[1] S., Abramsky, No-Cloning in Categorical Quantum Mechanics, Semantic Techniques in Quantum Computation (S., Gay and I., Mackie, editors), Cambridge University Press, 2010, pp. 1–28.
[2] S., Abramsky, Big toy models: Representing physical systems as Chu spaces, Synthese, vol. 186(3) (2012), pp. 697–718.
[3] S., Abramsky, Relational Hidden Variables and Non-Locality, Studia Logica, vol. 101 (2013), no. 2, pp. 411–452, available as arXiv:1007.2754.
[4] S., Abramsky, R., Blute, and P., Panangaden, Nuclear and trace ideals in tensored *-categories, Journal of Pure and Applied Algebra, vol. 143 (1999), pp. 3–47.
[5] S., Abramsky and A., Brandenburger, The sheaf-theoretic structure of non-locality and contextuality, New Journal of Physics, vol. 13 (2011), p. 113036.
[6] S., Abramsky and B., Coecke, A categorical semantics of quantum protocols, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, IEEE, 2004, pp. 415–425.
[7] S., Abramsky and B., Coecke, Categorical quantum mechanics, Handbook of Quantum Logic and Quantum Structures: Quantum Logic, Elsevier Science, 2008, pp. 261–324.
[8] M., F.|Atiyah, Topological quantum field theories, PublicationsMathematiques de l'I.H.É, S., vol. 68 (1988), pp. 175–186.
[9] S., Awodey, Category Theory, Oxford University Press, 2010.
[10] H., Barnum, J., Barrett, L. O., Clark, M., Leifer, R., Spekkens, N., Stepanik, A., Wilce, and R., Wilke, Entropy and information causality in general probabilistic theories, New Journal of Physics, vol. 12 (2010), p. 033024.
[11] H., Barnum, J., Barrett, M., Leifer, and A., Wilce, Generalized no-broadcasting theorem, Physical review letters, vol. 99 (2007), no. 24, p. 240501.
[12] H., Barnum, J., Barrett, M., Leifer, and A., Wilce, Teleportation in general probabilistic theories, Arxiv preprint arXiv:0805.3553, (2008).
[13] H., Barnum, R., Duncan, and A., Wilce, Symmetry, compact closure and dagger compactness for categories of convex operational models, Journal of Philosophical Logic, vol. 42 (2013), pp. 501– 523, DOI 10.1007/s10992-013-9280-8.
[14] M., Barr, *-autonomous categories, Lecture Notes in Mathematics, vol. 752, Springer, 1979.
[15] J., S.|Bell, On the Einstein-Podolsky-Rosen paradox, Physics, vol. 1 (1964), no. 3, pp. 195– 200.
[16] J., Bénabou, Distributors at work, 2000, available at http://www.mathematik. tu-darmstadt.de/~streicher/FIBR/DiWo.pdf.
[17] J., Blank, P., Exner, and M., Havlíček, Hilbert space operators in quantum physics, second ed., Springer, 2008.
[18] C., Butz, Regular categories and regular logic, Technical Report LS-98-2, BRICS, October 1998.
[19] G., Chiribella, G. M., D'Ariano, and P., Perinotti, Informational derivation of quantum theory, Physical Review A, vol. 84 (2011), no. 1, p. 012311.
[20] P. H., Chu, Constructing *-autonomous categories, In *-Autonomous Categories? [14], pp. 103–137.
[21] B., Coecke and B., Edwards, Spekkens’ toy theory as a category of processes, Mathematical Foundations of Information Flow (S., Abramsky and M., Mislove, editors), American Mathematical Society, 2012, arXiv:1108.1978.
[22] B., Coecke, B., Edwards, and R. W., Spekkens, Phase groups and the origin of non-locality for qubits, Electronic Notes in Theoretical Computer Science, vol. 270 (2011), no. 2, pp. 15–36.
[23] B., Coecke and C., Heunen, Pictures of complete positivity in arbitrary dimension, Quantum Physics and Logic 2012, Electronic Proceedings in Theoretical Computer Science, vol. 158, 2014, pp. 1–14.
[24] B., Coecke and A., Kissinger, The compositional structure of multipartite quantum entanglement, Automata, Languages and Programming, (2010), pp. 297–308.
[25] B., Dakic and C., Brukner, Quantum Theory and Beyond: Is Entanglement Special?, Deep Beauty: Understanding the Quantum World through Mathematical Innovation, Cambridge University Press, 2011, pp. 365–392.
[26] W. M., Dickson, Quantum Chance and Non-Locality, Cambridge University Press, 1999.
[27] P. A. M., Dirac, The physical interpretation of quantum mechanics, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 180 (1942), no. 980, pp. 1–40.
[28] S., Doplicher and J. E., Roberts, A new duality theory for compact groups, Inventiones mathematicae, vol. 98 (1989), pp. 157–218.
[29] R., Duncan and S., Perdrix, Rewriting measurement-based quantum computations with generalised flow, Automata, Languages and Programming, (2010), pp. 285–296.
[30] R. P., Feynman, Negative probability, Quantum Implications: Essays in Honour of David Bohm (B. J., Hiley and F. D., Peat, editors), Routledge and Kegan Paul, 1987, pp. 235–248.
[31] A., Fine, Joint distributions, quantum correlations and commuting observables, Journal of Mathematical Physics, vol. 23 (1982), p. 1306.
[32] D. J. H., Garling, Inequalities, Cambridge University Press, 2007.
[33] P., Ghez, R., Lima, and J. E., Roberts, W*-categories, Pacific Journal of Mathematics, vol. 120 (1985), pp. 79–109.
[34] M., Giry, A categorical approach to probability theory, Categorical Aspects of Topology and Analysis, Springer, 1982, pp. 68–85.
[35] D. M., Greenberger, M. A., Horne, A., Shimony, and A., Zeilinger, Bell's theorem without inequalities, American Journal of Physics, vol. 58 (1990), p. 1131.
[36] L., Hardy, Quantum theory from five reasonable axioms, Arxiv preprint quant-ph/0101012, (2001).
[37] M., Hasegawa, On traced monoidal closed categories, Mathematical Structures in Computer Science, vol. 19 (2008), pp. 217–244.
[38] C., Heunen, Categorical Quantum Models and Logics, Ph.D. thesis, Radboud University Nijmegen, 2009.
[39] C., Heunen and B., Jacobs, Quantum logic in dagger kernel categories, Order, vol. 27 (2010), no. 2, pp. 177–212.
[40] B., Jacobs, Convexity, duality and effects, Theoretical Computer Science (Cristian S., Calude and Vladimiro, Sassone, editors), IFIP Advances in Information and Communication Technology, vol. 323, Springer, Berlin, Heidelberg, 2010, pp. 1–19.
[41] J. M., Jauch, Foundations of Quantum Mechanics, Addison-Wesley, 1968.
[42] P. T., Johnstone, Stone Spaces, Studies in Advanced Mathematics, vol. 3, Cambridge University Press, 1986.
[43] A., Joyal, R., Street, and D., Verity, Traced monoidal categories, Mathematical Proceedings of the Cambridge Philosophical Society, vol. 3 (1996), pp. 447–468.
[44] G. M., Kelly and M. L., Laplaza, Coherence for compact closed categories, Journal of Pure and Applied Algebra, vol. 19 (1980), pp. 193–213.
[45] J., Kock, Frobenius Algebras and 2D Topological Quantum Field Theories, London Mathematical Society Student Texts, no. 59, Cambridge University Press, 2003.
[46] R., Longo, Aremark on crossed product of C*-algebras, Journal of the London Mathematical Society (2), vol. 23 (1981), pp. 531–533.
[47] G., Ludwig, Foundations of Quantum Mechanics, vol. 1, Springer-Verlag, 1983.
[48] G. W., Mackey, Mathematical Foundations of Quantum Mechanics, Benjamin, 1963.
[49] L., Masanes and M., P.Müller, A derivation of quantum theory from physical requirements, New Journal of Physics, vol. 13 (2011), p. 063001.
[50] J. E., Moyal, Quantum mechanics as a statistical theory, Mathematical Proceedings of the Cambridge Philosophical Society, vol. 45 (1949), no. 1, pp. 99–124.
[51] A., Peres, Quantum Theory: Concepts and Methods, vol. 57, Kluwer, 1993.
[52] C., Piron, Foundations of Quantum Physics, WA Benjamin, Inc., Reading, MA, 1976.
[53] S., Popescu and D., Rohrlich, Quantum nonlocality as an axiom, Foundations of Physics, vol. 24 (1994), no. 3, pp. 379–385.
[54] V. R., Pratt, Chu spaces from the representational viewpoint, Annals of Pure and Applied Logic, vol. 96 (1999), no. 1-3, pp. 319–333.
[55] K. I., Rosenthal, Quantales and their applications, PitmanResearch Notes in Mathematics, Longman Scientific & Technical, 1990.
[56] G., Segal, The definition of conformal field theory, Topology, Geometry and Quantum Field Theory, London Mathematical Society Lecture Note Series, vol. 308, Cambridge University Press, 2004, pp. 421–577.
[57] P., Selinger, Dagger compact closed categories and completely positive maps, Quantum Programming Languages, Electronic Notes in Theoretical Computer Science, vol. 170, Elsevier, 2007, pp. 139–163.
[58] B., Simon, Trace Ideals and Their Applications, Mathematical surveys and monographs, no. 120, American Mathematical Society, 1979.
[59] A., Simpson and G., Plotkin, Complete axioms for categorical fixed-point operators, Logic in Computer Science, 2000, pp. 30–41.
[60] R. W., Spekkens, Evidence for the epistemic view of quantum states: A toy theory, Physical Review A, vol. 75 (2007), no. 3, p. 032110.
[61] E., Wigner, On the quantum correction for thermodynamic equilibrium, Physical Review, vol. 40 (1932), no. 5, p. 749.