Skip to main content Accessibility help
  • Print publication year: 2006
  • Online publication date: March 2017

Definability and reducibility in higher types over the reals

[1] S., Abramsky and A., Jung, Domain theory, Handbook of logic in computer science (S., Abramsky, D.M., Gabbay, and T. S. E., Maibaum, editors), vol. 3, Clarendon Press, 1994.
[2] A., Bauer, M., Escardò, and A., Simpson, Comparing functional paradigms for exact realnumber computation, Proceedings ICALP 2002, LNCS, vol. 2380, Springer, 2002, pp. 488–500.
[3] J., Blanck, Domain representability of metric spaces, Annals of Pure and Applied Logic, vol. 83 (1997), pp. 225–247.
[4] M. H., Escardó, PCF extended with real numbers, Theoretical Computer Science, vol. 162 (1996), no. (1), pp. 79–115.
[5] Gierz, Hofmann, Keimel, Lawson, Mislove, and Scott, Continuous lattices and domains, Cambridge University Press, 2003.
[6] J., Hoffmann-Jørgensen, The theory of analytic spaces, Various Publication Series No.10, Aarhus University, 1970.
[7] F., De Jaeger, Calculabilité sur les réels, Thesis, Paris VII, 2003.
[8] A. S., Kechris, Classical descriptive set theory, Springer, New York, 1995.
[9] G., Kreisel, Interpretation of analysis by means of functionals of finite type, Constructivity in mathematics (A., Heyting, editor), North-Holland, (1959), pp. 101–128.
[10] G., Longo and E., Moggi, The hereditary partial effective functionals and recursion theory in higher types, The Journal of Symbolic Logic, vol. 49 (1984), pp. 1319–1332.
[11] D., Normann, External and internal algorithms on the continuous functionals, Patras logic symposium (G., Metakides, editor), North-Holland, 1982, pp. 137–144.
[12] D., Normann, The continuous functionals of finite types over the reals, Domains and processes (K., Keimel, G. Q., Zhang, Y., Liu, and Y., Chen, editors), Kluwer Academic Publishers, 2001, pp. 103–124.
[13] D., Normann, Hierarchies of total functionals over the reals, Theoretical Computer Science, vol. 316 (2004), pp. 137–151.
[14] D., Normann, Comparing hierarchies of total functionals, in preparation.
[15] M., Schröder, Admissible representations of limit spaces,Computability and complexity in analysis (J., Blanck, V., Brattka, P., Hertling, and K., Weihrauch, editors), vol. 237, Informatik Berichte, 2000, pp. 369–388.
[16] V., Stoltenberg-Hansen, I., Lindström, and E. R., Griffor, Mathematical theory of domains, Cambridge Tracts in Theoretical Computer Science, vol. 22, Cambridge University Press, 1994.
[17] J. V., Tucker and J. I., Zucker, Abstract versus concrete models of computation on partial metric algebras, ACMTransactions on Computational Logic, vol. 5 (2004), pp. 611–668.
[18] K., Weihrauch, Computable analysis, Texts in Theoretical Computer Science, Springer Verlag, Berlin, 2000.