Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-19T04:16:01.061Z Has data issue: false hasContentIssue false

5 - Reducing uplink signal peakiness

Published online by Cambridge University Press:  28 February 2011

Farooq Khan
Affiliation:
Samsung Telecommunications America, Richardson, Texas
Get access

Summary

In cellular systems, the wireless communication service in a given geographical area is provided by multiple Node-Bs or base stations. The downlink transmissions in cellular systems are one-to-many, while the uplink transmissions are many-to-one. A one-to-many service means that a Node-B transmits simultaneous signals to multiple UEs in its coverage area. This requires that the Node-B has very high transmission power capability because the transmission power is shared for transmissions to multiple UEs. In contrast, in the uplink a single UE has all its transmission power available for its uplink transmissions to the Node-B. Typically, the maximum allowed downlink transmission power in cellular systems is 43 dBm, while the uplink transmission power is limited to around 24 dBm. This means that the total transmit power available in the downlink is approximately 100 times more than the transmission power from a single UE in the uplink. In order for the total uplink power to be the same as the downlink, approximately 100 UEs should be simultaneously transmitting on the uplink.

Most modern cellular systems also support power control, which allows, for example, allocating more power to the cell-edge users than the cell-center users. This way, the cell range in the downlink can be extended because the Node-B can always allocate more power to the coverage-limited UE. However, in the uplink, the maximum transmission power is constrained by the maximum UE transmission power.

Type
Chapter
Information
LTE for 4G Mobile Broadband
Air Interface Technologies and Performance
, pp. 88 - 109
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×