Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-19T04:07:14.134Z Has data issue: false hasContentIssue false

17 - Single frequency network broadcast

Published online by Cambridge University Press:  28 February 2011

Farooq Khan
Affiliation:
Samsung Telecommunications America, Richardson, Texas
Get access

Summary

Voice communication and download data services such as web browsing are based on point-to-point (PTP) communication. On the other hand, multicast and broadcast services are based on point-to-multipoint (PTM) communication, where data packets are simultaneously transmitted from a single source to multiple destinations. Examples of broadcast services are radio and television services that are broadcast over the air or over cable networks and the content is available to all the users. Multicast refers to services that are delivered to users who have joined a particular multicast group. The service delivery using point-to-multipoint (PTM) communication is generally more efficient when a large number of users is interested in receiving the same content such as a mobile TV channel. This results in efficient transmission not only over the wireless link but also in the core and access networks. This is because a single multicast broadcast packet travels in the core and access networks and is copied and forwarded to multiple Node-Bs in the multicast broadcast area.

The broadcast services can be delivered to mobile devices either via an independent broadcast network such as DVB-H (digital video broadcast-handheld), DMB (digital multimedia broadcast), MediaFLO or over a service provider's cellular network. The DMB is a South Korean standard derived from the digital audio broadcast (DAB) standard. In the case of an independent broadcast network, dual mode UEs capable of receiving service from both the broadcast network and the cellular network are required.

Type
Chapter
Information
LTE for 4G Mobile Broadband
Air Interface Technologies and Performance
, pp. 426 - 447
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×