Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-fqc5m Total loading time: 0 Render date: 2024-03-19T08:29:44.383Z Has data issue: false hasContentIssue false

11 - Channel coding

Published online by Cambridge University Press:  28 February 2011

Farooq Khan
Affiliation:
Samsung Telecommunications America, Richardson, Texas
Get access

Summary

Like other 3G systems, the current HSPA system uses turbo coding as the channel-coding scheme. The LTE system supports peak data rates that are an order of magnitude higher than the current 3 G systems. It is therefore fair to ask the question, can the turbo coding scheme scale to data rates in excess of 100 Mb/s supported by LTE, while maintaining reasonable decoding complexity? This question is particularly important as other coding schemes, which offer inherent parallelism and therefore provide very high decoding speeds such as Low Density Parity Check (LDPC) codes, have recently become available. A major argument against turbo coding schemes is that they are not amenable to parallel implementations thus limiting the achievable decoding speeds. The problem, in fact, lies in the turbo code internal interleaver used in the current HSPA system, which creates memory contention among processors in parallel implementation. Therefore, if the turbo code internal interleaver can somehow be made contention free, it becomes possible for turbo code to benefit from parallel processing and hence achieve high decoding speeds.

LDPC codes

Similar to turbo codes, LDPC codes are near-Shannon limit error correcting codes. More recently, LDPC codes have been adopted in standards including IEEE 802.16e wireless MAN, IEEE 802.11n wireless LAN and digital video broadcast DVB-S2. The LDPC codes allow an extremely flexible code design that can be tailored to achieve efficient encoding and decoding. The interest in LDPC codes comes from their potential to achieve very high throughput (due to the inherent parallelism of the decoding algorithm) while maintaining good error-correcting performance and low decoding complexity.

Type
Chapter
Information
LTE for 4G Mobile Broadband
Air Interface Technologies and Performance
, pp. 251 - 290
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Channel coding
  • Farooq Khan
  • Book: LTE for 4G Mobile Broadband
  • Online publication: 28 February 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511810336.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Channel coding
  • Farooq Khan
  • Book: LTE for 4G Mobile Broadband
  • Online publication: 28 February 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511810336.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Channel coding
  • Farooq Khan
  • Book: LTE for 4G Mobile Broadband
  • Online publication: 28 February 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511810336.012
Available formats
×