Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-19T04:19:02.216Z Has data issue: false hasContentIssue false

15 - Downlink control signaling

Published online by Cambridge University Press:  28 February 2011

Farooq Khan
Affiliation:
Samsung Telecommunications America, Richardson, Texas
Get access

Summary

With the exception of a scheduling request, all uplink control consists of feedback information to support downlink transmissions. The channel quality feedback is provided to support downlink channel-sensitive scheduling and link adaptation. The rank and precoding matrix indication is used for selecting a downlink MIMO transmission format. The ACK/NACK signaling provides feedback on downlink hybrid ARQ transmissions. In contrast to uplink control, the only feedback information on the downlink is ACK/NACK signaling to support uplink hybrid ARQ operation and transmission power control (TPC) commands to support uplink power control. The reason for this asymmetry is simply the fact that both the uplink and the downlink schedulers resides in the eNB. Therefore, the bulk of downlink signaling involves uplink and downlink scheduling grants that convey information on the transmission format and resource allocation for both the uplink and downlink transmissions. In order to support the uplink channel-sensitive scheduling, the uplink channel quality is estimated from the uplink sounding reference signal (SRS).

The three downlink control channels transmitted every subframe are physical control format indicator channel (PCFICH), physical downlink control channel (PDCCH) and physical hybrid ARQ indicator channel (PHICH). The PCFICH carries information on the number of OFDM symbols used for PDCCH. The PDCCH is used to inform the UEs about the resource allocation as well as modulation, coding and hybridARQ control information. Since multiple UEs can be scheduled simultaneously within a subframe in a frequency or space division multiplexed fashion multiple PDCCHs each carrying information for a single UE are transmitted.

Type
Chapter
Information
LTE for 4G Mobile Broadband
Air Interface Technologies and Performance
, pp. 368 - 408
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×