest Research, 31, 78–87.CrossRefGoogle Scholar
Legates, D. R. & McCabe, G. J.. (1998) Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resources Research, 35, 233.Google Scholar
Legendre, P. (1993) Spatial autocorrelation: problem or new paradigm. Ecology, 74, 1659–1673.CrossRefGoogle Scholar
Legendre, P. & Fortin, M. J. (1989) Spatial pattern and ecological analysis. Vegetatio, 80, 107–138.CrossRefGoogle Scholar
Legendre, P. & Legendre, L. (1998) Numerical Ecology. Amsterdam: Elsevier.Google Scholar
Legendre, P., Borcard, D., & Peres-Neto, P. R. (2005) Analyzing beta diversity: partitioning the spatial variation of community composition data. Ecological Monographs, 75, 435–450.CrossRefGoogle Scholar
Lehmann, A. (1998) GIS modeling of submerged macrophyte distribution using Generalized Additive Models. Plant Ecology, 139, 113–124.CrossRefGoogle Scholar
Lehmann, A., Overton, J. M., & Leathwick, J. R. (2002) GRASP: generalized regression analysis and spatial prediction. Ecological Modelling, 157, 189–207.CrossRefGoogle Scholar
Lek, S. & Guégan, J.-F. (2000) Artificial Neural Networks: Application to Ecology and Evolution. Berlin: Springer-Verlag.Google Scholar
Maitre, D. C., Thuiller, W., & Schonegevel, L. (2008) Developing an approach to defining the potential distributions of invasive plant species: a case study of Hakea species in South Africa. Global Ecology and Biogeography, 17, 569–584.CrossRefGoogle Scholar
Lenihan, J. M. (1993) Ecological response surfaces for North American boreal tree species and their use in forest classification. Journal of Vegetation Science, 4, 667–680.CrossRefGoogle Scholar
Lenihan, J. M. & Neilson, R. (1993) A rule-based vegetation formation model for Canada. Journal of Biogeography, 20, 615–628.CrossRefGoogle Scholar
Lennon, J. J. (2002) Red shifts and red herrings in geographical ecology. Ecography, 23, 101–113.CrossRefGoogle Scholar
Levin, N., Shmida, A., Levanoni, O., Tamari, H., & Kark, S. (2007) Predicting mountain plant richness and rarity from space using satellite-derived vegetation indices. Diversity and Distributions, 13, 692–703.CrossRefGoogle Scholar
Levin, S. A. (1992) The problem of pattern and scale in ecology. Ecology, 73, 1943–1967.CrossRefGoogle Scholar
Levine, R. S., Peterson, A. T., & Benedict, M. Q. (2004) Geographic and ecologic distributions of the Anopheles gambiae complex predicted using a genetic algorithm. American Journal of Tropical Medicine and Hygiene, 70, 105–109.Google ScholarPubMed
Leyequien, E., Verrelst, J., Slot, M., Schaepman-Strub, G., Heitkonig, I. M. A., & Skidmore, A. (2007) Capturing the fugitive: applying remote sensing to terrestrial animal distribution and diversity (vol 9, pg 1, 2007). International Journal of Applied Earth Observation and Geoinformation, 9, 224–224.CrossRefGoogle Scholar
Li, J., Hilbert, D. W., Parker, T., & Williams, S. (2009) How do species respond to climate change along an elevation gradient? A case study of the grey-headed robin (Heteromyias albispecularis). Global Change Biology, 15, 255–267.CrossRefGoogle Scholar
Li, W. J., Wang, Z. J., Ma, Z. J., & Tang, H. X. (1999) Designing the core zone in a biosphere reserve based on suitable habitats: Yancheng Biosphere Reserve and the red crowned crane (Grus japonensis). Biological Conservation, 90, 167–173.CrossRefGoogle Scholar
Lichstein, J. W., Simons, T. R., Shriner, S. A., & Franzberg, K. E. (2002) Spatial autocorrelation and autoregressive models in ecology. Ecological Monographs, 72, 445–463.CrossRefGoogle Scholar
Lindenmayer, D. B. & Possingham, H. P. (1996) Modelling the inter-relationships between habitat patchiness, dispersal capability and metapopulation persistence of the endangered species, Leadbeater's possum, in south-eastern Australia. Landscape Ecology, 11, 79–105.CrossRefGoogle Scholar
Lindenmayer, D. B., McCarthy, M. A., Parris, K. M., & Pope, M. L. (2000) Habitat fragmentation, landscape context, and mammalian assemblages in southeastern Australia. Journal of Mammalogy, 81, 787–797.2.3.CO;2>CrossRefGoogle Scholar
Linderman, M. A., Liu, J., Qi, J.et al. (2004) Using artificial neural networks to map the spatial distribution of understory bamboo from remotely sensed data. International Journal of Remote Sensing, 25, 1685–1700.CrossRefGoogle Scholar
Lippitt, C. D., Rogan, J., Toledano, J.et al. (2008) Incorporating anthropogenic variables into a species distribution model to map gypsy moth risk. Ecological Modelling, 210, 339–350.CrossRefGoogle Scholar
Liu, C. R., Berry, P. M., Dawson, T. P., & Pearson, R. G. (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography, 28, 385–393.CrossRefGoogle Scholar
Lobo, J. M. (2008) More complex distribution models or more representative data?Biodiversity Informatics, 5, 14–19.CrossRefGoogle Scholar
Lobo, J. M., Jay-Robert, P., & Lumaret, J.-P. (2004) Modelling the species richness distribution for French Aphodiidae (Coleoptera, Scarabaeoidea). Ecography, 27, 145–156.CrossRefGoogle Scholar
Lobo, J. M., Jimenez-Valverde, A., & Real, R. (2008) AUC: a misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography, 17, 145–151.CrossRefGoogle Scholar
Lobo, J. M., Lumaret, J.-P., & Jay-Robert, P. (2002) Modelling the species richness of French dung beetles (Coleoptera, Scarabaeidae) and delimiting the predictive capacity of different groups of explanatory variables. Global Ecology & Biogeography, 11, 265–277.Google Scholar
Lohse, K. A., Newburn, D. A., Opperman, J. J., & Merenlender, A. M. (2008) Forecasting relative impacts of land use on anadromous fish habitat to guide conservation planning. Ecological Applications, 18, 467–482.CrossRefGoogle ScholarPubMed
Loiselle, B. A., Jorgensen, P. M., Consiglio, T.et al. (2008) Predicting species distributions from herbarium collections: does climate bias in collection sampling influence model outcomes?Journal of Biogeography, 35, 105–116.Google Scholar
Long, P. R., Zefania, S., Ffrench-Constant, R. H., & Szekely, T. (2008) Estimating the population size of an endangered shorebird, the Madagascar plover, using a habitat suitability model. Animal Conservation, 11, 118–127.CrossRefGoogle Scholar
Loo, S. E., Mac Nally, R., & Lake, P. S. (2007) Forecasting New Zealand mudsnail invasion range: model comparisons using native and invaded ranges. Ecological Applications, 17, 181–189.CrossRefGoogle ScholarPubMed
Lopez-Lopez, P., Garcia-Ripolles, C., Soutullo, A., Cadahia, L., & Urios, V. (2007) Identifying potentially suitable nesting habitat for golden eagles applied to ‘important bird areas’ design. Animal Conservation, 10, 208–218.CrossRefGoogle Scholar
Louzao, M., Hyrenbach, K. D., Arcos, J. M., Abello, P., De Sola, L. G., & Oro, D. (2006) Oceanographic habitat of an endangered Mediterranean procellariiform: implications for marine protected areas. Ecological Applications, 16, 1683–1695.CrossRefGoogle ScholarPubMed
Loveland, T. R. & Ohlen, D. O. (1993) Experimental AVHRR land data sets for environmental monitoring and modeling. In Goodchild, M. F., Parks, B. O., & Steyaert, L. T. (Eds.) Environmental Modeling with GIS. New York: Oxford University Press.Google Scholar
Ludeke, A. K., Maggio, R. C., & Reid, L. M. (1990) An analysis of anthropogenic deforestation using logistic regression and GIS. Journal of Environmental Management, 31, 247–259.CrossRefGoogle Scholar
Luoto, M., Poyry, J., Heikkinen, R. K., & Saarinen, K. (2005) Uncertainty of bioclimate envelope models based on the geographical distribution of species. Global Ecology and Biogeography, 14, 575–584.CrossRefGoogle Scholar
Lutolf, M., Kienast, F., & Guisan, A. (2006) The ghost of past species occurrence: improving species distribution models for presence-only data. Journal of Applied Ecology, 43, 802–815.CrossRefGoogle Scholar
Lynn, H., Mohler, C. L., DeGloria, S. D., & McCulloch, C. E. (1995) Error assessment in decision-tree models applied to vegetation analysis. Landscape Ecology, 10, 323–335.CrossRefGoogle Scholar
Lytle, D. J. (1993) Digital soils databases for the United States. In Goodchild, M. F., Parks, B. O., & Steyaert, L. T. (Eds.) Environmental Modeling with GIS. New York: Oxford University Press, pp. 386–391.Google Scholar
Lytle, D. J., Bliss, N. B. & Waltman, S. W. (1996) Interpreting the State Soil Geographic Database (STATSGO). In Goodchild, M. F., Steyaert, L. T., Parks, B. O.et al. (Eds.) GIS and Environmental Modeling: Progress and Research Issues. Fort Collins, CO: GIS World Books, pp. 49–52.Google Scholar
MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, A., & Langtimm, C. A. (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology, 83, 2248–2255.CrossRefGoogle Scholar
MacKenzie, D. I., Nichols, J. D., Sutton, N., Kawanishi, K., & Bailey, L. L. (2005) Improving inferences in population studies of rare species that are detected imperfectly. Ecology, 86, 1101–1113.CrossRefGoogle Scholar
Mackey, B. G. (1993a) Predicting the potential distribution of rain-forest structural characteristics. Journal of Vegetation Science, 4, 43–54.Google Scholar
Mackey, B. G. (1993b) A spatial analysis of the environmental relations of rainforest structural types. Journal of Biogeography, 20, 303–336.CrossRefGoogle Scholar
Mackey, B. G. & Lindenmayer, D. B. (2001) Towards a hierarchical framework for modeling the spatial distribution of animals. Journal of Biogeography, 28, 1147–1166.CrossRefGoogle Scholar
Mackey, B. G. & Sims, R. A. (1993) A climatic analysis of selected boreal tree species, and potential responses to global climate change. World Resource Review, 5, 469–487.Google Scholar
Maindonald, J. & Braun, J. (2003) Data Analysis and Graphics Using R – An Example-based Approach. Cambridge, UK: Cambridge University Press.Google Scholar
Manel, S., Dias, J. M., Buckton, S. T., & Ormerod, S. J. (1999a) Alternative methods for predicting species distribution: an illustration with Himalayan river birds. Journal of Applied Ecology, 36, 734–747.CrossRefGoogle Scholar
Manel, S., Dias, J. M., & Ormerod, S. J. (1999b) Comparing discriminant analysis, neural networks and logistic regression for predicting species distributions: a case study with a Himalayan river bird. Ecological Modelling, 120, 337–347.CrossRefGoogle Scholar
Manel, S., Williams, H. C., & Ormerod, S. J. (2001) Evaluating presence-absence models in ecology: the need to account for prevalence. Journal of Applied Ecology, 38, 921–931.CrossRefGoogle Scholar
Manly, B. F. J., McDonald, L. L., Thomas, D. L., McDonald, T. L., & Erickson, W. (2002) Resource Selection by Animals: Statistical Design and Analysis for Field Studies. New York, NY, USA: Kluwer Press.Google Scholar
Mann, L. K., King, A. W., Dale, V. H.et al. (1999) The role of soil classification in geographic information system modeling of habitat pattern: threatened calcareous ecosystems. Ecosystems, 2, 524–538.CrossRefGoogle Scholar
Margules, C. R. & Austin, M. P. (1994) Biological models for monitoring species decline: the construction and use of databases. Philosophical Transactions of the Royal Society of London B, 344, 69–75.CrossRefGoogle Scholar
Margules, C. R., Nicholls, A. O., & Austin, M. P. (1987) Diversity of Eucalyptus species predicted by a multivariable environmental gradient. Oecologia, 71, 229–232.CrossRefGoogle Scholar
Mark, D. M. (1979) Phenomenon-based data-structuring and digital terrain modeling. Geo-Processing, 1, 27–36.Google Scholar
Marks, D., Dozier, J. & Frew, J. (1984) Automated basin delineation from digital terrain data. Geo Processing, 2, 299–311.Google Scholar
Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R. K., & Thuiller, W. (2009) Evaluation of consensus methods in predictive species distribution modelling. Diversity and Distributions, 15, 59–69.CrossRefGoogle Scholar
Martínez-Meyer, E. & Peterson, A. T., (2006) Conservatism of ecological niche characteristics in North American plant species over the Pleistocene-to-Recent transition. Journal of Biogeography, 33, 1779–1789.CrossRefGoogle Scholar
Martínez-Meyer, E., Peterson, A. T., & Hargrove, W. W. (2004) Ecological niches as stable distributional constraints on mammal species, with implications for Pleistocene extinctions and climate change projections for biodiversity. Global Ecology and Biogeography, 13, 305–314.CrossRefGoogle Scholar
Martínez-Meyer, E., Peterson, A. T., Servin, J. I., & Kiff, L. F. (2006) Ecological niche modelling and prioritizing areas for species reintroductions. Oryx, 40, 411–418.CrossRefGoogle Scholar
Massolo, A., Della Stella, R. M., & Meriggi, A. (2007) Zoning and wild boar management: a multi-criteria approach to planning. Hystrix, 18, 57–68.Google Scholar
Mastrorillo, S., Lek, S., Dauba, F., & Belaud, A. (1997) The use of artificial neural networks to predict the presence of small-bodied fish in a river. Freshwater Biology, 38, 237–246.CrossRefGoogle Scholar
Mathew, J., Jha, V. K., & Rawat, G. S. (2007) Weights of evidence modelling for landslide hazard zonation mapping in part of Bhagirathi Valley, Uttarakhand. Current Science, 92, 628–638.Google Scholar
Mau-Crimmins, T. M., Schussman, H. R., & Geiger, E. L. (2006) Can the invaded range of a species be predicted sufficiently using only native-range data? Lehmann lovegrass (Eragrostis lehmanniana) in the southwestern United States. Ecological Modelling, 193, 736–746.CrossRefGoogle Scholar
Mayer, K. E. & Laudenslayer, W. F., Jr. (1988) A Guide to Wildlife Habitats in California. Sacramento: The Resource Agency, State of California.Google Scholar
McAlpine, C. A., Rhodes, J. R., Bowen, M. E.et al. (2008) Can multiscale models of species distribution be generalized from region to region? A case study of the koala. Journal of Applied Ecology, 45, 558–567.CrossRefGoogle Scholar
McAlpine, C. A., Scarth, P., Phinn, S. P., & Eyre, T. J. (2002) Mapping glider habitat in dry eucalypt forests for Montreal Process indication 1.1e: fragmentation of forest types. Australian Forestry, 64, 232–241.CrossRefGoogle Scholar
McCullagh, P. & Nelder, J. A. (1989) Generalized Linear Models. London: Chapman and Hall.CrossRefGoogle Scholar
McCune, B. (2006) Non-parametric habitat models with automatic interactions. Journal of Vegetation Science, 17, 819–830.CrossRefGoogle Scholar
McCune, B. (2007) Improved estimates of incident radiation and heat load using non-parametric regression against topographic variables. Journal of Vegetation Science, 18, 751–754.CrossRefGoogle Scholar
McGarigal, K. (2002) Landscape pattern metrics. In el-Shaarawi, A. H. & Piergorsch, W. W. (Eds.) Encyclopedia of Environmetrics. Chichester, Sussex, UK: John Wiley & Sons, pp. 1135–1142.Google Scholar
McGarigal, K. & Marks, B. J. (1995) FRAGSTATS: spatial pattern analysis program for quantifying landscape structure. http://www.umass.edu/landeco/research/fragstats/documents/Metrics/Metrics%20TOC.htm.
McHarg, I. L. (1969) Design with Nature. New York: Wiley.Google Scholar
McNab, W. H. (1989) Terrain shape index: quantifying effect of minor landforms on tree height. Forest Science, 35, 91–104.Google Scholar
McNab, W. H. (1993) A topographic index to quantify the effect of mesoscale landform on site productivity. Canadian Journal of Forest Research, 23, 1100–1107.CrossRefGoogle Scholar
McPherson, J. M. & Jetz, W., (2007) Effects of species ecology on the accuracy of distribution models. Ecography, 30, 135–151.Google Scholar
McPherson, J. M., Jetz, W., & Rogers, D. J. (2004) The effects of species range sizes on the accuracy of distribution models: ecological phenomenon or statistical artefact?Journal of Applied Ecology, 41, 811–823.CrossRefGoogle Scholar
McPherson, J. M., Jetz, W., & Rogers, D. J. (2006) Using coarse-grained occurrence data to predict species distributions at finer spatial resolution – possibilities and limitations. Ecological Modelling, 192, 499–522.CrossRefGoogle Scholar
McReaJr., J. E., Greene, H. G., O'Connell, V. M., & Wakefield, W. W. (1999) Mapping marine habitats with high resolution sidescan sonar. Oceanologica Acta, 22, 679–686.CrossRefGoogle Scholar
Meentemeyer, R. K., Anacker, B. L., Mark, W., & Rizzo, D. M. (2008b) Early detection of emerging forest disease using dispersal estimation and ecological niche modeling. Ecological Applications, 18, 377–390.CrossRefGoogle ScholarPubMed
Meentemeyer, R. K., Moody, A., & Franklin, J. (2001) Landscape-scale patterns of shrub-species abundance in California chaparral: the role of topographically mediated resource gradients. Plant Ecology, 156, 19–41.CrossRefGoogle Scholar
Meentemeyer, R. K., Rank, N. E., Anacker, B. L., Rizzo, D. M., & Cushman, J. H. (2008a) Influence of land-cover change on the spread of an invasive forest pathogen. Ecological Applications, 18, 159–171.CrossRefGoogle ScholarPubMed
Melbourne, B. A., Davies, K. F., Margules, C. R.et al. (2004) Species survival in fragmented landscapes: where to from here?Biodiversity and Conservation, 13, 275–284.CrossRefGoogle Scholar
Menke, S. B., Fisher, R. N., Jetz, W., & Holway, D. A. (2007) Biotic and abiotic controls of argentine ant invasion success at local and landscape scales. Ecology, 88, 3164–3173.CrossRefGoogle ScholarPubMed
Meyer, C. B. & Thuiller, W. (2006) Accuracy of resource selection functions across spatial scales. Diversity and Distributions, 12, 288–297.CrossRefGoogle Scholar
Meynard, C. N. & Quinn, J. F. (2007) Predicting species distributions: a critical comparison of the most common statistical models using artificial species. Journal of Biogeography, 34, 1455–1469.CrossRefGoogle Scholar
Michaelsen, J., Davis, F. W., & Borchert, M. (1987) A non-parametric method for analyzing hierarchical relationships in ecological data. Coenoses, 2, 39–48.Google Scholar
Michaelsen, J., Schimel, D. S., Friedl, M. A., Davis, F. W., & Dubayah, R. C. (1994) Regression tree analysis of satellite and terrain data to guide vegetation sampling and surveys. Journal of Vegetation Science, 5, 673–686.CrossRefGoogle Scholar
Midgley, G. F., Hannah, L., Millar, D., Rutherford, M. C., & Powrie, L. W. (2002) Assessing the vulnerability of species richness to anthropogenic climate change in a biodiversity hotspot. Global Ecology and Biogeography, 11, 445–451.CrossRefGoogle Scholar
Midgley, G. F., Hughes, G. O., Thuiller, W., & Rebelo, A. G. (2006) Migration rate limitations on climate change-induced range shifts in Cape Proteaceae. Diversity and Distributions, 12, 555–562.CrossRefGoogle Scholar
Miller, J. (2005) Incorporating spatial dependence in predictive vegetation models: residual interpolation methods. The Professional Geographer, 57, 169–184.CrossRefGoogle Scholar
Miller, J. & Franklin, J. (2002) Predictive vegetation modeling with spatial dependence – vegetation alliances in the Mojave Desert. Ecological Modelling, 57, 227–247.CrossRefGoogle Scholar
Miller, J., & Franklin, J. (2006) Explicitly incorporating spatial dependence in predictive vegetation models in the form of explanatory variables: a Mojave Desert case study. Journal of Geographical Systems, 8, 411–435.CrossRefGoogle Scholar
Miller, J., Franklin, J., & Aspinall, R. (2007) Incorporating spatial dependence in predictive vegetation models. Ecological Modelling, 202, 225–242.CrossRefGoogle Scholar
Miller, J. R., Turner, M. G., Smithwick, E. A. H., Dent, C. L., & Stanley, E. H. (2004) Spatial extrapolation: The science of predicting ecological patterns and processes. Bioscience, 54, 310–320.CrossRefGoogle Scholar
Mitchell-Jones, A. J., Amori, G., Bogdanowicz, W.et al. (1999) Atlas of European Mammals, i–xi, 1–484.
Mladenoff, D. J. & Baker, W. L. (1999) Development of forest and landscape modeling approaches. In Mladenoff, D. J. & Baker, W. L. (Eds.) Spatial Modeling of Forest Landscape Change: Approaches and Applications. Cambridge, UK: Cambridge University Press, pp. 1–13.Google Scholar
Mladenoff, D. J. & He, H. S. (1999) Design, behavior and application of LANDIS, as object-oriented model of forest landscape disturbance and succession. In Mladenoff, D. J. & Baker, W. L. (Eds.) Spatial Modeling of Forest Landscape Change: Approaches and Applications. Cambridge, UK: Cambridge University Press, pp. 125–162.Google Scholar
Mohamed, K. I., Papes, M., Williams, R., Benz, B. W., & Peterson, A. T. (2006) Global invasion potential of 10 parasitic witchweeds and related Orobanchaceae. Ambio, 35, 281–288.CrossRefGoogle Scholar
Moisen, G. G. & Frescino, T. S. (2002) Comparing five modelling techniques for predicting forest characteristics. Ecological Modelling, 157, 209–225.CrossRefGoogle Scholar
Moisen, G. G., Freeman, E. A., Blackard, J. A., Frescino, T. S., Zimmermann, N. E., & EdwardsJr., T. C. (2006) Predicting tree species presence and basal area in Utah: a comparison of stochastic gradient boosting, generalized additive models and tree-based methods. Ecological Modelling, 199, 176–187.CrossRefGoogle Scholar
Monestiez, P., Dubroca, L., Bonnin, E., Durbec, J.-P., & Guinet, C. (2006) Geostatistical modeling of spatial distribution of Blaaenoterpa physalus in the Northwestern Mediterranean Sea from sparse count data and heterogeneous observation efforts. Ecological Modelling, 193, 615–628.CrossRefGoogle Scholar
Monteiro De Barros, F. S., Aguiar, D. B., Rosa-Freitas, M. G.et al. (2007) Distribution summaries of malaria vectors in the northern Brazilian Amazon. Journal of Vector Ecology, 32, 161–167.CrossRefGoogle Scholar
Moore, D. M., Lees, B. G., & Davey, S. M. (1991a) A new method for predicting vegetation distributions using decision tree analysis in a geographic information system. Environmental Management, 15, 59–71.CrossRefGoogle Scholar
Moore, I. D., Grayson, R., & Ladson, A. (1991b) Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrological Processes, 5, 3–30.CrossRefGoogle Scholar
Moore, I. D., Burch, G. J., & Mackenzie, D. H. (1988) Topographic effects on the distribution of surface soil water and the location of ephemeral gullies. Transactions of the American Society of Agricultural Engineers, 31, 1098–1107.CrossRefGoogle Scholar
Morrison, M. L., Marcot, B. G., & Mannan, R. W. (1992) Wildlife–habitat Relationships. Madison, WI: The University of Wisconsin Press.Google Scholar
Morrison, M. L., Marcot, B. G., & Mannan, R. W. (1998) Wildlife-Habitat Relationships: Concepts and Applications. 2nd edn. Madison, WI: The University of Wisconsin Press.Google Scholar
Mueller, T., Olson, K. A., Fuller, T. K., Schaller, G. B., Murray, M. G., & Leimgruber, P. (2008) In search of forage: predicting dynamic habitats of Mongolian gazelles using satellite-based estimates of vegetation productivity. Journal of Applied Ecology, 45, 649–658.CrossRefGoogle Scholar
Mueller-Dombois, D. & Ellenberg, H. (1974) Aims and Methods of Vegetation Ecology. New York: Wiley.Google Scholar
Mugglestone, M. A., Kenward, M. G., & Clark, S. J. (2002) Generalized estimating equations for spatially referenced binary data. In Gregori, D., Carmeci, G., Friedl, H., Ferligoj, A., & Wedlin, A. (Eds.) Correlated Data Modeling. Trieste: FrancoAngeli S.R.L.Google Scholar
Muñoz, J. & Felicisimo, A. M. (2004) Comparison of statistical methods commonly used in predictive modelling. Journal of Vegetation Science, 15, 285–292.CrossRefGoogle Scholar
Murphy, H. T. & Lovett-Doust, J. (2004) Context and connectivity in plant metapopulations and landscape mosaics: does the matrix matter?Oikos, 105, 3–14.CrossRefGoogle Scholar
Murray-Smith, C., Brummitt, N. A., Oliveira-Filho, A. T.et al. (2009) Plant diversity hotspots in the Atlantic coastal forests of Brazil. Conservation Biology, 23, 151–163.CrossRefGoogle ScholarPubMed
Nagendra, H. (2001) Using remote sensing to assess biodiversity. International Journal of Remote Sensing, 22, 2377–2400.CrossRefGoogle Scholar
Nams, V. O., Mowat, G., & Panian, M. A. (2006) Determining the spatial scale for conservation purposes – an example with grizzly bears. Biological Conservation, 128, 109–119.CrossRefGoogle Scholar
Neilson, R. & Running, S. (1996) Global dynamic vegetation modelling: coupling biogeochemistry and biogeography models. In Walker, B. & Steffen, W. (Eds.) Global Change and Terrestrial Ecosystems. Cambridge, UK: Cambridge University Press, pp. 451–465.Google Scholar
Neilson, R. P., King, G. A., & Koerper, G. (1992) Toward a rule-based biome model. Landscape Ecology, 7, 27–43.CrossRefGoogle Scholar
Nelder, V. J., Crosslet, D. C., & Cofinas, M. (1995) Using geographic information systems (GIS) to determine the adequacy of sampling in vegetation surveys. Biological Conservation, 73.Google Scholar
Nelson, T. A. & Boots, B. (2008) Detecting spatial hot spots in landscape ecology. Ecography, 31, 556–566.CrossRefGoogle Scholar
Newton-Cross, G., White, P. C. L., & Harris, S. (2007) Modelling the distribution of badgers Meles meles: comparing predictions from field-based and remotely derived habitat data. Mammal Review, 37, 54–70.CrossRefGoogle Scholar
Nicholls, A. (1989) How to make biological surveys go further with generalised linear models. Biological Conservation, 50, 51–75.CrossRefGoogle Scholar
Niu, X. Z. & Duiker, S. W. (2006) Carbon sequestration potential by afforestation of marginal agricultural land in the Midwestern US. Forest Ecology and Management, 223, 415–427.CrossRefGoogle Scholar
Nogues-Bravo, D., Araújo, M. B., Romdal, T., & Rahbek, C. (2008) Scale effects and human impact on the elevational species richness gradients. Nature, 453, 216–218.CrossRefGoogle ScholarPubMed
O'Connor, R. J., Jones, M. T., White, D.et al. (1996) Spatial partitioning of environmental correlates of avian biodiversity in the conterminous United States. Biodiversity Letters, 3, 97–110.CrossRefGoogle Scholar
Ohmann, J. L. & Gregory, M. J. (2002) Predictive mapping of forest composition and structure with direct gradient analysis and nearest neighbor imputation in coastal Oregon, U.S.A. Canadian Journal of Forest Research, 32, 725–741.CrossRefGoogle Scholar
Ohmann, J. L. & Spies, T. A. (1998) Regional gradient analysis and spatial pattern of woody plant communities of Oregon forests. Ecological Monographs, 68, 151–182.CrossRefGoogle Scholar
Oindo, B. O. & Skidmore, A. K. (2002) Interannual variability of NDVI and species richness in Kenya. International Journal of Remote Sensing, 23, 285–298.CrossRefGoogle Scholar
Oksanen, J. & Minchin, P. R. (2002) Continuum theory revisited: what shape are species responses along ecological gradients?Ecological Modelling, 157, 119–129.CrossRefGoogle Scholar
Olden, J. D., Joy, M. K., & Death, R. G. (2006) Rediscovering the species in community-wide predictive modeling. Ecological Applications, 16, 1449–1460.CrossRefGoogle ScholarPubMed
Olden, J. D., Lawler, J. J., & Poff, N. L. (2008) Machine learning methods without tears: A primer for ecologists. Quarterly Review of Biology, 83, 171–193.CrossRefGoogle ScholarPubMed
Olivier, F. & Wotherspoon, S. J. (2006) Modelling habitat selection using presence-only data: Case study of a colonial hollow nesting bird, the snow petrel. Ecological Modelling, 195, 187–204.CrossRefGoogle Scholar
Olivier, F. & Wotherspoon, S. J. (2008) Nest selection by snow petrels Pagodroma nivea in East Antarctica – Validating predictive habitat selection models at the continental scale. Ecological Modelling, 210, 414–430.CrossRefGoogle Scholar
Orme, C. D. L., Davies, R. G., Burgess, M.et al. (2005) Global hotspots of species richness are not congruent with endemism or threat. Nature, 436, 1016–1019.CrossRefGoogle ScholarPubMed
Ortega-Huerta, M. A. & Peterson, A. T. (2004) Modelling spatial patterns of biodiversity for conservation prioritization in North-eastern Mexico. Diversity and Distributions, 10, 39–54.CrossRefGoogle Scholar
Osborne, P. E. & Suarez-Seoane, S. (2002) Should data be partitioned spatially before building large-scale distribution models?Ecological Modelling, 157, 249–259.CrossRefGoogle Scholar
Osborne, P. E. & Suarez-Seoane, S. (2007) Identifying core areas in a species range using temporal suitability analysis: an example using little bustards Tetrax tetrax L. in Spain. Biodiversity and Conservation, 16, 3505–3518.CrossRefGoogle Scholar
Osborne, P. E. & Tigar, B. J. (1992) Interpreting bird atlas data using logistic models: an example from Lesotho, southern Africa. Journal of Applied Ecology, 29, 55–62.CrossRefGoogle Scholar
Osborne, P. E., Alonso, J. C., & Bryant, R. G. (2001) Modelling landscape-scale habitat use using GIS and remote sensing: a case study with great bustards. Journal of Applied Ecology, 38, 458–471.CrossRefGoogle Scholar
Osborne, P. E., Foody, G. M., & Suarez-Seoane, S. (2007) Non-stationarity and local approaches to modelling the distribution of wildlife. Diversity and Distributions, 13, 313–323.CrossRefGoogle Scholar
Ozesmi, S. L. & Ozesmi, U. (1999) An artificial neural network approach to spatial habitat modelling with interspecific interaction. Ecological Modelling, 116, 15–31.CrossRefGoogle Scholar
Palmer, M. W., Earls, P. G., Hoagland, B. W., White, P. S., & Wohlgemuth, T. (2002) Quantitative tools for perfecting species lists. Environmetrics, 13, 121–137.CrossRefGoogle Scholar
Parisien, M.-A. & Moritz, M. A. (2009) Environmental controls on the distribution of wildfire at multiple spatial scales. Ecological Monographs, 79, 127–154.CrossRefGoogle Scholar
Parmesan, C. (2006) Ecological and evolutionary responses to recent climate change. Annual Review of Ecology Evolution and Systematics, 37, 637–669.CrossRefGoogle Scholar
Pausas, J. G. & Austin, M. P. (2001) Patterns of plant species richness in relation to different environments: An appraisal. Journal of Vegetation Science, 12, 153–166.CrossRefGoogle Scholar
Pausas, J. G. & Carreras, J. (1995) The effect of bedrock type, temperature and moisture on species richness of Pyrenean Scots Pine (Pinus sylvestris L.) Forests. Vegetatio, 116, 85–92.
Pausas, J. G., Braithwaite, L. W., & Austin, M. P. (1995) Modeling habitat quality for arboreal marsupials in the south coastal forests of New-South-Wales, Australia. Forest Ecology and Management, 78, 39–49.CrossRefGoogle Scholar
Pausas, J. G., Carreras, J., Ferre, A., & Font, X. (2003) Coarse-scale plant species richness in relation to environmental heterogeneity. Journal of Vegetation Science, 14, 661–668.CrossRefGoogle Scholar
Pearce, J. & Ferrier, S. (2000) An evaluation of alternative algorithms for fitting species distribution models using logistic regression. Ecological Modelling, 128, 127–147.CrossRefGoogle Scholar
Pearce, J. & Lindenmayer, D. (1998) Bioclimatic analysis to enhance reintroduction biology of the endangered helmeted honeyeater (Lichenostomus melanops cassidix) in southeastern Australia. Restoration Ecology, 6, 238–243.CrossRefGoogle Scholar
Pearce, J., Ferrier, S., & Scotts, D. (2001) An evaluation of the predictive performance of distributional models for flora and fauna in north-east New South Wales. Journal of Environmental Management, 62, 171–184.CrossRefGoogle ScholarPubMed
Pearce, J. L. & Boyce, M. S. (2006) Modelling distribution and abundance with presence-only data. Journal of Applied Ecology, 43, 405–412.CrossRefGoogle Scholar
Pearman, P. B., Guisan, A., Broennimann, O., & Randin, C. F. (2008) Niche dynamics in space and time. Trends in Ecology & Evolution, 23, 149–158.CrossRefGoogle ScholarPubMed
Pearson, R. G. & Dawson, T. P. (2003) Predicting the impacts of climate change on the distribution of species: are bioclimatic envelope models useful?Global Ecology & Biogeography, 12, 361–371.CrossRefGoogle Scholar
Pearson, R. G., Dawson, T. P., Berry, P. M., & Harrison, P. A., (2002) SPECIES: a spatial evaluation of climate impact on the envelope of species. Ecological Modelling, 154, 289–300.CrossRefGoogle Scholar
Pearson, R. G., Dawson, T. P., & Liu, C. (2004) Modelling species distribution in Britain: a hierarchical integration of climate and land cover. Ecography, 27, 285–298.CrossRefGoogle Scholar
Pearson, R. G., Raxworthy, C. J., Nakamura, M., & Peterson, A. T. (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography, 34, 102–117.CrossRefGoogle Scholar
Pearson, R. G., Thuiller, W., Araújo, M. B.et al. (2006) Model-based uncertainty in species range prediction. Journal of Biogeography, 33, 1704–1711.CrossRefGoogle Scholar
Pearson, S. M. (1993) The spatial extent and relative influence of landscape-level factors on wintering bird populations. Landscape Ecology, 8, 3–18.CrossRefGoogle Scholar
Pereira, J. M. & Itami, R. M. (1991) GIS-based habitat modeling using logistic multiple regression: a study of the Mt. Graham Red Squirrel. Photogrammetric Engineering and Remote Sensing, 57, 1475–1486.Google Scholar
Pereira, J. M. C. & Duckstein, L. (1993) A multiple criteria decision-making approach to GIS-based land suitability evaluation. International Journal of Geographical Information Systems, 7, 407–424.CrossRefGoogle Scholar
Perring, F. (1958) A theoretical approach to a study of chalk grassland. Journal of Ecology, 46, 665–679.CrossRefGoogle Scholar
Perring, F. (1959) Topographical gradients of chalk grassland. Journal of Ecology, 47, 447–481.CrossRefGoogle Scholar
Perring, F. (1960) Climatic gradients of chalk grassland. Journal of Ecology, 48, 415–442.CrossRefGoogle Scholar
Peters, D. P. C., Herrick, J. E., Urban, D. L., Gardner, R. H., & Breshears, D. D. (2004) Strategies for ecological extrapolation. Oikos, 106, 627–636.CrossRefGoogle Scholar
Peterson, A. T. (2003) Predicting the geography of species invasions via ecological niche modeling. Quarterly Review of Biology, 78, 419–433.CrossRefGoogle ScholarPubMed
Peterson, A. T. (2006) Ecologic niche modeling and spatial patterns of disease transmission. Emerging Infectious Diseases, 12, 1822–1826.CrossRefGoogle ScholarPubMed
Peterson, A. T. & Holt, R. D. (2003) Niche differentiation in Mexican birds: using point occurrences to detect ecological innovation. Ecology Letters, 6, 774–782.CrossRefGoogle Scholar
Peterson, A. T. & Kluza, D. A. (2003) New distributional modelling approaches for gap analysis. Animal Conservation, 6, 47–54.CrossRefGoogle Scholar
Peterson, A. T. & Nyari, A. S. (2008) Ecological niche conservatism and Pleistocene refugia in the thrush-like mourner, Schiffornis sp., in the neotropics. Evolution, 62, 173–183.Google ScholarPubMed
Peterson, A. T. & Robins, C. R. (2003) Using ecological-niche modeling to predict Barred Owl invasions with implications for Spotted Owl conservation. Conservation Biology, 17, 1161–1165.CrossRefGoogle Scholar
Peterson, A. T. & Vieglais, D. A. (2001) Predicting species invasions using ecological niche modeling: New approaches from bioinformatics attack a pressing problem. Bioscience, 51, 363–371.CrossRefGoogle Scholar
Peterson, A. T., Ortega-Huerta, M. A., Bartley, J.et al. (2002) Future projections for Mexican faunas under global climate change scenarios. Nature, 416, 626–629.CrossRefGoogle ScholarPubMed
Peterson, A. T., Papes, M., & Eaton, M. (2007) Transferability and model evaluation in ecological niche modeling: a comparison of GARP and Maxent. Ecography, 30, 550–560.CrossRefGoogle Scholar
Peterson, A. T., Papes, M., & Kluza, D. A. (2003) Predicting the potential invasive distributions of four alien plant species in North America. Weed Science, 51, 863–868.CrossRefGoogle Scholar
Peterson, A. T., Papes, M., & Soberón, J., (2008) Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecological Modelling, 213, 63–72.CrossRefGoogle Scholar
Peterson, A. T., Sánchez-Cordero, V., Martínez-Meyer, E., & Navarro-Sigüenza, A. G. (2006) Tracking population extirpations via melding ecological niche modeling with land cover information. Ecological Modelling, 195, 229–236.CrossRefGoogle Scholar
Peterson, A. T., Soberón, J., & Sanchez-Cordero, V. (1999) Conservatism of ecological niches in evolutionary time. Science, 285, 1265–1267.CrossRefGoogle ScholarPubMed
Pettorelli, N., Vik, J. O., Mysterud, A., Gaillard, J. M., Tucker, C. J., & Stenseth, N. C. (2005) Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends in Ecology & Evolution, 20, 503–510.CrossRefGoogle ScholarPubMed
Phillips, S. J. (2008) Transferability, sample selection bias and background data in presence-only modelling: a response to Peterson et al. (2007). Ecography, 31, 272–278.CrossRefGoogle Scholar
Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231–259.CrossRefGoogle Scholar
Phillips, S. J. & Dudík, M. (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31, 161–175.CrossRefGoogle Scholar
Phillips, S. J., Dudík, M., Elith, J.et al. (2009) Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecological Applications, 19, 181–197.CrossRefGoogle ScholarPubMed
Phinn, S. R. (1998) A framework for selecting appropriate remotely sensed data dimensions for environmental monitoring and management. International Journal of Remote Sensing, 19, 3457–3463.CrossRefGoogle Scholar
Phinn, S. R., Stow, D. A., & Zedler, J. B. (1996) Monitoring wetland habitat restoration in southern California using airborne multispectral video data. Restoration Ecology, 4, 412–422.CrossRefGoogle Scholar
Phinn, S. R., Stow, D. S., Franklin, J., Mertes, L. A. K., & Michaelsen, J. (2003) Optimizing remotely sensed data for ecosystem analyses: combining hierarchy theory and scene models. Environmental Management, 31, 429–441.CrossRefGoogle Scholar
Pickett, S. T. A. & Cadenasso, M. L. (1995) Landscape ecology: spatial heterogeneity in ecological systems. Science, 269, 331–334.CrossRefGoogle ScholarPubMed
Pickett, S. T. A. & White, P. S. (1985) The Ecology of Natural Disturbance and Patch Dynamics. New York NY: Academic Press.Google Scholar
Pielou, E. C. (1975) Ecological Diversity. New York: Wiley.Google Scholar
Pindyck, R. S. & Rubenfeld, D. L. (1981) Econometric Models and Econometric Forecasts. New York, USA: McGraw Hill.Google Scholar
Pineda, E. & Lobo, J. M. (2009) Assessing the accuracy of species distribution models to predict amphibian species richness patterns. Journal of Animal Ecology, 78, 182–190.CrossRefGoogle ScholarPubMed
Platts, P. J., McClean, C. J., Lovett, J. C., & Marchant, R. (2008) Predicting tree distributions in an East African biodiversity hotspot: model selection, data bias and envelope uncertainty. Ecological Modelling, 218, 121–134.CrossRefGoogle Scholar
Plotnick, R. E., Gardner, R. H., & O'Neill, R. V. (1993) Lacunarity indices as a measure of landscape texture. Landscape Ecology, 8.CrossRefGoogle Scholar
Pontius, R. G. & Schneider, L. C. (2001) Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA. Agriculture Ecosystems & Environment, 85, 239–248.CrossRefGoogle Scholar
Posillico, M., Alberto, M. I. B., Pagnin, E., Lovari, S., & Russo, L. (2004) A habitat model for brown bear conservation and land use planning in the central Apennines. Biological Conservation, 118, 141–150.CrossRefGoogle Scholar
Potts, J. M. & Elith, J. (2006) Comparing species abundance models. Ecological Modelling, 199, 153–163.CrossRefGoogle Scholar
Poulos, H. M., Camp, A. E., Gatewood, R. G., & Loomis, L. (2007) A hierarchical approach for scaling forest inventory and fuels data from local to landscape scales in the Davis Mountains, Texas, USA. Forest Ecology and Management, 244, 1–15.CrossRefGoogle Scholar
Poyry, J., Luoto, M., Heikkinen, R. K., & Saarinen, K. (2008) Species traits are associated with the quality of bioclimatic models. Global Ecology and Biogeography, 17, 403–414.CrossRefGoogle Scholar
Prasad, A. M., Iverson, L. R., & Liaw, A. (2006) Newer classification and regression techniques: bagging and random forests for ecological prediction. Ecosystems, 9, 181–199.CrossRefGoogle Scholar
Prates-Clark, C. D., Saatchi, S. S., & Agosti, D. (2008) Predicting geographical distribution models of high-value timber trees in the Amazon Basin using remotely sensed data. Ecological Modelling, 211, 309–323.CrossRefGoogle Scholar
Prentice, I. C., Bartlein, P. J., & Webb, T., III (1991) Vegetation and climate change in eastern North-America since the Last Glacial Maximum. Ecology, 72, 2038–2056.CrossRefGoogle Scholar
Prentice, I. C., Cramer, W., Harrison, S. P., Leemans, R., Monserud, R. A., & Solomon, A. M. (1992) A global biome model based on plant physiology and dominance, soil properties and climate. Journal of Biogeography, 19, 117–134.CrossRefGoogle Scholar
Preston, C. D., Pearman, D. A., & Dines, T. D. (Eds.) (2002) New Atlas of the British and Irish Flora. Oxford, UK: Oxford University Press.
Preston, F. W. (1948) The commonness, and rarity, of species. Ecology, 29, 254–283.CrossRefGoogle Scholar
Preston, K., Rotenberry, J. T., Redak, R. A., & Allen, M. F. (2008) Habitat shifts of endangered species under altered climate conditions: importance of biotic interactions. Global Change Biology, 14, 2501–2515.Google Scholar
Pulliam, H. R. (1988) Sources, sinks, and population regulation. American Naturalist, 132, 652–661.CrossRefGoogle Scholar
Pulliam, H. R. (2000) On the relationship between niche and distribution. Ecology Letters, 3, 349–361.CrossRefGoogle Scholar
Pulliam, H. R., Dunning, J., & Liu, J. (1992) Population dynamics in complex landscapes: a case study. Ecological Applications, 2, 165–177.CrossRefGoogle ScholarPubMed
Quinlan, J. R. (1993) C4.5: Programs for Machine Learning. San Mateo, CA: Morgan Kaufman Publishers.Google Scholar
Quinn, P., Beven, K., Chevallier, P., & Planchon, O. (1991) The prediction of hillslope flow paths for distributed hydrological modeling using digital terrain models. Hydrological Processes, 5, 59–79.CrossRefGoogle Scholar
Quinn, G. P. & Keough, M. J. (2002) Experimental design and data analysis for biologists, Cambridge, UK, Cambridge University Press.CrossRefGoogle Scholar
,R Development Core Team (2004) R: A language and environment for statistical computing. 2.0.1 ed. Vienna, Austria http://rrr.R-project.org, R Foundation for Statistical Computing.
Rabinowitz, D. (1981) Seven forms of rarity. In Synge, H. (Ed.) The Biological Aspects of Rare Plant Conservation. Chichester, UK: Wiley, pp. 205–217.Google Scholar
Rahbek, C. & Graves, G. R. (2001) Multiscale assessment of patterns of avian species richness. Proceedings of the National Academy of Sciences, USA, 98, 4534–4539.CrossRefGoogle ScholarPubMed
Raleigh, R. F., Zuckerman, L. D., & Nelson, P. C. (1986) Habitat suitability index models and instream flow sustainability curves: Brown trout, revised. U.S. Fish Wildlife Service Biological Report 82(10.124).Google Scholar
Randin, C. F., Dirnbock, T., Dullinger, S., Zimmermann, N. E., Zappa, M., & Guisan, A. (2006) Are niche-based species distribution models transferable in space?Journal of Biogeography, 33, 1689–1703.CrossRefGoogle Scholar
Rangel, T. F. L. V. B., Diniz-Filho, J. A. F., & Bini, L. M. (2006) Towards an integrated computational tool for spatial analysis in macroecology and biogeography. Global Ecology and Biogeography, 15.CrossRefGoogle Scholar
Rasmussen, C. (2006) Distribution of soil organic and inorganic carbon pools by biome and soil taxa in Arizona. Soil Science Society of America Journal, 70, 256–265.CrossRefGoogle Scholar
Raso, G., Vounatsou, P., Singer, B. H., N'Goran, E. K., Tanner, M., & Utzinger, J. (2006) An integrated approach for risk profiling and spatial prediction of Schistosoma mansoni-hookworm coinfection. Proceedings of the National Academy of Sciences of the United States of America, 103, 6934–6939.CrossRefGoogle ScholarPubMed
Raul, R. C., Novillo, C. J., Millington, J. D. A., & Gomez-Jimenez, I. (2008) GIS analysis of spatial patterns of human-caused wildfire ignition risk in the SW of Madrid (Central Spain). Landscape Ecology, 23, 341–354.Google Scholar
Ray, N. & Burgman, M. A. (2006) Subjective uncertainties in habitat suitability maps. Ecological Modelling, 195, 172–186.CrossRefGoogle Scholar
Ree, R. H., Moore, B. R., Webb, C. O., & Donoghue, M. J. (2005) A likelihood framework for inferring the evolution of geographic range on phylogenetic trees. Evolution, 59, 2299–2311.CrossRefGoogle ScholarPubMed
Reese, G. C., Wilson, K. R., Hoeting, J. A., & Flather, C. H. (2005) Factors affecting species distribution predictions: a simulation modeling experiment. Ecological Applications, 15, 554–564.CrossRefGoogle Scholar
Regan, H. M., Colyvan, M., & Burgman, M. A. (2002) A taxonomy and treatment of uncertainty for ecology and conservation biology. Ecological Applications, 12, 618–628.CrossRefGoogle Scholar
Rehfeldt, G. E., Crookston, N. L., Warwell, M. V., & Evans, J. S. (2006) Empirical analyses of plant–climate relationships for the western United States. International Journal of Plant Sciences, 167, 1123–1150.CrossRefGoogle Scholar
Reineking, B. & Schroder, B. (2006) Constrain to perform: Regularization of habitat models. Ecological Modelling, 193, 675–690.CrossRefGoogle Scholar
Rejmanek, M. & Richardson, D. M. (1996) What attributes make some plant species more invasive?. Ecology, 77, 1655–1661.CrossRefGoogle Scholar
Richardson, D. M. & Thuiller, W. (2007) Home away from home – objective mapping of high-risk source areas for plant introductions. Diversity and Distributions, 13, 299–312.CrossRefGoogle Scholar
Ridgeway, G. (1999) The state of boosting. Computing Science and Statistics, 31, 172–181.Google Scholar
Ripley, B. D. (1981) Spatial Statistics. New York: John Wiley and Sons.CrossRefGoogle Scholar
Ripley, B. D. (1996) Pattern Recognition and Neural Networks. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Rissler, L. J. & Apodaca, J. J. (2007) Adding more ecology into species delimitation: Ecological niche models and phylogeography help define cryptic species in the black salamander (Aneides flavipunctatus). Systematic Biology, 56, 924–942.CrossRefGoogle Scholar
Robertson, M. P., Villet, M. H., & Palmer, A. R. (2004) A fuzzy classification technique for predicting species distributions: applications using invasive alien plants and indigenous insects. Diversity and Distributions, 10, 461–474.CrossRefGoogle Scholar
Rocchini, D., Ricotta, C., & Chiarucci, A. (2007) Using satellite imagery to assess plant species richness: The role of multispectral systems. Applied Vegetation Science, 10, 325–331.CrossRefGoogle Scholar
Rodrigues, A. S. L., Andelman, S. J., Bakarr, M. I.et al. (2004) Effectiveness of the global protected area network in representing species diversity. Nature, 428, 640–643.CrossRefGoogle ScholarPubMed
Rodriguéz, J. P., Brotons, L., Bustmante, J., & Seoane, J. (2007) The application of predictive modelling of species distribution to biodiversity conservation. Diversity and Distributions, 13, 243–251.CrossRefGoogle Scholar
Romero-Calcerrada, R. & Luque, S. (2006) Habitat quality assessment using Weights-of-Evidence based GIS modelling: the case of Picoides tridactylus as species indicator of the biodiversity value of the Finnish forest. Ecological Modelling, 196, 62–76.CrossRefGoogle Scholar
Rondinini, C., Stuart, S. & Boitani, L. (2005) Habitat suitability models and the shortfall in conservation planning for African vertebrates. Conservation Biology, 19, 1488–1497.CrossRefGoogle Scholar
Root, T. L., Price, J. T., Hall, K. R., Schneider, S. H., Rosenzweig, C., & Pounds, J. A. (2003) Fingerprints of global warming on wild animals and plants. Nature, 421, 57–60.CrossRefGoogle ScholarPubMed
Rosenblatt, A. E., Gold, A. J., Stolt, M. H., Groffman, P. M., & Kellogg, D. Q. (2001) Identifying riparian sinks for watershed nitrate using soil surveys. Journal of Environmental Quality, 30, 1596–1604.CrossRefGoogle ScholarPubMed
Rosenzweig, C., Karoly, D., Vicarelli, M.et al. (2008) Attributing physical and biological impacts to anthropogenic climate change. Nature, 453, 353.CrossRefGoogle ScholarPubMed
Rotenberry, J. T., Knick, S. T., & Dunn, J. E. (2002) A minimalist approach to mapping species habitat: Pearson's planes of closest fit. In Scott, J. M., Heglund, P. J., Morrison, M. L.et al. (Eds.) Predicting Species Occurrences: Issues of Accuracy and Scale. Covelo, CA: Island Press, pp. 281–289.Google Scholar
Rotenberry, J. T., Preston, K. L., & Knick, S. T. (2006) GIS-based niche modeling for mapping species habitat. Ecology, 87, 1458–1464.CrossRefGoogle Scholar
Roura-Pascual, N., Suarez, A. V., McNyset, K.et al. (2006) Niche differentiation and fine-scale projections for Argentine ants based on remotely sensed data. Ecological Applications, 16, 1832–1841.CrossRefGoogle ScholarPubMed
Royle, J. A., Kery, M., Gautier, R., & Schmid, H. (2007) Hierarchical spatial models of abundance and occurrence from imperfect survey data. Ecological Monographs, 77, 465–481.CrossRefGoogle Scholar
Rubio, A. & Sanchez-Palomares, O. (2006) Physiographic and climatic potential areas for Fagus sylvatica L. based on habitat suitability indicator models. Forestry, 79, 439–451.CrossRefGoogle Scholar
Rüger, N., Schlueter, M., & Matthies, M. (2005) A fuzzy habitat suitability index for Populus euphratica in the Northern Amudarya delta (Uzbekistan). Ecological Modelling, 184, 313–328.CrossRefGoogle Scholar
Running, S. W., Justice, C. J., Salomonson, V.et al. (1994) Terrestrial remote sensing science and algorithms planned for EOS/MODIS. International Journal of Remote Sensing, 15, 3587–3620.CrossRefGoogle Scholar
Rushton, S. P., Ormerod, S. J., & Kerby, G. (2004) New paradigms for modelling species distributions?Journal of Applied Ecology, 41, 193–200.CrossRefGoogle Scholar
Rykiel, E. J.. (1996) Testing ecological models: the meaning of validation. Ecological Modelling, 90, 229–244.CrossRefGoogle Scholar
Saatchi, S., Buermann, W., Ter Steege, H., Mori, S., & Smith, T. B. (2008) Modeling distribution of Amazonian tree species and diversity using remote sensing measurements. Remote Sensing of Environment, 112, 2000–2017.CrossRefGoogle Scholar
Saathoff, E., Olsen, A., Sharp, B., Kvalsvig, J. D., Appleton, C. C., & Kleinschmidt, I. (2005) Ecologic covariates of hookworm infection and reinfection in rural Kwazulu-Natal/South Africa: A geographic information system-based study. American Journal of Tropical Medicine and Hygiene, 72, 384–391.Google ScholarPubMed
Sattler, T., Bontadina, F., Hirzel, A. H., & Arlettaz, R. (2007) Ecological niche modelling of two cryptic bat species calls for a reassessment of their conservation status. Journal of Applied Ecology, 44, 1188–1199.CrossRefGoogle Scholar
Saveraid, E. H., Debinski, D. M., Kindscher, K., & Jakubauskas, M. E. (2001) A comparison of satellite data and landscape variables in predicting bird species occurrences in the Greater Yellowstone Ecosystem, USA. Landscape Ecology, 16, 71–83.CrossRefGoogle Scholar
Schadt, S., Revilla, E., Wiegand, T.et al. (2002) Assessing the suitability of central European landscapes for the reintroduction of Eurasian lynx. Journal of Applied Ecology, 39, 189–203.CrossRefGoogle Scholar
Scheller, R. M., van Tuyl, S., Clark, K., Hayden, N. G., Hom, J., & Mladenoff, D. J. (2008) Simulation of forest change in the New Jersey Pine Barrens under current and pre-colonial conditions. Forest Ecology and Management, 255, 1489–1500.CrossRefGoogle Scholar
Schmit, C., Rousevell, M. D. A., & La Jeunesse, I. (2006) The limitations of spatial land use data in environmental analysis. Environmental Science & Policy, 9, 174–188.CrossRefGoogle Scholar
Schulz, T. T. & Joyce, L. A. (1992) A spatial application of a marten habitat model. Wildlife Society Bulletin, 20, 74–83.Google Scholar
Scott, J. M., Davis, F., Csuti, B.et al. (1993) Gap analysis: a geographical approach to protection of biological diversity. Wildlife Monographs, 123, 1–41.Google Scholar
Scott, J. M., Heglund, P. J., Morrison, M. L.et al. (Eds.) (2002) Predicting Species Occurrences: Issues of Accuracy and Scale. Covelo, CA: Island Press.
Scull, P., Franklin, J., & McArthur, D. (2003) Predictive soil mapping: a review. Progress in Physical Geography, 27, 171–197.CrossRefGoogle Scholar
Scull, P., Franklin, J., & Chadwick, O. A. (2005) The application of classification tree analysis to soil type prediction in a desert landscape. Ecological Modelling, 181, 1–15.CrossRefGoogle Scholar
Segurado, P. & Araújo, M. B. (2004) An evaluation of methods for modelling species distributions. Journal of Biogeography, 31, 1555–1568.CrossRefGoogle Scholar
Segurado, P., Araújo, M. B., & Kunin, W. E. (2006) Consequences of spatial autocorrelation for niche-based models. Journal of Applied Ecology, 43, 433–444.CrossRefGoogle Scholar
Sellars, J. D. & Jolls, C. L. (2007) Habitat modeling for Amaranthus pumilus: An application of light detection and ranging (LIDAR) data. Journal of Coastal Research, 23, 1193–1202.CrossRefGoogle Scholar
Sergio, C., Figueira, R., Draper, D., Menezes, R., & Sousa, A. J. (2007) Modelling bryophyte distribution based on ecological information for extent of occurrence assessment. Biological Conservation, 135, 341–351.CrossRefGoogle Scholar
Seto, K. C., Fleishman, E., Fay, J. P., & Betrus, C. J. (2004) Linking spatial patterns of bird and butterfly species richness with Landsat TM derived NDVI. International Journal of Remote Sensing, 25, 4309–4324.CrossRefGoogle Scholar
Sheppard, J. K., Lawler, I. R., & Marsh, H. (2007) Seagrass as pasture for seacows: landscape-level dugong habitat evaluation. Estuarine Coastal and Shelf Science, 71, 117–132.CrossRefGoogle Scholar
Shi, H., Laurent, E. J., Lebouton, J.et al. (2006) Local spatial modeling of white-tailed deer distribution. Ecological Modelling, 190, 171–189.CrossRefGoogle Scholar
Shriner, S. A., Simons, T. R., & Farnsworth, G. L. (2002) A GIS-based habitat model for Wood Thrush, Hyocichla mustelina, in Great Smokey Mountains National Park. In Scott, J. M., Heglund, P. J., & Morrison, M. L. (Eds.) Predicting Species Occurrences: Issues of Accuracy and Scale. Covelo, CA: Island Press, pp. 529–535.Google Scholar
Shugart, H. H. (1998) Terrestrial Ecosystems in Changing Environments, Cambridge, UK: Cambridge University Press.Google Scholar
Sitch, S., Smith, B., Prentice, I. C.et al. (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology, 9, 161–185.CrossRefGoogle Scholar
Skidmore, A. K. (1989) An expert system classifies eucalypt forest types using thematic mapper data and a digital terrain model. Photogrammetric Engineering and Remote Sensing, 55, 1449–1464.Google Scholar
Skidmore, A. K. (1990) Terrain position as mapped from a gridded digital elevation model. International Journal of Geographic Information Systems, 4, 33–49.CrossRefGoogle Scholar
Skov, F. & Svenning, J. C. (2004) Potential impact of climatic change on the distribution of forest herbs in Europe. Ecography, 27, 366–380.CrossRefGoogle Scholar
Smith, G. M. & Wyatt, B. K. (2007) Multi-scale survey by sample-based field methods and remote sensing: A comparison of UK experience with European environmental assessments. Landscape and Urban Planning, 79, 170–176.CrossRefGoogle Scholar
Smith, P. A. (1994) Autocorrelation in logistic regression modelling of species distributions. Global Ecology and Biogeography Letters, 4, 47–61.CrossRefGoogle Scholar
Smith, T. M., Shugart, H. H., & Woodward, F. I. (1997) Plant Functional Types. Cambridge, UK: Cambridge University Press.Google Scholar
Soberón, J. (2007) Grinnellian and Eltonian niches and geographic distributions of species. Ecology Letters, 10, 1115–1123.CrossRefGoogle ScholarPubMed
Soberón, J. & Peterson, A. T. (2004) Biodiversity informatics: managing and applying primary biodiversity data. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 359, 689–698.CrossRefGoogle ScholarPubMed
Soberón, J. & Peterson, A. T. (2005) Interpretation of models of fundamental ecological niches and species distributional areas. Biodiversity Informatics, 2, 1–10.CrossRefGoogle Scholar
Speight, J. G. (1974) A parametric approach to landform regions. Special Publications Institute of British Geographers, 7, 213–230.Google Scholar
Stanbury, K. B. & Starr, R. M. (1999) Applications of Geographic Information Systems (GIS) to habitat assessment and marine resource management. Oceanologica Acta, 22, 699–703.CrossRefGoogle Scholar
Stehman, S. V. & Czaplewski, R. L. (1998) Design and analysis for thematic map accuracy assessment: fundamental principles. Remote Sensing of Environment, 64, 331–344.CrossRefGoogle Scholar
Steiner, F. M., Schlick-Steiner, B. C., VanDerWal, J.et al. (2008) Combined modelling of distribution and niche in invasion biology: a case study of two invasive Tetramorium ant species. Diversity and Distributions, 14, 538–545.CrossRefGoogle Scholar
Stephenson, C. M., MacKenzie, M. L., Edwards, C., & Travis, J. M. J. (2006) Modelling establishment probabilities of an exotic plant, Rhododendron ponticum, invading a heterogeneous, woodland landscape using logistic regression with spatial autocorrelation. Ecological Modelling, 193, 747–758.CrossRefGoogle Scholar
Steyaert, L. T. (1996) Status of land data for environmental modeling and challenges for geographic information systems in land characterization. In Goodchild, M. F., Steyaert, L. T., Parks, B. O.et al. (Eds.) GIS and Environmental Modeling: Progress and Research Issues. Fort Collins, CO: GIS World Books, pp. 17–27.Google Scholar
Stickler, C. M. & Southworth, J. (2008) Application of multi-scale spatial and spectral analysis for predicting primate occurrence and habitat associations in Kibale National Park, Uganda. Remote Sensing of Environment, 112, 2170–2186.CrossRefGoogle Scholar
Stigall, A. L. & Lieberman, B. S. (2006) Quantitative palaeobiogeography: GIS, phylogenetic biogeographical analysis, and conservation insights. Journal of Biogeography, 33, 2051–2060.CrossRefGoogle Scholar
Stockwell, D. R. B. (1999) Genetic algorithms II. In Fielding, A. H. (Ed.) Machine Learning Methods for Ecological Applications. Boston: Kluwer, pp. 123–144.CrossRefGoogle Scholar
Stockwell, D. R. B. (2006) Improving ecological niche models by data mining large environmental datasets for surrogate models. Ecological Modelling, 192, 188–196.CrossRefGoogle Scholar
Stockwell, D. R. B. & Noble, I. R. (1992) Induction of sets of rules from animal distribution data – a robust and informative method of data-analysis. Mathematics and Computers in Simulation, 33, 385–390.CrossRefGoogle Scholar
Stockwell, D. R. B., Arzberger, P., Fountain, T., & Helly, J. (2000) An interface between computing, ecology, and biodiversity: environmental informatics. Korean Journal of Ecology, 23, 101–106.Google Scholar
Stockwell, D. R. B., Beach, J. H., Stewart, A., Vorontsov, G., Vieglais, D., & Pereira, R. S. (2006) The use of the GARP genetic algorithm and Internet grid computing in the Lifemapper world atlas of species biodiversity. Ecological Modelling, 195, 139–145.CrossRefGoogle Scholar
Stockwell, D. R. B. & Peters, D. P. (1999) The GARP modelling system: problems and solutions to automated spatial prediction. International Journal of Geographical Information Science, 13, 143–158.CrossRefGoogle Scholar
Stockwell, D. R. B. & Peterson, A. T. (2002) Effects of sample size on accuracy of species distribution models. Ecological Modelling, 148, 1–13.CrossRefGoogle Scholar
Stoms, D. & Estes, J. E. (1993) A remote sensing research agenda for mapping and monitoring biodiversity. International Journal of Remote Sensing, 14, 1839–1860.CrossRefGoogle Scholar
Stoms, D. M., Davis, F. W., & Cogan, C. B. (1992) Sensitivity of wildlife habitat models to uncertainties in GIS data. Photogrammetric Engineering and Remote Sensing, 58, 843–850.Google Scholar
Store, R. & Kangas, J. (2001) Integrating spatial multi-criteria evaluation and expert knowledge for GIS-based habitat suitability modelling. Landscape and Urban Planning, 55, 79–93.CrossRefGoogle Scholar
Strahler, A. H. (1980) The use of prior probabilities in maximum likelihood classification of remotely sensed data. Remote Sensing of Environment, 10, 135–163.CrossRefGoogle Scholar
Strahler, A. H. (1981) Stratification of natural vegetation for forest and rangeland inventory using Landsat digital imagery and collateral data. International Journal of Remote Sensing, 2, 15–41.CrossRefGoogle Scholar
Strickland, B. K. & Demarais, S. (2006) Effectiveness of the State Soil Geographic Database (STATSGO) to predict white-tailed deer morphometrics in Mississippi. Wildlife Society Bulletin, 34, 1264–1272.CrossRefGoogle Scholar
Suarez-Seoane, S., Osborne, P. E., & Rosema, A. (2004) Can climate data from METEOSAT improve wildlife distribution models?Ecography, 27, 629–636.CrossRefGoogle Scholar
Suarez-Seoane, S., Morena, E. L. G., Prieto, M. B. M., Osborne, P. E., & Juana, E. (2008) Maximum entropy niche-based modelling of seasonal changes in little bustard (Tetrax tetrax) distribution. Ecological Modelling, 219, 17–29.CrossRefGoogle Scholar
Sundermeyer, M. A., Rothschild, B. J., & Robinson, A. R. (2006) Assessment of environmental correlates with the distribution of fish stocks using a spatially explicit model. Ecological Modelling, 197, 116–132.CrossRefGoogle Scholar
Swanson, F. J., Kratz, T. K., Caine, N., & Woodmansee, R. G. (1988) Landform effects on ecosystem patterns and processes. BioScience, 38, 92–98.CrossRefGoogle Scholar
Swets, J. A. (1988) Measures of the accuracy of diagnostic systems. Science, 240, 1285–1293.CrossRefGoogle Scholar
Syphard, A. D. & Franklin, J. (in press-a) Species functional type affects the accuracy of species distribution models for plants in southern California. Journal of Vegetation Science.
Syphard, A. D. & Franklin, J. (in press-b) Differences in spatial predictions among species distribution modeling methods vary with species traits and environmental predictors. Ecography.
Syphard, A. D., Clarke, K. C., & Franklin, J. (2007) Simulating fire frequency and urban growth in southern California coastal shrublands, USA. Landscape Ecology, 22, 431–445.CrossRefGoogle Scholar
Syphard, A. D., Franklin, J., & Keeley, J. E. (2006) Simulating the effects of frequent fire on southern California coastal shrublands. Ecological Applications, 16, 1744–1756.CrossRefGoogle ScholarPubMed
Syphard, A. D., Radeloff, V. C., Keuler, N. S.et al. (2008) Predicting spatial patterns of fire on a southern California landscape. International Journal of Wildland Fire, 17, 602–613.CrossRefGoogle Scholar
Telesco, R. L., van Manen, F. T., Clark, J. D., & Cartwright, M. E. (2007) Identifying sites for elk restoration in Arkansas. Journal of Wildlife Management, 71, 1393–1403.CrossRefGoogle Scholar
Braak, C. J. F. (1987) The analysis of vegetation-environment relationships by canonical correspondence analysis. Vegetatio, 69, 69–77.CrossRefGoogle Scholar
Termansen, M., McClean, C. J., & Preston, C. D. (2006) The use of genetic algorithms and Bayesian classification to model species distributions. Ecological Modelling, 192, 410–424.CrossRefGoogle Scholar
Thatcher, C. A., Manen, F. T., & Clark, J. D. (2006) Identifying suitable sites for Florida panther reintroduction. Journal of Wildlife Management, 70, 752–763.CrossRefGoogle Scholar
Thenkabail, P. S., Enclona, E. A., Ashton, M. S., Legg, C., & De Dieu, M. J. (2004) Hyperion, IKONOS, ALI, and ETM plus sensors in the study of African rainforests. Remote Sensing of Environment, 90, 23–43.CrossRefGoogle Scholar
Theobald, D. M. (2007) Using GIS to generate spatially balanced random survey designs for natural resource applications. Environmental Management, 134–146.CrossRefGoogle ScholarPubMed
Thogmartin, W. E., Sauer, J. R., & Knutson, M. G. (2004) A hierarchical spatial model of avian abundance with application to Cerulean Warblers. Ecological Applications, 14, 1766–1779.CrossRefGoogle Scholar
Thomaes, A., Kervyn, T., & Maes, D. (2008) Applying species distribution modelling for the conservation of the threatened saproxylic Stag Beetle (Lucanus cervus). Biological Conservation, 141, 1400–1410.CrossRefGoogle Scholar
Thomas, C. D., Cameron, A., Green, R. E.et al. (2004) Extinction risk from climate change. Nature, 427, 145–148.CrossRefGoogle ScholarPubMed
Thomas, K., Keeler-Wolf, T., & Franklin, J. (2002) A comparison of fine- and coarse-resolution environmental variables toward predicting vegetation distribution in the Mojave Desert. In Scott, J. M., Heglund, P. J., Morrison, M., Raphael, M., Haufler, J., & Wall, B. (Eds.) Predicting Species Occurrences: Issues of Accuracy and Scale. Covello, CA: Island Press, pp. 133–139.Google Scholar
Thompson, L. M., Manen, F. T., Schlarbaum, S. E., & Depoy, M. (2006) A spatial modeling approach to identify potential Butternut restoration sites in Mammoth Cave National Park. Restoration Ecology, 14, 289–296.CrossRefGoogle Scholar
Thompson, S. K. (1992) Sampling. New York: John Wiley & Sons.Google ScholarPubMed
Thomson, J., Weiblen, G., Thomson, B., Alfaro, S., & Legendre, P. (1996) Untangling multiple factors in spatial distributions: lilies, gophers and rocks. Ecology, 77, 1698–1715.CrossRefGoogle Scholar
Thorn, J. S., Nijman, V., Smith, D., & Nekaris, K. A. I. (2009) Ecological niche modelling as a technique for assessing threats and setting conservation priorities for Asian slow lorises (Primates: Nycticebus). Diversity and Distributions, 15, 289–298.CrossRefGoogle Scholar
Thuiller, W. (2004) Patterns and uncertainties of species range shifts under climate change. Global Change Biology, 10, 2020–2027.CrossRefGoogle Scholar
Thuiller, W. (2007) Biodiversity – climate change and the ecologist. Nature, 448, 550–552.CrossRefGoogle ScholarPubMed
Thuiller, W., Albert, C., Araújo, M. B.et al. (2008) Predicting global change impacts on plant species distributions: future challenges. Perspectives in Plant Ecology Evolution and Systematics, 9, 137–152.CrossRefGoogle Scholar
Thuiller, W., Araújo, M. B., & Lavorel, S. (2003) Generalized models vs. classification tree analysis: Predicting spatial distributions of plant species at different scales. Journal of Vegetation Science, 14, 669–680.CrossRefGoogle Scholar
Thuiller, W., Araújo, M. B., Pearson, R. G., Whittaker, R. J., Brotons, L., & Lavorel, S. (2004a) Biodiversity conservation – uncertainty in predictions of extinction risk. Nature, 430.CrossRefGoogle ScholarPubMed
Thuiller, W., Brotons, L., Araújo, M. B., & Lavorel, S. (2004b) Effects of restricting environmental range of data to project current and future species distributions. Ecography, 27, 165–172.CrossRefGoogle Scholar
Thuiller, W., Lavorel, S., Sykes, M. T., & Araújo, M. B. (2006) Using niche-based modelling to assess the impact of climate change on tree functional diversity in Europe. Diversity and Distributions, 12, 49–60.CrossRefGoogle Scholar
Tilman, D. (1982) Resource Competition and Community Structure. Princeton, New Jersey: Princeton University Press.Google ScholarPubMed
Tobalske, C. (2002) Effects of spatial scale on the predictive ability of habitat models for the Green Woodpecker in Switzerland. In Scott, J. M., Heglund, P. J., Morrison, M. L.et al. (Eds.) Predicting Species Occurrences: Issues of Accuracy and Scale. Covelo, CA: Island Press, pp. 197–204.Google Scholar
Tobler, W. (1979) Cellular geography. In Gale, G. O. S. (Ed.) Philosophy in Geography. Dordrecht: Reidel, pp. 379–389.CrossRefGoogle Scholar
Tognelli, M. F. & Kelt, D. A. (2004) Analysis of determinants of mammalian species richness in South America using spatial autoregressive models. Ecography, 27, 427–436.CrossRefGoogle Scholar
Tomlin, C. D. (1990) Geographic Information Systems and Cartographic Modeling. Englewood Cliffs, NJ: Prentice-Hall Publishers.Google Scholar
Torres, L. G., Read, A. J., & Halpin, P. (2008) Fine-scale habitat modeling of a top marine predator: do prey data improve predictive capacity?Ecological Applications, 18, 1702–1717.CrossRefGoogle ScholarPubMed
Townsend, P. A. & Walsh, S. J. (2001) Remote sensing of forested wetlands: application of multitemporal and multispectral satellite imagery to determine plant community composition and structure in southeastern USA. Plant Ecology, 157, 129–149.CrossRefGoogle Scholar
Traill, L. W. & Bigalke, R. C. (2006) A presence-only habitat suitability model for large grazing African ungulates and its utility for wildlife management. African Journal of Ecology, 45, 347–354.CrossRefGoogle Scholar
Trivedi, M. R., Berry, P. M., Morecroft, M. D., & Dawson, T. P. (2008) Spatial scale affects bioclimate model projections of climate change impacts on mountain plants. Global Change Biology, 14, 1089–1103.CrossRefGoogle Scholar
Tsoar, A., Allouche, O., Steinitz, O., Rotem, D., & Kadmon, R. (2007) A comparative evaluation of presence-only methods for modelling species distribution. Diversity and Distributions, 13, 397–405.CrossRefGoogle Scholar
Tucker, C. J. (1979) Red and infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8, 127–150.CrossRefGoogle Scholar
Tucker, K., Rushton, S. P., Sanderson, R. A., Martin, E. B., & Blaiklock, J. (1997) Modelling bird distributions – a combined GIS and Bayesian rule-based approach. Landscape Ecology, 12, 77–93.CrossRefGoogle Scholar
Tukey, J. W. (1977) Exploratory Data Analysis. Reading, MA: Addison-Wesley Pub. Co.Google Scholar
Turner, J. C., Douglas, C. L., Hallam, C. R., Krausman, P. R., & Ramey, R. R. (2004) Determination of critical habitat for the endangered Nelson's bighorn sheep in southern California. Wildlife Society Bulletin, 32, 427–448.CrossRefGoogle Scholar
Turner, M. G. & Gardner, R. H. (1991) Quantitative Methods in Landscape Ecology: The Analysis and Interpretation of Landscape Heterogeneity, New York, Springer-Verlag.CrossRefGoogle Scholar
Turner, M. G., Gardner, R. H., & O'Neill, R. V. (2001) Landscape Ecology in Theory and Practice. New York: Springer-Verlag.Google Scholar
Turner, W., Spector, S., Gardiner, N., Fladeland, M., Sterling, E., & Steininger, M. (2003) Remote sensing for biodiversity science and conservation. Trends in Ecology & Evolution, 18, 306–314.CrossRefGoogle Scholar
Tyre, A. J., Tenhumberg, B., Field, S. A., Niejalke, D., Parris, K., & Possingham, H. P. (2003) Improving precision and reducing bias in biological surveys: estimating false-negative error rates. Ecological Applications, 13, 1790–1801.CrossRefGoogle Scholar
Underwood, E. C., Klinger, R., & Moore, P. E. (2004) Predicting patterns of non-native plant invasions in Yosemite National Park, California, USA. Diversity and Distributions, 10, 447–459.CrossRefGoogle Scholar
Unitt, P. (2004) San Diego County Bird Atlas: San Diego, California: San Diego Natural History Museum.Google Scholar
Fish, US and ,Wildlife Service (1981) Standards for the development of habitat suitability index models. Government Printing Office, Washington, DC, US Department of the Interior, Fish and Wildlife Service, Division of Ecological Services.
Valavanis, V. D., Georgakarakos, S., Kapantagakis, A., Palialexis, A., & Katara, I. (2004) A GIS environmental modelling approach to essential fish habitat designation. Ecological Modelling, 178, 417–427.CrossRefGoogle Scholar
Vallecillo, S., Brotons, L., & Thuiller, W. (2009) Dangers of predicting bird species distributions in response to land cover changes. Ecological Applications, 19, 538–549.CrossRefGoogle ScholarPubMed
Horne, B. (1983) Density is a misleading indicator of habitat quality. Journal of Wildlife Management, 47, 893–901.CrossRefGoogle Scholar
Manen, F. T., Clark, J. D., Schlarbaum, S. E., Johnson, K., & Taylor, G. (2002) A model to predict the occurrence of surviving butternut trees in the southern Blue Ridge Mountains In Scott, J. M., Heglund, P. J., Morrison, M. L.et al. (Eds.) Predicting Species Occurrences: Issues of Accuracy and Scale. Covelo, CA: Island Press, pp. 491–497.Google Scholar
Niel, K. P. & Austin, M. P. (2007) Predictive vegetation modeling for conservation: impact of error propagation from digital elevation data. Ecological Applications, 17, 266–280.CrossRefGoogle ScholarPubMed
Niel, K. & Laffan, S. W. (2003) Gambling with randomness: the use of pseudo-random number generators in GIS. International Journal of Geographical Information Science, 17, 49–68.CrossRefGoogle Scholar
Niel, K. P., Laffan, S. W., & Lees, B. G. (2004) Effect of error in the DEM on environment variables for predictive vegetation modelling. Journal of Vegetation Science, 15, 747–756.CrossRefGoogle Scholar
Vaughan, I. P. & Ormerod, S. J. (2005) The continuing challenge of testing species distribution models. Journal of Applied Ecology, 42, 720–730.CrossRefGoogle Scholar
Vayssiéres, M. P., Plant, R. E., & Allen-Diaz, B. H. (2000) Classification trees: an alternative non-parametric approach for predicting species distributions. Journal of Vegetation Science, 11, 679–694.CrossRefGoogle Scholar
Vaz, S., Martin, C. S., Eastwood, P. D.et al. (2008) Modelling species distributions using regression quantiles. Journal of Applied Ecology, 45, 204–217.CrossRefGoogle Scholar
Venables, W. M. & Ripley, B. D. (1994) Modern Applied Statistics with S-Plus. New York: Springer-Verlag.CrossRefGoogle Scholar
Venier, L. A. & Pearce, J. L. (2007) Boreal forest landbirds in relation to forest composition, structure, and landscape: implications for forest management. Canadian Journal of Forest Research, 37, 1214–1226.CrossRefGoogle Scholar
Ver Hoef, J. M., Cressie, N., Fisher, R. N., & Case, T. J. (2001) Uncertainty and spatial linear models for ecological data. In Hunsaker, C. T., Goodchild, M. F., Friedl, M. A., & Case, T. J. (Eds.) Spatial Uncertainty in Ecology: Implications for Remote Sensing and GIS Applications. New York: Springer, pp. 214–237.CrossRefGoogle Scholar
Verbyla, D. L. & Litaitis, J. A. (1989) Resampling methods for evaluating classification accuracy of wildlife habitat models. Environmental Management, 13, 783–787.CrossRefGoogle Scholar
Verner, J., Morrison, M. L. & Ralph, C. J. (1986) Wildlife 2000: Modeling Habitat Relationships of Terrestrial Vertebrates. Madison, WI: University of Wisconsin Press.Google Scholar
Vernier, P. R., Schmiegelow, F. K. A., & Cumming, S. G. (2002) Modeling bird abundance from forest inventory data in the boreal mixed-wood forests of Canada. In Scott, J. M., Heglund, P. J., Morrison, M. L.et al. (Eds.) Predicting species Occurrences: Issues of Accuracy and Scale. Covelo, CA: Island Press, pp. 559–572.Google Scholar
Vincent, P. J. & Haworth, J. M. (1983) Poisson regression models of species abundance. Journal of Biogeography, 10, 153–160.CrossRefGoogle Scholar
Virkkala, R., Luoto, M., Heikkinen, R. K., & Leikola, N. (2005) Distribution patterns of boreal marshland birds: modelling the relationships to land cover and climate. Journal of Biogeography, 32, 1957–1970.CrossRefGoogle Scholar
Wade, P. R. (2000) Bayesian methods in conservation biology. Conservation Biology, 14, 1308–1316.CrossRefGoogle Scholar
Wagner, H. H. & Fortin, M. J. (2005) Spatial analysis of landscapes: Concepts and statistics. Ecology, 86, 1975–1987.CrossRefGoogle Scholar
Walker, P. A. (1990) Modelling wildlife distributions using a geographic information system: kangaroos in relation to climate. Journal of Biogeography, 17, 279–289.CrossRefGoogle Scholar
Walker, P. A. & Cocks, K. D. (1991) HABITAT: a procedure for modeling a disjoint environmental envelope for a plant or animal species. Global Ecology & Biogeography Letters, 1, 108–118.CrossRefGoogle Scholar
Walker, P. A., & Moore, D. (1988) SIMPLE: An inductive modelling and mapping tool for spatially-oriented data. International Journal of Geographical Information Systems, 2, 347–363.CrossRefGoogle Scholar
Walther, G. R., Post, E., Convey, P.et al. (2002) Ecological responses to recent climate change. Nature, 416, 389–395.CrossRefGoogle ScholarPubMed
Wang, Q., Tenhunen, J. D., Schmidt, M. G., Kolcun, O., Droesler, M., & Reichstein, M. (2006) Estimation of total, direct and diffuse PAR under clear skies in complex alpine terrain of the National Patk Berchtesgaden, Germany. Ecological Modelling, 196, 149–162.CrossRefGoogle Scholar
Ward, D. F. (2007) Modelling the potential geographic distribution of invasive ant species in New Zealand. Biological Invasions, 9, 723–735.CrossRefGoogle Scholar
Waring, R. H., Coops, N. C., Fan, W., & Nightingale, J. M. (2006) MODIS enhanced vegetation index predicts tree species richness across forested ecoregions in the contiguous USA. Remote Sensing of Environment, 103, 218–226.CrossRefGoogle Scholar
Warren, T. L., Betts, M. G., Diamond, A. W., & Forbes, G. J. (2005) The influence of local habitat and landscape composition on cavity-nesting birds in a forested mosaic. Forest Ecology and Management, 214, 331–343.CrossRefGoogle Scholar
Waser, L. T. & Schwarz, M. (2006) Comparison of large-area land cover products with national forest inventories and CORINE land cover in the European Alps. International Journal of Applied Earth Observation and Geoinformation, 8, 196–207.CrossRefGoogle Scholar
Waser, L. T., Stofer, S., Schwarz, M., Kuechler, M., Ivits, E., & Scheidegger, C. (2004) Prediction of biodiversity – regression of lichen species richness on remote sensing data. Community Ecology, 5, 121–133.CrossRefGoogle Scholar
Watrous, K. S., Donovan, T. M., Mickey, R. M., Darling, S. R., Hicks, A. C., & Oettingen, S. L. (2006) Predicting minimum habitat characteristics for the Indiana bat in the Champlain Valley. Journal of Wildlife Management, 70, 1228–1237.CrossRefGoogle Scholar
Webb, T. (1992) Past changes in vegetation and climate: lessons for the future. In Peters, R. L. & Lovejoy, T. E. (Eds.) Global Warming and Biological Diversity. New Haven, CT: Yale University Press.Google Scholar
Weibel, R. & Heller, M. (1991) Digital terrain modeling. In Maguire, D. J., Goodchild, M. F., & Rhind, D. W. (Eds.) Geographic Information Systems. Harlow, UK: Longman, pp. 269–297.Google Scholar
Weins, J. A. (1989) Spatial scale in ecology. Functional Ecology, 3, 311–332.Google Scholar
Wessels, K. J. & van Jaarsveld, A. S. (1998) An evaluation of the gradsect biological survey method. Biodiversity and Conservation, 7, 1093–1121.CrossRefGoogle Scholar
Whaley, S. D., Burd, J. J., & Robertson, B. A. (2007) Using estuarine landscape structure to model distribution patterns in nekton communities and in juveniles of fishery species. Marine Ecology-Progress Series, 330, 83–99.CrossRefGoogle Scholar
Whittaker, R. H. (1956) Vegetation of the Great Smoky Mountains. Ecological Monographs, 26, 1–80.CrossRefGoogle Scholar
Whittaker, R. H. (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs, 30, 279–338.CrossRefGoogle Scholar
Whittaker, R. H. (1965) Dominance and diversity in land plant communities. Science, 147, 250–260.CrossRefGoogle ScholarPubMed
Whittaker, R. H. (1967) Gradient analysis of vegetation. Biological Review, 42, 207–264.CrossRefGoogle ScholarPubMed
Whittaker, R. H. (1970) Communities and Ecosystems. London: The Macmillan Company.Google Scholar
Whittaker, R. H., Levin, S. A., & Root, R. B. (1973) Niche, habitat and ecotope. The American Naturalist, 107, 321–338.CrossRefGoogle Scholar
Wiegland, C. L., Richardson, A. J., & Nixon, P. R. (1986) Spectral components analysis: a bridge between spectral observations and agrometeorological crop models. IEEE Transactions on Geoscience and Remote Sensing, GE-24, 83–89.CrossRefGoogle Scholar
Wiens, J. J. (2004) Speciation and ecology revisited: phylogenetic niche conservatism and the origin of species. Evolution, 58, 193–197.CrossRefGoogle ScholarPubMed
Wiens, J. J. & Graham, C. H. (2005) Niche conservatism: integrating evolution, ecology, and conservation biology. Annual Review of Ecology Evolution and Systematics, 36, 519–539.CrossRefGoogle Scholar
Wilby, R. L. & Schimel, D. S. (1999) Scales of interaction in eco-hydrological relations. In Baird, A. J. & Wilby, R. L. (Eds.) Eco-Hydrology: Plants And Water in Terrestrial and Aquatic Environments. London: Routledge, pp. 39–77.Google Scholar
Williams, N. S. G., Hahs, A. K., & Morgan, J. W. (2008) A dispersal-constrained habitat suitability model for predicting invasion of alpine vegetation. Ecological Applications, 18, 347–359.CrossRefGoogle ScholarPubMed
Wilson, J. & Gallant, J. (2000) Terrain Analysis: Principles and Applications. New York: John Wiley & Sons.Google Scholar
Wilson, J. P., Inskeep, W. P., Wraith, J. M., & Snyder, R. D. (1996) GIS-based solute transport modeling applications: Scale effects of soil and climate data input. Journal of Environmental Quality, 25, 445–453.CrossRefGoogle Scholar
Wilson, K. A., Westphal, M. I., Possingham, H. P., & Elith, J. (2005) Sensitivity of conservation planning to different approaches to using predicted species distribution data. Biological Conservation, 122, 99–112.CrossRefGoogle Scholar
Wintle, B. A. & Bardos, D. C. (2006) Modeling species-habitat relationships with spatially autocorrelated observation data. Ecological Applications, 16, 1945–1958.CrossRefGoogle ScholarPubMed
Wintle, B. A., Elith, J., & Potts, J. M. (2005) Fauna habitat modelling and mapping: a review and case study in the Lower Hunter Central Coast region of NSW. Austral Ecology, 30, 719–738.CrossRefGoogle Scholar
Wintle, B. A., McCarthy, M. A., Parris, K. M., & Burgman, M. A. (2004) Precision and bias of methods for estimating point survey detection probabilities. Ecological Applications, 14, 703–712.CrossRefGoogle Scholar
Wintle, B. A., McCarthy, M. A., Volinsky, C. T., & Kavanagh, R. P. (2003) The use of Bayesian model averaging to better represent uncertainty in ecological models. Conservation Biology, 17, 1579–1590.CrossRefGoogle Scholar
Wisz, M. S., Dendoncker, N., Madsen, J.et al. (2008a) Modelling pink-footed goose (Anser brachyrhynchus) wintering distributions for the year 2050: potential effects of land-use change in Europe. Diversity and Distributions, 14, 721–731.CrossRefGoogle Scholar
Wisz, M. S., Hijmans, R. J., Li, J., Peterson, A. T., Graham, C. H., & Guisan, A. (2008b) Effect of sample size on the performance of species distribution models. Diversity and Distributions 14, 763–773.CrossRefGoogle Scholar
Wollan, A. K., Bakkestuen, V., Kauserud, H., Gulden, G., & Halvorsen, R. (2008) Modelling and predicting fungal distribution patterns using herbarium data. Journal of Biogeography, 35, 2298–2310.CrossRefGoogle Scholar
Wolter, P. T., Mladenoff, D. J., Host, G. E., & Crow, T. R. (1995) Improved forest classification in the Northern Lake States using multi-temporal Landsat imagery. Photogrammetric Engineering and Remote Sensing, 61, 1129–1143.Google Scholar
Wood, S. N. (2006) Generalized Additive Models: An Introduction with R. New York: CRC Press.Google Scholar
Woodward, F. I. (1987) Climate and Plant Distribution. Cambridge, UK: Cambridge University Press.Google Scholar
Woodward, F. I. & Williams, B. G. (1987) Climate and plant distribution at global and local scales. Vegetatio, 69, 189–197.CrossRefGoogle Scholar
Wright, D. J. (1999) Getting to the bottom of it: Tools, techniques, and discoveries of deep ocean geography. Professional Geographer, 51, 426–439.CrossRefGoogle Scholar
Wright, D. J. & Goodchild, M. F. (1997) Data from the deep: Implications for the GIS community. International Journal of Geographical Information Science, 11, 523–528.CrossRefGoogle Scholar
Wu, H. & Huffer, F. W. (1997) Modelling the distribution of plant species using the autologistic regression model. Environmental and Ecological Statistics, 4, 49–64.CrossRefGoogle Scholar
Wu, X. B. & Smeins, F. E. (2000) Multiple-scale habitat modeling approach for rare plant conservation. Landscape and Urban Planning, 51, 11–28.CrossRefGoogle Scholar
Wulder, M. (1998) Optical remote-sensing techniques for the assessment of forest inventory and biophysical parameters. Progress in Physical Geography, 22, 449–476.CrossRefGoogle Scholar
Wulder, M. A. & Franklin, S. E. (Eds.) (2003) Remote Sensing of Forest Environments: Concepts and Case Studies. Boston: Kluwer Academic Publishers.CrossRef
Wulder, M. A., Hall, R. J., Coops, N. C., & Franklin, S. E. (2004) High spatial resolution remotely sensed data for ecosystem characterization. Bioscience, 54, 511–521.CrossRefGoogle Scholar
Xu, C. G., Gertner, G. Z., & Scheller, R. M. (2007) Potential effects of interaction between CO2 and temperature on forest landscape response to global warming. Global Change Biology, 13, 1469–1483.CrossRefGoogle Scholar
Yang, X., Skidmore, A. K., Melick, D. R., Zhou, Z., & Xu, J. (2006) Mapping non-wood forest product (matsutake mushrooms) using logistic regression and a GIS expert system. Ecological Modelling, 198, 208–218.CrossRefGoogle Scholar
Yee, T. W. & MacKenzie, M. (2002) Vector generalized additive models in plant ecology. Ecological Modelling, 157, 141–156.CrossRefGoogle Scholar
Yee, T. W. & Mitchell, N. D. (1991) Generalized additive models in plant ecology. Journal of Vegetation Science, 2, 587–602.CrossRefGoogle Scholar
Yesson, C. & Culham, A. (2006) Phyloclimatic modeling: combining phylogenetics and bioclimatic modeling. Systematic Biology, 55, 785–802.CrossRefGoogle ScholarPubMed
Zaniewski, A. E., Lehmann, A., & Overton, J. M. (2002) Predicting species spatial distributions using presence-only data: a case study of native New Zealand ferns. Ecological Modelling, 157, 261–280.CrossRefGoogle Scholar
Zeilhofer, P., dos Santos, E. S., Ribeiro, A. L. M., Miyazaki, R. D., & Dos Santos, M. A. (2007) Habitat suitability mapping of Anopheles darlingi in the surroundings of the Manso hydropower plant reservoir, Mato Grosso, Central Brazil. International Journal of Health Geography, 6, 7.CrossRefGoogle ScholarPubMed
Zhang, L., Ma, Z., & Guo, L. (2008) Spatially assessing model errors of four regression techniques for three types of forest stands. Forestry, 81, 209–225.CrossRefGoogle Scholar
Zhao, C. Y., Nan, Z. R., Cheng, G. D., Zhang, J. H., & Feng, Z. D. (2006) GIS-assisted modelling of the spatial distribution of Qinghai spruce (Picea crassifolia) in the Qilian Mountains, northwestern China based on biophysical parameters. Ecological Modelling, 191, 487–500.CrossRefGoogle Scholar
Zielinski, W. J., Truex, R. L., Dunk, J. R., & Gaman, T. (2006) Using forest inventory data to assess fisher resting habitat suitability in California. Ecological Applications, 16, 1010–1025.CrossRefGoogle ScholarPubMed
Zimmermann, N. E., Edwards, T. C., Moisen, G. G., Frescino, T. S., & Blackard, J. A. (2007) Remote sensing-based predictors improve distribution models of rare, early successional and broadleaf tree species in Utah. Journal of Applied Ecology, 44, 1057–1067.CrossRefGoogle ScholarPubMed
Zinner, D., Pelaez, F., & Torkler, F. (2002) Distribution and habitat of grivet monkeys (Cercopithecus aethiops aethiops) in eastern and central Eritrea. African Journal of Ecology, 40, 151–158.CrossRefGoogle Scholar
Zobel, M. (1992) Plant species coexistence – the role of historical, evolutionary and ecological factors. Oikos, 65, 314–320.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Janet Franklin, San Diego State University
  • Book: Mapping Species Distributions
  • Online publication: 05 August 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511810602.016
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Janet Franklin, San Diego State University
  • Book: Mapping Species Distributions
  • Online publication: 05 August 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511810602.016
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Janet Franklin, San Diego State University
  • Book: Mapping Species Distributions
  • Online publication: 05 August 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511810602.016
Available formats
×