Skip to main content Accessibility help
  • Print publication year: 2013
  • Online publication date: October 2013

Chapter 7 - Networks and resting state in Parkinson’s disease

Related content

Powered by UNSILO


1. OgawaS, LeeTM, KayAR, TankDW. Brain magnetic-resonance-imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A. 1990;87(24):9868–72.
2. FristonKJ, FrithCD, FrackowiakRSJ. Principal component analysis learning algorithms – a neurobiological analysis. Proc Biol Sci. 1993;254(1339):47–54.
3. BiswalB, YetkinFZ, HaughtonVM, HydeJS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med. 1995;34(4):537–41.
4. RosazzaC, MinatiL.Resting-state brain networks: literature review and clinical applications. Neurol Sci. 2011;32(5):773–85.
5. De LucaM, SmithS, De StefanoN, FedericoA, MatthewsPM. Blood oxygenation level dependent contrast resting state networks are relevant to functional activity in the neocortical sensorimotor system. Exp Brain Res. 2005;167(4):587–94.
6. CordesD, HaughtonVM, ArfanakisK, et al. Mapping functionally related regions of brain with functional connectivity MR imaging. Am J Neuroradiol. 2000;21(9):1636–44.
7. HabasC, KamdarN, NguyenD, et al. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009;29(26):8586–94.
8. ZhangDY, SnyderAZ, FoxMD, et al. Intrinsic functional relations between human cerebral cortex and thalamus. J Neurophysiol. 2008;100(4):1740–8.
9. ChangC, CunninghamJP, GloverGH. Influence of heart rate on the BOLD signal: the cardiac response function. Neuroimage. 2009;44(3):857–69.
10. BirnRM, SmithMA, JonesTB, BandettiniPA. The respiration response function: the temporal dynamics of fMRI signal fluctuations related to changes in respiration. Neuroimage. 2008;40(2):644–54.
11. GreiciusMD, SupekarK, MenonV, DoughertyRF. Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb Cortex. 2009;19(1):72–8.
12. Le BihanD.Looking into the functional architecture of the brain with diffusion MRI. Nat Rev Neurosci. 2003;4(6):469–80.
13. DamoiseauxJS, GreiciusMD. Greater than the sum of its parts: a review of studies combining structural connectivity and resting-state functional connectivity. Brain Struct Funct. 2009;213(6):525–33.
14. RaichleME, MacLeodAM, SnyderAZ, et al. A default mode of brain function. Proc Natl Acad Sci U S A. 2001;98(2):676–82.
15. BucknerRL. Human functional connectivity: new tools, unresolved questions. Proc Natl Acad Sci U S A. 2010;107(24):10769–70.
16. DamoiseauxJS, RomboutsSARB, BarkhofF, et al. Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A. 2006;103(37):13848–53.
17. GreiciusMD, SrivastavaG, ReissAL, MenonV.Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci U S A. 2004;101(13):4637–42.
18. GreiciusMD, FloresBH, MenonV, et al. Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol Psychiatry. 2007;62(5):429–37.
19. MohammadiB, KolleweK, SamiiA, et al. Changes of resting state brain networks in amyotrophic lateral sclerosis. Exp Neurol. 2009;217(1):147–53.
20. BonavitaS, GalloA, SaccoR, et al. Distributed changes in default-mode resting-state connectivity in multiple sclerosis. Mult Scler. 2011;17(4):411–22.
21. RaichleME, SnyderAZ. A default mode of brain function: a brief history of an evolving idea. Neuroimage. 2007;37(4):1083–90; discussion 1097–9.
22. EspositoF, AragriA, LatorreV, et al. Does the default-mode functional connectivity of the brain correlate with working-memory performances?Arch Ital Biol. 2009;147(1–2):11–20.
23. GreiciusMD, KrasnowB, ReissAL, MenonV.Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A. 2003;100(1):253–8.
24. HampsonM, DriesenNR, SkudlarskiP, GoreJC, ConstableRT. Brain connectivity related to working memory performance. J Neurosci. 2006;26(51):13338–43.
25. CavannaAE, TrimbleMR. The precuneus: a review of its functional anatomy and behavioural correlates. Brain. 2006;129:564–83.
26. BucknerRL, Andrews-HannaJR, SchacterDL. The brain’s default network – anatomy, function, and relevance to disease. Ann N Y Acad Sci 2008;1124:1–38.
27. FranssonP, MarrelecG.The precuneus/posterior cingulate cortex plays a pivotal role in the default mode network: evidence from a partial correlation network analysis. Neuroimage. 2008;42(3):1178–84.
28. DamoiseauxJS, BeckmannCF, ArigitaEJS, BarkhofF, ScheltensP, StamCJ, et al. Reduced resting-state brain activity in the “default network” in normal aging. Cereb Cortex. 2008;18(8):1856–64.
29. FoxMD, CorbettaM, SnyderAZ, VincentJL, RaichleME. Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc Natl Acad Sci U S A. 2006;103(26):10046–51.
30. StevensWD, BucknerRL, SchacterDL. Correlated low-Frequency BOLD fluctuations in the resting human brain are modulated by recent experience in category-preferential visual regions. Cereb Cortex. 2010;20(8):1997–2006.
31. RoccaMA, ValsasinaP, PaganiE, et al. Extra-visual functional and structural connection abnormalities in Leber’s hereditary optic neuropathy. PloS One. 2011;6(2):e17081.
32. SeifritzE, EspositoF, HennelF, et al. Spatiotemporal pattern of neural processing in the human auditory cortex. Science. 2002;297(5587):1706–8.
33. SeeleyWW, MenonV, SchatzbergAF, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci. 2007;27(9):2349–56.
34. SmithSM, FoxPT, MillerKL, et al. Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci U S A. 2009;106(31):13040–5.
35. DosenbachNUF, FairDA, MiezinFM, et al. Distinct brain networks for adaptive and stable task control in humans. Proc Natl Acad Sci U S A. 2007;104(26):11073–8.
36. MarguliesDS, BottgerJ, LongXY, et al. Resting developments: a review of fMRI post-processing methodologies for spontaneous brain activity. MAGMA. 2010;23(5–6):289–307.
37. Andrews-HannaJR, SnyderAZ, et al. Disruption of large-scale brain systems in advanced aging. Neuron. 2007;56(5):924–35.
38. McKeownMJ, MakeigS, BrownGG, et al. Analysis of fMRI data by blind separation into independent spatial components. Hum Brain Mapp. 1998;6(3):160–88.
39. EspositoF, AragriA, PesaresiI, et al. Independent component model of the default-mode brain function: combining individual-level and population-level analyses in resting-state fMRI. Magn Reson Imaging. 2008;26(7):905–13.
40. JafriMJ, PearlsonGD, StevensM, CalhounVD. A method for functional network connectivity among spatially independent resting-state components in schizophrenia. Neuroimage. 2008;39(4):1666–81.
41. QiZ, WuX, WangZ, et al. Impairment and compensation coexist in amnestic MCI default mode network. Neuroimage. 2010;50(1):48–55.
42. VanhaudenhuyseA, NoirhommeQ, TshibandaLJF, et al. Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients. Brain. 2010;133:161–71.
43. PearlJ.Causal inference from indirect experiments. Artif Intell Med. 1995;7(6):561–82.
44. LiJN, WangZJ, McKeownMJ. Controlling the false discovery rate in modeling brain functional connectivity. 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, Vols 1–12; 2008:2105–8.
45. LiJN, WangZJ. Controlling the false discovery rate of the association/causality structure learned with the PC algorithm. J Mach Learn Res. 2009;10:475–514.
46. LiJN, WangZJ, PalmerSJ, McKeownMJ. Dynamic Bayesian network modeling of fMRI: a comparison of group-analysis methods. Neuroimage. 2008;41(2):398–407.
47. BullmoreE, SpornsO.Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 2009;10(3):186–98.
48. WattsDJ, StrogatzSH. Collective dynamics of ‘small-world’ networks. Nature. 1998;393(6684):440–2.
49. SupekarK, MenonV, RubinD, MusenM, GreiciusMD. Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease. PloS Comput Biol. 2008;4(6):e1000100.
50. HorovitzSG, BraunAR, CarrWS, et al. Decoupling of the brain’s default mode network during deep sleep. Proc Natl Acad Sci U S A. 2009;106(27):11376–81.
51. BolyM, GarridoMI, GosseriesO, et al. Preserved feedforward but impaired top-down processes in the vegetative state. Science. 2011;332(6031):858–62.
52. OwenAM, ColemanMR, BolyM, et al. Detecting awareness in the vegetative state. Science. 2006;313(5792):1402.
53. LiSJ, LiZ, WuGH, et al. Alzheimer disease: evaluation of a functional MR imaging index as a marker. Radiology. 2002;225(1):253–9.
54. van den HeuvelMP, MandlRCW, KahnRS, PolHEH. Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Hum Brain Mapp. 2009;30(10):3127–41.
55. MicheloyannisS, PachouE, StamCJ, et al. Using graph theoretical analysis of multi channel EEG to evaluate the neural efficiency hypothesis. Neurosci Lett. 2006;402(3):273–7.
56. HarrisonBJ, YucelM, PujolJ, PantelisC.Task-induced deactivation of midline cortical regions in schizophrenia assessed with fMRI. Schizophr Res. 2007;91(1–3):82–6.
57. McGonigleDJ, HowsemanAM, AthwalBS, et al. Variability in fMRI: An examination of intersession differences. Neuroimage. 2000;11(6):708–34.
58. LiuHS, BucknerRL, TalukdarT, et al. Task-free presurgical mapping using functional magnetic resonance imaging intrinsic activity. J Neurosurg. 2009;111(4):746–54.
59. MayerAR, MannellMV, LingJ, GasparovicC, YeoRA. Functional connectivity in mild traumatic brain injury. Hum Brain Mapp. 2011;32(11):1825–35.
60. HoehnMM, YahrMD. Parkinsonism: onset, progression and mortality. Neurology. 1967;17(5):427–42.
61. BrooksDJ, PicciniP.Imaging in Parkinson’s disease: the role of monoamines in behavior. Biol Psychiatry. 2006;59(10):908–18.
62. BrownP, OlivieroA, MazzoneP, et al. Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. J Neurosci. 2001;21(3):1033–8.
63. EckertT, Van LaereK, TangC, et al. Quantification of Parkinson’s disease-related network expression with ECD SPECT. Eur J Nucl Med Mol Imaging. 2007;34(4):496–501.
64. EidelbergD.Metabolic brain networks in neurodegenerative disorders: a functional imaging approach. Trends Neurosci. 2009;32(10):548–57.
65. AlexanderGE, DelongMR, StrickPL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci. 1986;9:357–81.
66. PalmerSJ, LeePWH, WangZJ, AuWL, McKeownMJ. Theta, beta but not alpha-band EEG connectivity has implications for dual task performance in Parkinson’s disease. Parkinsonism Relat Disord. 2010;16(6):393–7.
67. PalmerSJ, EigenraamL, HoqueT, et al. Levodopa-sensitive, dynamic changes in effective connectivity during simultaneous movements in Parkinson’s disease. Neuroscience. 2009;158(2):693–704.
68. HelmichRC, AartsE, de LangeFP, BloemBR, ToniI.Increased dependence of action selection on recent motor history in Parkinson’s disease. J Neurosci. 2009;29(19):6105–13.
69. TropiniG, ChiangJ, WangZJ, TyE, McKeownMJ. Altered directional connectivity in Parkinson’s disease during performance of a visually guided task. Neuroimage. 2011;56(4):2144–56.
70. WuT, WangL, ChenY, et al. Changes of functional connectivity of the motor network in the resting state in Parkinson’s disease. Neurosci Lett. 2009;460(1):6–10.
71. WuT, LongX, WangL, HallettM, ZangY, LiK, et al. Functional connectivity of cortical motor areas in the resting state in Parkinson’s disease. Hum Brain Mapp. 2011;32(9):1443–57.
72. HelmichRC, DerikxLC, BakkerM, et al. Spatial remapping of cortico-striatal connectivity in Parkinson’s disease. Cereb Cortex. 2010;20(5):1175–86.
73. KwakY, PeltierSJ, BohnenNI, et al. L-DOPA changes spontaneous low-frequency BOLD signal oscillations in Parkinson’s disease: a resting state fMRI study. Front Syst Neurosci. 2012;6:52.
74. BaudrexelS, WitteT, SeifriedC, et al. Resting state fMRI reveals increased subthalamic nucleus-motor cortex connectivity in Parkinson’s disease. Neuroimage. 2011;55(4):1728–38.
75. LehericyS, DucrosM, Van de MoortelePF, et al. Diffusion tensor fiber tracking shows distinct corticostriatal circuits in humans. Ann Neurol. 2004;55(4):522–9.
76. HuangC, TangC, FeiginA, et al. Changes in network activity with the progression of Parkinson’s disease. Brain. 2007;130(Pt 7):1834–46.
77. CunningtonR, WindischbergerC, DeeckeL, MoserE.The preparation and execution of self-initiated and externally-triggered movement: a study of event-related fMRI. Neuroimage. 2002;15(2):373–85.
78. LaloE, ThoboisS, SharottA, et al. Patterns of bidirectional communication between cortex and basal ganglia during movement in patients with Parkinson disease. J Neurosci. 2008;28(12):3008–16.
79. NuttJG, BloemBR, GiladiN, et al. Freezing of gait: moving forward on a mysterious clinical phenomenon. Lancet Neurol. 2011;10(8):734–44.
80. GiladiN.Freezing of gait. Clinical overview. Adv Neurol. 2001;87:191–7.
81. JahanshahiM, JenkinsIH, BrownRG, et al. Self-initiated versus externally triggered movements. I. An investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkinson’s disease subjects. Brain. 1995;118 (Pt 4):913–33.
82. TessitoreA, AmboniM, EspositoF, et al. Resting-state brain connectivity in patients with Parkinson’s disease and freezing of gait. Parkinsonism Relat Disord. 2012;18(6):781–7.
83. KwakY, PeltierS, BohnenNI, et al. Altered resting state cortico-striatal connectivity in mild to moderate stage Parkinson’s disease. Front Syst Neurosci. 2010;4:143.
84. LozzaC, BaronJC, EidelbergD, et al. Executive processes in Parkinson’s disease: FDG-PET and network analysis. Hum Brain Mapp. 2004;22(3):236–45.
85. SkidmoreFM, YangM, BaxterL, et al. Apathy, depression, and motor symptoms have distinct and separable resting activity patterns in idiopathic Parkinson disease. Neuroimage. 2011; [Epub ahead of print].
86. Nagano-SaitoA, LiuJ, DoyonJ, DagherA.Dopamine modulates default mode network deactivation in elderly individuals during the Tower of London task. Neurosci Lett. 2009;458(1):1–5.
87. LustigC, SnyderAZ, BhaktaM, et al. Functional deactivations: change with age and dementia of the Alzheimer type. Proc Natl Acad Sci U S A. 2003;100(24):14504–9.
88. TinazS, SchendanHE, SternCE. Fronto-striatal deficit in Parkinson’s disease during semantic event sequencing. Neurobiol Aging. 2008;29(3):397–407.
89. van EimerenT, MonchiO, BallangerB, StrafellaAP. Dysfunction of the default mode network in Parkinson disease: a functional magnetic resonance imaging study. Arch Neurol. 2009;66(7):877–83.
90. ChouYH, PanychLP, DickeyCC, PetrellaJR, ChenNK. Investigation of long-term reproducibility of intrinsic connectivity network mapping: a resting-state fMRI study. AJNR Am J Neuroradiol. 2012;33(5):833–8.
91. FleisherAS, SherzaiA, TaylorC, et al. Resting-state BOLD networks versus task-associated functional MRI for distinguishing Alzheimer’s disease risk groups. Neuroimage. 2009;47(4):1678–90.
92. SeibertTM, MurphyEA, KaestnerEJ, BrewerJB. Interregional correlations in Parkinson disease and Parkinson-related dementia with resting functional MR imaging. Radiology. 2012;263(1):226–34.
93. SkidmoreFM, YangM, BaxterL, et al. Reliability analysis of the resting state can sensitively and specifically identify the presence of Parkinson disease. Neuroimage. 2013;75:249–61.