Skip to main content Accessibility help
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 32
  • Print publication year: 2007
  • Online publication date: August 2010

14 - Interactions between habitat use, behavior, and the trophic niche of lacertid lizards



The existence of evolutionary trade-offs prevents simultaneous optimization of different functions that require opposing biomechanical or physiological adaptations (Stearns, 1992). Consequently, trade-offs likely play an important role in niche partitioning, in that species specialized in exploiting one type of niche (e.g. microhabitat) are expected to be less proficient at exploiting others. For instance, in Anolis lizards, a trade-off exists between sprint speed and sure-footedness because long limbs are required to move fast, whereas short limbs aid sure-footedness (Losos and Sinervo, 1989; Losos and Irschick, 1996). Accordingly, species that predominantly move on broad surfaces (i.e. trunk–ground ecomorph) specialize for speed and have long limbs, whereas species living on narrow substrates (i.e. twig ecomorph) are specialized in slower but secure movements.

In a similar fashion, species specializing in different dietary niches may have diverged morphologically because the biomechanical demands on the feeding and/or locomotor apparatus are often not reconcilable within one phenotype. Clearly, the ability of a predator to exploit a certain prey type will depend on the functional characteristics of the prey (e.g. prey distribution, hardness, and escape response) and the performance of the feeding and locomotor system of the predator. For instance, in labrid fishes the amount of force potentially generated by the jaws trades off with the speed of jaw movement because of differences in the four-bar linkage system of the jaws and hyoid (long links aid high force outputs, but rapid movements are realized by short links) (Westneat, 1994, 1995).

Aguirre, L. F., Herrel, A., Damme, R. and Matthysen, E. (2002). Ecomorphological analysis of trophic niche partitioning in a tropical savannah bat community. Proc. R. Soc. Lond. B269, 1271–8.
Aguirre, L. F., Herrel, A., Damme, R. and Matthysen, E. (2003). The implications of food hardness for diet in bats. Funct. Ecol. 17, 201–12.
Angelici, F. M., Luiselli, L. and Rugiero, L. (1997). Food habits of the green lizard, Lacerta bilineata, in central Italy and a reliability test of faecal pellet analysis. Ital. J. Zool. 64, 267–72.
Arnold, E. N. (1989). Towards a phylogeny and biogeography of the Lacertidae: relationships within an old-world family of lizards derived from morphology. Bull. Brit. Mus. Nat. Hist. (Zool.) 55, 209–57.
Arnold, E. N. (1998). Structural niche, limb morphology and locomotion in lacertid lizards (Squamata, Lacertidae); a preliminary survey. Bull. Brit. Mus. Nat. Hist. (Zool.) 64, 63–89.
Arnold, S. J. (1993). Foraging theory and prey size – predator size relations in snakes. In Snakes: Ecology and Behaviour, ed. Seigel, R. A. and Collins, J. J., pp. 87–112. New York: McGraw-Hill.
Bauwens, D., Garland, T. Jr., Castilla, A. M. and Damme, R. (1995). Evolution of sprint speed in lacertid lizards: morphological, physiological, and behavioural covariation. Evolution 49, 848–63.
Bickel, R. and Losos, J. B. (2002). Patterns of morphological variation and correlates of habitat use in Chameleons. Biol. J. Linn. Soc. 76, 91–103.
Cartmill, M. (1985). Climbing. In Functional Vertebrate Morphology, ed. Hildebrand, M., Bramble, D. M., Liem, K. F. and Wake, D. B., pp. 73–88. Cambridge, MA: The Belknap Press.
Cooper, W. E. Jr. and Whiting, M. J. (1999). Foraging modes in lacertid lizards from southern Africa. Amph.-Rept. 20, 299–311.
Diaz, J. A. (1995). Prey selection by lacertid lizards: a short review. Herpetol. J. 5, 245–51.
Emerson, S. B., Greene, H. W. and Charnov, E. L. (1994). Allometric aspects of predator-prey interactions. In Ecological Morphology, ed. Wainwright, P. C. and Reilly, S. M., pp. 123–39. Chicago, IL: University of Chicago Press.
Felsenstein, J. (1985). Phylogenies and the comparative method. Am. Nat. 125, 1–15.
Felsenstein, J. (1988). Phylogenies and quantitative characters. Ann. Rev. Ecol. Syst. 19, 445–71.
Fu, J. (2000). Toward the phylogeny of the family Lacertidae – Why 4708 base pairs of mtDNA sequences cannot draw the picture. Biol. J. Linn. Soc. 71, 203–17.
Garland, T. Jr. (1992). Procedures for the analysis of comparative data using phylogenetically independent contrasts. Syst. Biol. 41, 18–32.
Garland, T. Jr. (1999). Laboratory endurance capacity predicts variation in field locomotor behaviour among lizard species. Anim. Behav. 58, 77–83.
Garland, T. Jr., Midford, P. E. and Ives, A. R. (1999). An introduction to phylogenetically based statistical methods, with a new method for confidence intervals on ancestral states. Am. Zool. 39, 374–88.
Gvozdik, L. and Damme, R. (2003). Evolutionary maintenance of sexual dimorphism in head size in the lizard Zootoca vivipara: a test of two hypotheses. J. Zool. Lond. 259, 7–13.
Harris, D. J. and Arnold, E. N. (1999). Relationships of wall lizards, Podarcis (Reptilia: Lacertidae) based on mitochondrial DNA sequences. Copeia 1999, 749–54.
Herrel, A., Spithoven, L., Damme, R. and Vree, R. (1999). Sexual dimorphism of head size in Gallotia galloti; testing the niche divergence hypothesis by functional analyses. Funct. Ecol. 13, 289–97.
Herrel, A., Grauw, E. and Lemos-Espinal, J. A. (2001a). Head shape and bite performance in xenosaurid lizards. J. Exp. Zool. 290, 101–7.
Herrel, A., Meyers, J. J. and Vanhooydonck, B. (2001b). Correlation between habitat use and body shape in a phrynosomatid lizard (Urosaurus ornatus): a population-level analysis. Biol. J. Linn. Soc. 74, 305–14.
Herrel, A., Damme, R., Vanhooydonck, B. and Vree, F. (2001c). The implications of bite performance for diet in two species of lacertid lizards. Can. J. Zool. 79, 662–70.
Herrel, A., Meyers, J. J. and Vanhooydonck, B. (2002a). Relations between microhabitat use and limb shape in phrynosomatid lizards. Biol. J. Linn. Soc. 77, 149–63.
Herrel, A., O'Reilly, J. C. and Richmond, A. M. (2002b). Evolution of bite performance in turtles. J. Evol. Biol. 15, 1083–94.
Herrel, A., Vanhooydonck, B. and Damme, R. (2004). Omnivory in lacertid lizards: adaptive evolution or constraint? J. Evol. Biol. 17, 974–84.
Herrel, A., Podos, J., Huber, S. K. and Hendry, A. P. (2005). Bite performance and morphology in a population of Darwin's finches: implications for the evolution of beak shape. Funct. Ecol. 19, 43–8.
Huey, R. B. and Pianka, E. R. (1981). Ecological consequences of foraging mode. Ecology 62, 991–9.
Huey, R. B., Bennett, A. F., John-Alder, H. and Nagy, K. A. (1984). Locomotor capacity and foraging behaviour of Kalahari lacertid lizards. Anim. Behav. 32, 41–50.
Losos, J. B. and Irschick, D. J. (1996). The effects of perch diameter on the escape behaviour of Anolis lizards: laboratory based predictions and field tests. Anim. Behav. 51, 593–602.
Losos, J. B. and Sinervo, B. (1989). The effects of morphology and perch diameter on sprint performance of Anolis lizards. J. Exp. Biol. 245, 23–30.
McArthur, R. H. and Pianka, E. R. (1966). On the optimal use of a patchy environment. Am. Nat. 100, 603–9.
McBrayer, L. (2004). The relationship between skull morphology, biting performance and foraging mode in Kalahari lacertid lizards. Zool. J. Linn. Soc. 140, 403–16.
Meyers, J. J. and Herrel, A. (2005). Prey capture kinematics of ant-eating lizards. J. Exp. Biol. 208, 113–27.
Miles, D. B. (1994). Covariation between morphology and locomotory performance in Sceloporine lizards. In Lizard Ecology: Historical and Experimental Perspectives, ed. Vitt, L. J. and Pianka, E. R., pp. 207–35. Princeton, NJ: Princeton University Press.
Molina-Borja, M. (1991). Notes on alimentary habits and spatial-temporal distribution of eating behaviour patterns in a natural population of lizards (Gallotia galloti). Vieraea 20, 1–9.
Molina-Borja, M.Padron-Fumero, M., and Alfonso-Martin, M. T. (1997). Intrapopulation variability in morphology, coloration, and body size in two races of the lacertid lizard, Gallotia galloti. J. Herpetol. 31, 499–507.
Mou, Y.-P. and Barbault, R. (1986). Régime alimentaire d' une population de lézard des murailles, Podarcis muralis (Laurent, 1768) dans le Sud-Ouest de la France. Amph.-Rept. 7, 171–80.
Nagy, K. A., Huey, R. B. and Bennett, A. F. (1984). Field energetics and foraging mode of Kalahari lacertid lizards. Ecology 65, 588–96.
Nouira, S. (1983). Partage des resources alimentaires entre deux Lacertidae sympatriques des iles Kerkennah (Tunisie): Acanthodactylus pardalis et Eremias olivieri. Soc. Zool. Fr. 1983, 477–83.
Olsson, M. and Madsen, T. (1998). Sexual selection and sperm competition in reptiles. In Sperm Competition and Sexual Selection, ed. Birkhead, T. R. and Moller, A. P., pp. 503–610. London: Academic Press.
Pérez-Mellado, V. and Corti, C. (1993). Dietary adaptations and herbivory in lacertid lizards of the genus Podarcis from western Mediterranean islands (Reptilia-Sauria). Bonn. Zool. Beitr. 44, 193–220.
Perry, G. (1999). The evolution of search modes: ecological versus phylogenetic perspectives. Am. Nat. 153, 98–109.
Pollo, C. J. and Pérez-Mellado, V. (1988). Trophic ecology of a taxocenosis of Mediterranean Lacertidae. Ecolog. Mediterranea 14, 131–46.
Pounds, J. A. (1988). Ecomorphology, locomotion, and microhabitat structure: patterns in a tropical mainland Anolis community. Ecol. Monogr. 58, 299–320.
Reidy, S. P., Kerr, R. and Nelson, J. A. (2000). Aerobic and anaerobic swimming performance of individual Atlantic cod. J. Exp. Biol. 203, 347–57.
Roig-Fernandez, J. M. (1998). Ecologia trófica de una población pirenaica de lagartija de turbera Zootoca vivipara (Jacquin, 1787). Tesis de licenciatura, University of Barcelona, Spain.
Roughgarden, J. (1995). Anolis Lizards of the Caribbean. New York: Oxford University Press.
Schoener, T. W. (1971). Theory of feeding strategies. Ann. Rev. Ecol. Syst. 2, 369–404.
Sokal, R. R. and Rohlf, F. J. (1995). Biometry. The Principles and Practice of Statistics in Biological Research, 3rd edn. New York: W. H. Freeman and Company.
Spezzano, L. C. and Jayne, B. C. (2004). The effects of surface diameter and incline of the hindlimb kinematics of an arboreal lizard (Anolis sagrei). J. Exp. Biol. 207, 2115–31.
Stearns, S. C. (1992). The Evolution of Life Histories. New York: Oxford University Press.
Valido, A. and Nogales, M. (1994). Frugivory and seed dispersal by the lizard Gallotia galloti (Lacertidae) in a xeric habitat of the Canary Islands. Oikos 70, 403–11.
Valido, A. and Nogales, M. (2003). Digestive ecology of two omnivorous Canarian lizard species (Gallotia, Lacertidae). Amph.-Rept. 24, 331–44.
Damme, R., Wilson, R. S., Vanhooydonck, B. and Aerts, P. (2002). Performance constraints in decathletes. Nature 415, 755–6.
Vanhooydonck, B. and Damme, R. (1999). Evolutionary relationships between body shape and habitat use in lacertid lizards. Evol. Ecol. Res. 1, 785–805.
Vanhooydonck, B. and Damme, R. (2001). Evolutionary trade-offs in locomotor capacities in lacertid lizards: are splendid sprinters clumsy climbers? J. Evol. Biol. 14, 48–54.
Vanhooydonck, B. and Damme, R. (2003). Relationships between locomotor performance, microhabitat use and antipredator behaviour in lacertid lizards. Funct. Ecol. 17, 160–9.
Vanhooydonck, B.Damme, R. and Aerts, P. (2001). Speed and stamina trade-off in lacertid lizards. Evolution 55, 1040–8.
Verwaijen, D., Damme, R. and Herrel, A. (2002). Relationships between head size, bite force, prey handling efficiency and diet in two sympatric lacertid lizards. Funct. Ecol. 16, 842–50.
Westneat, M. W. (1994). Transmission forces and velocity in the feeding mechanisms of labrid fishes (Teleostei, Perciformes). Zoomorphology 114, 103–18.
Westneat, M. W. (1995). Feeding, function, and phylogeny: analysis of historical biomechanics in labrid fishes using comparative methods. Syst. Biol. 44, 361–83.
Zaaf, A., Damme, R., Herrel, A. and Aerts, P. (2001). Spatio-temporal gait characteristics of level and vertical locomotion in a ground-dwelling and a climbing gecko. J. Exp. Biol. 204, 1233–46.