Skip to main content Accessibility help
×
Home
  • Print publication year: 2005
  • Online publication date: March 2017

An introduction to proofs of determinacy of long games

from TUTORIALS

Summary

Abstract. We present the basic methods used in proofs of determinacy of long games, and apply these methods to games of continuously coded length.

From the dawn of time women and men have aspired upward. The development of determinacy proofs is no exception to this general rule. There has been a steady search for higher forms of determinacy, beginning with the results of Gale–Stewart [2] on closed length ω games and continuing to this day. Notable landmarks in this quest include proofs of Borel determinacy in Martin [5]; analytic determinacy in Martin [4]; projective determinacy in Martin–Steel [8]; and ADL(R) in Woodin [17]. Those papers consider length ω games with payoff sets of increasing complexity. One could equivalently fix the complexity of the payoff and consider games of increasing length. Such “long games” form the topic of this paper.

Long games form a natural hierarchy, the hierarchy of increasing length. This hierarchy can be divided into four categories: games of length less than ω · ω; games of fixed countable length; games of variable countable length; and games of length ω1.

Games in the first category can be reduced to standard games of length ω, at the price of increasing payoff complexity. The extra complexity only involves finitely many real quantifiers. Thus the determinacy of games of length less than ω · ω, with analytic payoff say, is the same as projective determinacy.

Games in the second category can be reduced to combinations of standard games of length ω, with increased payoff complexity, and some additional strength assumptions. The first instance of this is given in Blass [1]. The techniques presented there can be used to prove the determinacy of length ω ·ω games on natural numbers, with analytic payoff say, from ADL(R) + “R# exists.” In another, choiceless reduction to standard games, Martin and Woodin independently showed that AD + “all sets of reals admit scales” implies that all games in the second category are determined.

It is in the third category that the methods presented here begin to yield new determinacy principles. (The one previously known determinacy proof for games in the third category is a theorem of Steel [16], which applies to games of the kind described in Remark 1.1.)

Neeman [15] concentrates on third category games.

[1] Andreas, Blass, Equivalence of two strong forms of determinacy, Proceedings of the American Mathematical Society, vol. 52 (1975), pp. 373–376.
[2] David, Gale and Frank M., Stewart, Infinite games with perfect information, Contributions to the theory of games, vol. 2, Annals of Mathematics Studies, no. 28, Princeton University Press, 1953, pp. 245–266.
[3] Akihiro, Kanamori, The higher infinite, Perspectives in Mathematical Logic, Springer- Verlag, Berlin, 1994.
[4] Donald, A.Martin, Measurable cardinals and analytic games, FundamentaMathematicae, vol. 66 (1970), pp. 287–291.
[5] Donald, A.Martin, Borel determinacy, Annals of Mathematics, vol. 102 (1975), pp. 363–371.
[6] Donald, A.Martin, The real game quantifier propagates scales, Cabal seminar 79–81, Lecture Notes in Mathematics, vol. 1019, Springer-Verlag, 1983, pp. 157–171.
[7] Donald, A.Martin, A purely inductive proof of Borel determinacy, Proceedings of Symposia in Pure Mathematics, vol. 42 (1985), pp. 303–308.
[8] Donald A., Martin and John, Steel, A proof of projective determinacy, Journal of the American Mathematical Society, vol. 2 (1989), no. 1, pp. 71–125.
[9] Donald A., Martin, Iteration trees, Journal of the AmericanMathematical Society, vol. 7 (1994), no. 1, pp. 1–73.
[10] Yiannis, Moschovakis, Descriptive set theory, Studies in Logic and the Foundations of Mathematics, vol. 100, North Holland Publishing Company, Amsterdam-New York, 1980.
[11] Yiannis, Moschovakis, Scales on coinductive sets, Cabal seminar 79–81, Lecture Notes in Mathematics, vol. 1019, Springer-Verlag, 1983, pp. 77–85.
[12] Itay, Neeman, Optimal proofs of determinacy, The Bulletin of Symbolic Logic, vol. 1 (1995), no. 3, pp. 327–339.
[13] Yiannis, Moschovakis, Inner models in the region of a Woodin limit of Woodin cardinals, Annals of Pure and Applied Logic, vol. 116 (2002), pp. 67–155.
[14] Yiannis, Moschovakis, Optimal proofs of determinacy II, Journal of Mathematical Logic, vol. 2 (2002), no. 2, pp. 227–260.
[15] Yiannis, Moschovakis, Long games, in preparation.
[16] John, Steel, Long games, Cabal seminar 81–85, Lecture Notes in Mathematics, vol. 1333, Springer-Verlag, 1988, pp. 56–97.
[17] W., Hugh Woodin, unpublished work.