Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-17T18:11:37.357Z Has data issue: false hasContentIssue false

Medications for Motor/Neurologic Adverse Effects

from Part II - Medication Reference Tables

Published online by Cambridge University Press:  19 October 2021

Michael Cummings
Affiliation:
University of California, Los Angeles
Stephen Stahl
Affiliation:
University of California, San Diego
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Blanchet, P. J., Metman, L. V., Chase, T. N. (2003). Renaissance of amantadine in the treatment of Parkinson’s disease. Adv Neurol, 91, 251257.Google ScholarPubMed
da Silva-Junior, F. P., Braga-Neto, P., Sueli Monte, F., et al. (2005). Amantadine reduces the duration of levodopa-induced dyskinesia: a randomized, double-blind, placebo-controlled study. Parkinsonism Relat Disord, 11, 449452.CrossRefGoogle ScholarPubMed
Citrome, L. (2016). Emerging pharmacological therapies in schizophrenia: what’s new, what’s different, what’s next? CNS Spectr, 21, 112.CrossRefGoogle Scholar
Duwe, S. (2017). Influenza viruses – antiviral therapy and resistance. GMS Infect Dis, 5, Doc04.Google ScholarPubMed
Yang, T. T., Wang, L., Deng, X. Y., et al. (2017). Pharmacological treatments for fatigue in patients with multiple sclerosis: a systematic review and meta-analysis. J Neurol Sci, 380, 256261.CrossRefGoogle ScholarPubMed
Zheng, W., Wang, S., Ungvari, G. S., et al. (2017). Amantadine for antipsychotic-related weight gain: meta-analysis of randomized placebo-controlled trials. J Clin Psychopharmacol, 37, 341346.CrossRefGoogle ScholarPubMed
Elkurd, M. T., Bahroo, L. B., Pahwa, R. (2018). The role of extended-release amantadine for the treatment of dyskinesia in Parkinson’s disease patients. Neurodegener Dis Manag, 8, 7380.CrossRefGoogle ScholarPubMed
Hirjak, D., Kubera, K. M., Bienentreu, S., et al. (2019). Antipsychotic-induced motor symptoms in schizophrenic psychoses – Part 1: dystonia, akathisia und parkinsonism. Nervenarzt, 90, 111.CrossRefGoogle ScholarPubMed
Deleu, D., Northway, M. G., Hanssens, Y. (2002). Clinical pharmacokinetic and pharmacodynamic properties of drugs used in the treatment of Parkinson’s disease. Clin Pharmacokinet, 41, 261309.CrossRefGoogle ScholarPubMed
Musharrafieh, R., Ma, C., Wang, J. (2020). Discovery of M2 channel blockers targeting the drug-resistant double mutants M2-S31 N/L26I and M2-S31 N/V27A from the influenza A viruses. Eur J Pharm Sci, 141, 105124.CrossRefGoogle Scholar
PubChem. (2020). Amantadine, CID = 2130. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/amantadine (last accessed November 27, 2020).Google Scholar
Paik, J., Keam, S. J. (2018). Amantadine extended-release (GOCOVRI): a review in levodopa-induced dyskinesia in Parkinson’s disease. CNS Drugs, 32, 797806.CrossRefGoogle ScholarPubMed
Mazzucchi, S., Frosini, D., Bonuccelli, U., et al. (2015). Current treatment and future prospects of dopa-induced dyskinesias. Drugs Today (Barc), 51, 315329.CrossRefGoogle ScholarPubMed
Lin, C. C., Ondo, W. G. (2018). Non-VMAT2 inhibitor treatments for the treatment of tardive dyskinesia. J Neurol Sci, 389, 4854.CrossRefGoogle ScholarPubMed
Pahwa, R., Tanner, C. M., Hauser, R. A., et al. (2015). Amantadine extended release for levodopa-induced dyskinesia in Parkinson’s disease (EASED Study). Mov Disord, 30, 788795.CrossRefGoogle ScholarPubMed
Faulkner, M. A. (2014). Safety overview of FDA-approved medications for the treatment of the motor symptoms of Parkinson’s disease. Expert Opin Drug Saf, 13, 10551069.CrossRefGoogle ScholarPubMed
Dubaz, O. M., Wu, S., Cubillos, F., et al. (2019). Changes in prescribing practices of dopaminergic medications in individuals with Parkinson’s disease by expert care centers from 2010 to 2017: The Parkinson’s Foundation Quality Improvement Initiative. Mov Disord Clin Pract, 6, 687692.CrossRefGoogle ScholarPubMed
Aoki, F. Y., Sitar, D. S. (1988). Clinical pharmacokinetics of amantadine hydrochloride. Clin Pharmacokinet, 14, 3551.CrossRefGoogle ScholarPubMed
Perez-Lloret, S., Rascol, O. (2018). Efficacy and safety of amantadine for the treatment of L-DOPA-induced dyskinesia. J Neural Transm (Vienna), 125, 12371250.CrossRefGoogle ScholarPubMed

References

Szafranski, T., Gmurkowski, K. (1999). Clozapine withdrawal. A review. Psychiatr Pol, 33, 5167.Google ScholarPubMed
Faulkner, M. A. (2014). Safety overview of FDA-approved medications for the treatment of the motor symptoms of Parkinson’s disease. Expert Opin Drug Saf, 13, 10551069.CrossRefGoogle ScholarPubMed
Thenganatt, M. A., Jankovic, J. (2014). Treatment of dystonia. Neurotherapeutics, 11, 139152.CrossRefGoogle ScholarPubMed
Sridharan, K., Sivaramakrishnan, G. (2018). Pharmacological interventions for treating sialorrhea associated with neurological disorders: a mixed treatment network meta-analysis of randomized controlled trials. J Clin Neurosci, 51, 1217.CrossRefGoogle ScholarPubMed
Orayj, K., Lane, E. (2019). Patterns and determinants of prescribing for Parkinson’s disease: a systematic literature review. Parkinsons Dis, 2019, 9237181.Google ScholarPubMed
PubChem. (2020). Benztropine, CID = 238053. Retrieved April 21, 2020.Google Scholar
Modell, J. G., Tandon, R., Beresford, T. P. (1989). Dopaminergic activity of the antimuscarinic antiparkinsonian agents. J Clin Psychopharmacol, 9, 347351.CrossRefGoogle ScholarPubMed
Deleu, D., Northway, M. G., Hanssens, Y. (2002). Clinical pharmacokinetic and pharmacodynamic properties of drugs used in the treatment of Parkinson’s disease. Clin Pharmacokinet, 41, 261309.CrossRefGoogle ScholarPubMed
Green, A. J. (2014). The best basic science paper in MS in 2013: antimuscarinic therapies in remyelination. Mult Scler, 20, 18141816.CrossRefGoogle ScholarPubMed
Robottom, B. J., Weiner, W. J., Factor, S. A. (2011). Movement disorders emergencies. Part 1: Hypokinetic disorders. Arch Neurol, 68, 567572.Google ScholarPubMed
Rajan, S., Kaas, B., Moukheiber, E. (2019). Movement disorders emergencies. Semin Neurol, 39, 125136.CrossRefGoogle ScholarPubMed
Mazzucchi, S., Frosini, D., Bonuccelli, U., et al. (2015). Current treatment and future prospects of dopa-induced dyskinesias. Drugs Today (Barc), 51, 315329.CrossRefGoogle ScholarPubMed
Barbe, A. G. (2018). Medication-induced xerostomia and hyposalivation in the elderly: culprits, complications, and management. Drugs Aging, 35, 877885.CrossRefGoogle ScholarPubMed
Andre, L., Gallini, A., Montastruc, F., et al. (2019). Association between anticholinergic (atropinic) drug exposure and cognitive function in longitudinal studies among individuals over 50 years old: a systematic review. Eur J Clin Pharmacol, 75, 16311644.CrossRefGoogle ScholarPubMed
Ogino, S., Miyamoto, S., Miyake, N., et al. (2014). Benefits and limits of anticholinergic use in schizophrenia: focusing on its effect on cognitive function. Psychiatry Clin Neurosci, 68, 3749.CrossRefGoogle ScholarPubMed
Kopala, L. C. (1996). Spontaneous and drug-induced movement disorders in schizophrenia. Acta Psychiatr Scand Suppl, 389, 1217.CrossRefGoogle ScholarPubMed
Gao, K., Kemp, D. E., Ganocy, S. J., et al. (2008). Antipsychotic-induced extrapyramidal side effects in bipolar disorder and schizophrenia: a systematic review. J Clin Psychopharmacol, 28, 203209.CrossRefGoogle ScholarPubMed
Lupu, A. M., Clinebell, K., Gannon, J. M., et al. (2017). Reducing anticholinergic medication burden in patients with psychotic or bipolar disorders. J Clin Psychiatry, 78, e1270e1275.CrossRefGoogle ScholarPubMed
Close, S. P., Elliott, P. J., Hayes, A. G., et al. (1990). Effects of classical and novel agents in a MPTP-induced reversible model of Parkinson’s disease. Psychopharmacology (Berl), 102, 295300.CrossRefGoogle Scholar
Meyer, S., Meyer, O., Kressig, R. W. (2010). Drug-induced delirium. Ther Umsch, 67, 7983.CrossRefGoogle ScholarPubMed
Onder, G., Liperoti, R., Foebel, A., et al. (2013). Polypharmacy and mortality among nursing home residents with advanced cognitive impairment: results from the SHELTER study. J Am Med Dir Assoc, 14, 450 e712.CrossRefGoogle ScholarPubMed
Robles Bayon, A., Gude Sampedro, F. (2014). Inappropriate treatments for patients with cognitive decline. Neurologia, 29, 523532.Google ScholarPubMed
Ueki, T., Nakashima, M. (2019). Relationship between constipation and medication. J UOEH, 41, 145151.CrossRefGoogle ScholarPubMed

References

Szafranski, T., Gmurkowski, K. (1999). Clozapine withdrawal. A review. Psychiatr Pol, 33, 5167.Google ScholarPubMed
Faulkner, M. A. (2014). Safety overview of FDA-approved medications for the treatment of the motor symptoms of Parkinson’s disease. Expert Opin Drug Saf, 13, 10551069.CrossRefGoogle ScholarPubMed
Thenganatt, M. A., Jankovic, J. (2014). Treatment of dystonia. Neurotherapeutics, 11, 139152.CrossRefGoogle ScholarPubMed
Stahl, S. M. (2017). Diphenhydramine. In Stahl’s Essential Psychopharmacology Prescriber’s Guide (eds.). Cambridge: Cambridge University Press, pp. 217219.Google Scholar
Orayj, K., Lane, E. (2019). Patterns and determinants of prescribing for Parkinson’s disease: a systematic literature review. Parkinsons Dis, 2019, 9237181.Google ScholarPubMed
PubChem. (2020). Trihexyphenidyl, CID = 5572. Retrieved April 21, 2020.Google Scholar
Shirley, D. W., Sterrett, J., Haga, N., et al. (2020). The therapeutic versatility of antihistamines: a comprehensive review. Nurse Pract, 45, 821.CrossRefGoogle ScholarPubMed
Modell, J. G., Tandon, R., Beresford, T. P. (1989). Dopaminergic activity of the antimuscarinic antiparkinsonian agents. J Clin Psychopharmacol, 9, 347351.CrossRefGoogle ScholarPubMed
Deleu, D., Northway, M. G., Hanssens, Y. (2002). Clinical pharmacokinetic and pharmacodynamic properties of drugs used in the treatment of Parkinson’s disease. Clin Pharmacokinet, 41, 261309.CrossRefGoogle ScholarPubMed
Fresnius-Kabi USA. (2019). Diphenhydramine Package Insert. Lake Zurich, Illinois.Google Scholar
Robottom, B. J., Weiner, W. J., Factor, S. A. (2011). Movement disorders emergencies. Part 1: hypokinetic disorders. Arch Neurol, 68, 567572.Google ScholarPubMed
Rajan, S., Kaas, B., Moukheiber, E. (2019). Movement disorders emergencies. Semin Neurol, 39, 125136.CrossRefGoogle ScholarPubMed
Mazzucchi, S., Frosini, D., Bonuccelli, U., et al. (2015). Current treatment and future prospects of dopa-induced dyskinesias. Drugs Today (Barc), 51, 315329.CrossRefGoogle ScholarPubMed
Barbe, A. G. (2018). Medication-induced xerostomia and hyposalivation in the elderly: culprits, complications, and management. Drugs Aging, 35, 877885.CrossRefGoogle ScholarPubMed
Andre, L., Gallini, A., Montastruc, F., et al. (2019). Association between anticholinergic (atropinic) drug exposure and cognitive function in longitudinal studies among individuals over 50 years old: a systematic review. Eur J Clin Pharmacol, 75, 16311644.CrossRefGoogle ScholarPubMed
Ogino, S., Miyamoto, S., Miyake, N., et al. (2014). Benefits and limits of anticholinergic use in schizophrenia: focusing on its effect on cognitive function. Psychiatry Clin Neurosci, 68, 3749.CrossRefGoogle ScholarPubMed
Kopala, L. C. (1996). Spontaneous and drug-induced movement disorders in schizophrenia. Acta Psychiatr Scand Suppl, 389, 1217.CrossRefGoogle ScholarPubMed
Gao, K., Kemp, D. E., Ganocy, S. J., et al. (2008). Antipsychotic-induced extrapyramidal side effects in bipolar disorder and schizophrenia: a systematic review. J Clin Psychopharmacol, 28, 203209.CrossRefGoogle ScholarPubMed
Lupu, A. M., Clinebell, K., Gannon, J. M., et al. (2017). Reducing anticholinergic medication burden in patients with psychotic or bipolar disorders. J Clin Psychiatry, 78, e1270e1275.CrossRefGoogle ScholarPubMed
Paton, D. M., Webster, D. R. (1985). Clinical pharmacokinetics of H1-receptor antagonists (the antihistamines). Clin Pharmacokinet, 10, 477497.CrossRefGoogle ScholarPubMed
Close, S. P., Elliott, P. J., Hayes, A. G., et al. (1990). Effects of classical and novel agents in a MPTP-induced reversible model of Parkinson’s disease. Psychopharmacology (Berl), 102, 295300.CrossRefGoogle Scholar
Meyer, S., Meyer, O., Kressig, R. W. (2010). Drug-induced delirium. Ther Umsch, 67, 7983.CrossRefGoogle ScholarPubMed
Onder, G., Liperoti, R., Foebel, A., et al. (2013). Polypharmacy and mortality among nursing home residents with advanced cognitive impairment: results from the SHELTER study. J Am Med Dir Assoc, 14(6), 450 e712.CrossRefGoogle ScholarPubMed
Robles Bayon, A., Gude Sampedro, F. (2014). Inappropriate treatments for patients with cognitive decline. Neurologia, 29, 523532.Google ScholarPubMed
Ueki, T., Nakashima, M. (2019). Relationship between constipation and medication. J UOEH, 41, 145151.CrossRefGoogle ScholarPubMed

References

Szafranski, T., Gmurkowski, K. (1999). Clozapine withdrawal. A review. Psychiatr Pol, 33, 5167.Google ScholarPubMed
Faulkner, M. A. (2014). Safety overview of FDA-approved medications for the treatment of the motor symptoms of Parkinson’s disease. Expert Opin Drug Saf, 13, 10551069.CrossRefGoogle ScholarPubMed
Thenganatt, M. A., Jankovic, J. (2014). Treatment of dystonia. Neurotherapeutics, 11, 139152.CrossRefGoogle ScholarPubMed
Orayj, K., Lane, E. (2019). Patterns and determinants of prescribing for Parkinson’s disease: a systematic literature review. Parkinsons Dis, 2019, 9237181.Google ScholarPubMed
PubChem. (2020). Trihexyphenidyl, CID = 5572. Retrieved April 21, 2020.Google Scholar
Modell, J. G., Tandon, R., Beresford, T. P. (1989). Dopaminergic activity of the antimuscarinic antiparkinsonian agents. J Clin Psychopharmacol, 9, 347351.CrossRefGoogle ScholarPubMed
Deleu, D., Northway, M. G., Hanssens, Y. (2002). Clinical pharmacokinetic and pharmacodynamic properties of drugs used in the treatment of Parkinson’s disease. Clin Pharmacokinet, 41, 261309.CrossRefGoogle ScholarPubMed
Robottom, B. J., Weiner, W. J., Factor, S. A. (2011). Movement disorders emergencies. Part 1: hypokinetic disorders. Arch Neurol, 68, 567572.Google ScholarPubMed
Rajan, S., Kaas, B., Moukheiber, E. (2019). Movement disorders emergencies. Semin Neurol, 39, 125136.CrossRefGoogle ScholarPubMed
Mazzucchi, S., Frosini, D., Bonuccelli, U., et al. (2015). Current treatment and future prospects of dopa-induced dyskinesias. Drugs Today (Barc), 51, 315329.CrossRefGoogle ScholarPubMed
Barbe, A. G. (2018). Medication-induced xerostomia and hyposalivation in the elderly: culprits, complications, and management. Drugs Aging, 35, 877885.CrossRefGoogle ScholarPubMed
Andre, L., Gallini, A., Montastruc, F., et al. (2019). Association between anticholinergic (atropinic) drug exposure and cognitive function in longitudinal studies among individuals over 50 years old: a systematic review. Eur J Clin Pharmacol, 75, 16311644.CrossRefGoogle ScholarPubMed
Ogino, S., Miyamoto, S., Miyake, N., et al. (2014). Benefits and limits of anticholinergic use in schizophrenia: focusing on its effect on cognitive function. Psychiatry Clin Neurosci, 68, 3749.CrossRefGoogle ScholarPubMed
Kopala, L. C. (1996). Spontaneous and drug-induced movement disorders in schizophrenia. Acta Psychiatr Scand Suppl, 389, 1217.CrossRefGoogle ScholarPubMed
Gao, K., Kemp, D. E., Ganocy, S. J., et al. (2008). Antipsychotic-induced extrapyramidal side effects in bipolar disorder and schizophrenia: a systematic review. J Clin Psychopharmacol, 28, 203209.CrossRefGoogle ScholarPubMed
Lupu, A. M., Clinebell, K., Gannon, J. M., et al. (2017). Reducing anticholinergic medication burden in patients with psychotic or bipolar disorders. J Clin Psychiatry, 78, e1270e1275.CrossRefGoogle ScholarPubMed
Close, S. P., Elliott, P. J., Hayes, A. G., et al. (1990). Effects of classical and novel agents in a MPTP-induced reversible model of Parkinson’s disease. Psychopharmacology (Berl), 102, 295300.CrossRefGoogle Scholar
Meyer, S., Meyer, O., Kressig, R. W. (2010). Drug-induced delirium. Ther Umsch, 67, 7983.CrossRefGoogle ScholarPubMed
Onder, G., Liperoti, R., Foebel, A., et al. (2013). Polypharmacy and mortality among nursing home residents with advanced cognitive impairment: results from the SHELTER study. J Am Med Dir Assoc, 14(6), 450 e712.Google Scholar
Robles Bayon, A., Gude Sampedro, F. (2014). Inappropriate treatments for patients with cognitive decline. Neurologia, 29, 523532.Google ScholarPubMed
Ueki, T., Nakashima, M. (2019). Relationship between constipation and medication. J UOEH, 41, 145151.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×