Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-27gpq Total loading time: 0 Render date: 2024-03-19T02:17:07.951Z Has data issue: false hasContentIssue false

12 - Scheduling, link adaptation and hybrid ARQ

Published online by Cambridge University Press:  28 February 2011

Farooq Khan
Affiliation:
Samsung Telecommunications America, Richardson, Texas
Get access

Summary

A cellular radio system consists of a collection of fixed eNBs that define the radio coverage areas or cells. Typically, a non-line-of-sight (NLOS) radio propagation path exists between an eNB and a UE due to natural and man-made objects that are situated between the eNB and the UE. As a consequence, the radio waves propagate via reflections, diffractions and scattering. The arriving waves at the UE in the downlink direction (at the eNB in the uplink direction) experience constructive and destructive additions because of different phases of the individual waves. This is due to the fact that, at the high carrier frequencies typically used in the cellular wireless communication, small changes in the differential propagation delays introduce large changes in the phases of the individual waves. If the UE is moving or there are changes in the scattering environment, then the spatial variations in the amplitude and phase of the composite received signal will manifest themselves as the time variations known as Rayleigh fading or fast fading. Traditionally, the time-varying nature of the wireless channel was considered undesirable because it required very high signal-to-noise ratio (SNR) margins for providing the desired bit error or packet error reliability. Therefore, system design efforts focused on averaging out the signal variations due to fast fading by using various forms of diversity schemes such as space, angle, polarization, field, frequency, time or multi-path diversity.

Type
Chapter
Information
LTE for 4G Mobile Broadband
Air Interface Technologies and Performance
, pp. 291 - 328
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×