Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-24T22:16:58.240Z Has data issue: false hasContentIssue false

29 - Tyrosinemia

from SECTION IV - METABOLIC LIVER DISEASE

Published online by Cambridge University Press:  18 December 2009

Grant A. Mitchell M.D.
Affiliation:
Professor, Department of Pediatrics, CHU Sainte-Justine and Université de Montréal, Montréal, Québec, Canada
Pierre A. Russo M.D.
Affiliation:
Professor of Pathology and Pediatrics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
Josée Dubois M.D., F.R.C.P.
Affiliation:
Professor of Radiology, Department of Radiology, CHU Sainte-Justine and Université de Montréal, Montréal, Québec, Canada
Fernando Alvarez M.D.
Affiliation:
Professor of Pediatrics, Department of Pediatric Gastroenterology, CHU Sainte-Justine and Université de Montréal, Montréal, Québec, Canada
Frederick J. Suchy
Affiliation:
Mount Sinai School of Medicine, New York
Ronald J. Sokol
Affiliation:
University of Colorado, Denver
William F. Balistreri
Affiliation:
University of Cincinnati
Get access

Summary

Hepatorenal tyrosinemia is a fascinating inborn error of metabolism that can affect numerous organs, particularly the liver, kidneys, and peripheral nerves. The first report of a patient with elevated blood tyrosine was by Medes in 1932 [1]. Patients with a more typical clinical and biochemical picture of tyrosinemia were then described in the late 1950s [2–5]. Since then, more than 500 patients have been reported in the literature [6–8] or enrolled in the International NTBC [2-(2-nitro-4-trifluoromethyl benzoyl)-1,3-cyclohexanedione] Trial. Previously, almost all patients died in infancy and early childhood, and only isolated case reports described affected adults. In the 50 years since the description of tyrosinemia [3], the course of the disease has been improved successively by the introduction of diet therapy, neonatal screening, and hepatic transplantation. The advent of liver and kidney transplantation as a definitive treatment [7–11] revolutionized the outcome. Recently, the availability of NTBC, a chemical now designated as nitisinone and commercialized as Orfadin (Swedish Orphan International AB), has provided hope for a nonsurgical solution for some patients. On a fundamental level, tyrosinemia raises questions in hepatology, biochemical and population genetics, cell biology, oncology, and public health.

PATHOPHYSIOLOGY

Tyrosinemia is caused by a deficiency of fumarylacetoacetate hydrolase (FAH; enzyme [EC] 3.7.1.2), the last enzyme of tyrosine degradation (Figure 29.1A). The site of the primary metabolic block in tyrosinemia was elegantly deduced by Lindblad et al. in 1977 [12] and subsequently confirmed enzymatically by several investigators [13–15].

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Medes, G. A new error of tyrosine metabolism: tyrosinosis. The intermediary metabolism of tyrosine and phenylalanine. Biochem J 1932;26:917–40.CrossRefGoogle ScholarPubMed
Baber, M D. A case of congenital cirrhosis of the liver with renal tubular defects akin to those in the Fanconi syndrome. Arch Dis Child 1956;31:335–9.CrossRefGoogle ScholarPubMed
Sakai, K, Kitagawa, T. An atypical case of tyrosinosis (1-parahydroxyphenyllactic aciduria). Part 1. Clinical and laboratory findings. Jikei Med J 1957;2:1–10.Google Scholar
Sakai, K, Kitagawa, T. An atypical case of tyrosinosis (1-parahydroxyphenyllactic aciduria). Part 2. A research on the metabolic block. Jikei Med J 1957;2:11–15.Google Scholar
Sakai, K, Kitagawa, T, Yoshioka, K. An atypical case of tyrosinosis (1-parahydroxyphenyllactic aciduria). Part 3. The outcome of the patient; pathological and biochemical observations of the organ tissues. Jikei Med J 1959;6:15–24.Google Scholar
Larochelle, J, Privé, L, Bélanger, M. Hereditary tyrosinemia. I. Clinical and biological study of 62 cases. Pediatrie 1973;28:5–18.Google ScholarPubMed
Paradis, K, Weber, A, Seidman, E G. Liver transplantation for hereditary tyrosinemia: the Quebec experience. Am J Hum Genet 1990;47:338–42.Google ScholarPubMed
Kvittingen, E A. Hereditary tyrosinemia type I – an overview. Scand J Clin Lab Invest Suppl 1986;184:27–34.Google ScholarPubMed
Mieles, L A, Esquivel, C O, Thiel, D H. Liver transplantation for tyrosinemia. A review of 10 cases from the University of Pittsburgh. Dig Dis Sci 1990;35:153–7.CrossRefGoogle ScholarPubMed
Thiel, D H, Gartner, L M, Thorp, F K. Resolution of the clinical features of tyrosinemia following orthotopic liver transplantation for hepatoma. J Hepatol 1986;3:42–8.CrossRefGoogle ScholarPubMed
Spronsen, F J, Berger, R, Smit, G P. Tyrosinaemia type I: orthotopic liver transplantation as the only definitive answer to a metabolic as well as an oncological problem. J Inherit Metab Dis 1989;12(suppl 2):339–42.CrossRefGoogle Scholar
Lindblad, B, Lindstedt, S, Steen, G. On the enzymic defects in hereditary tyrosinemia. Proc Natl Acad Sci U S A 1977;74:4641–5.CrossRefGoogle ScholarPubMed
Kvittingen, E A, Jellum, E, Stokke, O. Assay of fumarylacetoacetate fumarylhydrolase in human liver-deficient activity in a case of hereditary tyrosinemia. Clin Chim Acta 1981;115:311–19.CrossRefGoogle Scholar
Berger, R, Smit, G P, Stoker-de Vries, S A. Deficiency of fumarylacetoacetase in a patient with hereditary tyrosinemia. Clin Chim Acta 1981;114:37–44.CrossRefGoogle Scholar
Gray, R G, Patrick, A D, Preston, F E. Acute hereditary tyrosinaemia type I: clinical, biochemical and haematological studies in twins. J Inherit Metab Dis 1981;4:37–40.CrossRefGoogle ScholarPubMed
Phaneuf, D, Labelle, Y, Bérubé, D. Cloning and expression of the cDNA encoding human fumarylacetoacetate hydrolase, the enzyme deficient in hereditary tyrosinemia: assignment of the gene to chromosome 15. Am J Hum Genet 1991;48:525–35.Google ScholarPubMed
Kvittingen, E A, Brodtkorb, E. The pre- and post-natal diagnosis of tyrosinemia type I and the detection of the carrier state by assay of fumarylacetoacetase. Scand J Clin Lab Invest Suppl 1986;184:35–40.Google ScholarPubMed
Russo, P, O'Regan, S. Visceral pathology of hereditary tyrosinemia type I. Am J Hum Genet 1990;47:317–24.Google ScholarPubMed
Worthen, H G. Renal toxicity of maleic acid in the rat. Lab Invest 1963;12:791–801.Google ScholarPubMed
Stoner, E, Starkman, H, Wellner, D. Biochemical studies of a patient with hereditary hepatorenal tyrosinemia: evidence of glutathione deficiency. Pediatr Res 1984;18:1332–6.CrossRefGoogle ScholarPubMed
Meister, A, Larsson, A. Glutathione synthetase deficiency and other disorders of the gamma-glutamyl cycle. In: Scriver, C R, Beaudet, A L, SlyWS, et al WS, et al. The metabolic basis of inherited disease. New York: McGraw-Hill, 1989:855–68.Google Scholar
Jorquera, R, Tanquay, R M. The mutagenicity of the tyrosine metabolite, fumarylacetoacetate, is enhanced by glutathione depletion. Biochem Biophys Res Commun 1997;232:42–8.CrossRefGoogle ScholarPubMed
Kvittingen, E A, Rootwelt, H, Brandtzaeg, P. Hereditary tyrosinemia type I: self-induced correction of the fumarylacetoacetase defect. J Clin Invest 1993;91:1816–21.CrossRefGoogle ScholarPubMed
Kvittingen, E A, Rootwelt, H, Berger, R. Self-induced correction of the genetic defect in tyrosinemia type I. J Clin Invest 1994;94:1657–61.CrossRefGoogle ScholarPubMed
Ahmad, S, Teckman, J H, Lueder, G T. Corneal opacities associated with NTBC treatment. Am J Ophthalmol 2002;134:266–8.CrossRefGoogle ScholarPubMed
Niswander, L, Kelsey, G, Schedl, A. Molecular mapping of albino deletions associated with early embryonic lethality in the mouse. Genomics 1991;9:162–9.CrossRefGoogle ScholarPubMed
Grompe, M, al-Dhalimy, M, Ou, C N. Loss of fumarylacetoacetate hydrolase is responsible for the neonatal hepatic dysfunction phenotype of lethal albino mice. Genes Dev 1993;7:2298–307.CrossRefGoogle ScholarPubMed
Al Dhalimy, M, Overturf, K, Finegold, M. Long-term therapy with NTBC and tyrosine-restricted diet in a murine model of hereditary tyrosinemia type I. Mol Genet Metab 2002;75:38–45.CrossRefGoogle Scholar
Endo, F, Kubo, S, AwataH, et al H, et al. Complete rescue of lethal albino c14CoS mice by null mutation of 4-hydroxyphenylpyruvate dioxygenase and induction of apoptosis of hepatocytes in these mice by in vivo retrieval of the tyrosine catabolic pathway. J Biol Chem 1997;272:24426–32.CrossRefGoogle Scholar
Kubo, S, Sun, M, Miyahara, M. Hepatocyte injury in tyrosinemia type I is induced by fumarylacetoacetate and is inhibited by caspase inhibitors. Proc Natl Acad Sci U S A 1998;95:9552–7.CrossRefGoogle Scholar
Grisham, J W. Interspecies comparison of liver carcinogenesis: implications for cancer risk assessment. Carcinogenesis 1997;18:59–81.CrossRefGoogle ScholarPubMed
Mitchell, G A, Larochelle, J, Lambert, M. Neurologic crises in hereditary tyrosinemia. N Engl J Med 1990;322:432–7.CrossRefGoogle ScholarPubMed
Kappas, A, Sassa, S, Galbraith, R. The porphyrias. In: Scriver, C R, Beaudet, A L, SlyWS, et al WS, et al. The metabolic basis of inherited disease. New York: McGraw-Hill, 1989:1305–66.Google Scholar
Strife, C F, Zuroweste, E L, Emmett, E A. Tyrosinemia with acute intermittent porphyria: aminolevulinic acid dehydratase deficiency related to elevated urinary aminolevulinic acid levels. J Pediatr 1977;90:400–4.CrossRefGoogle ScholarPubMed
Rank, J M, Pascual-Leone, A, Payne, W. Hematin therapy for the neurologic crisis of tyrosinemia. J Pediatr 1991;118:136–9.CrossRefGoogle ScholarPubMed
Manowski, Z, Silver, M M, Roberts, E A. Liver cell dysplasia and early liver transplantation in hereditary tyrosinemia. Mod Pathol 1990;3:694–701.Google ScholarPubMed
Braekeleer, M, Larochelle, J. Genetic epidemiology of hereditary tyrosinemia in Quebec and in Saguenay-Lac-St-Jean. Am J Hum Genet 1990;47:302–7.Google ScholarPubMed
Bouchard, G, Laberge, C, Scriver, C R. Hereditary tyrosinemia and vitamin-dependent rickets in Saguenay. A genetic and demographic approach [in French]. Union Med Can 1985;114:633–6.Google Scholar
Mitchell, G A, Grompe, M, Lambert, M, Tanguay, R M. Hypertyrosinemia. In: Scriver, C R, Beaudet, A L, Sly, W S, Valle, D. The metabolic and molecular bases of inherited disease. New York: McGraw Hill, 2001: 1777–806.Google Scholar
Grompe, M, St-Louis, M, Demers, S I. A single mutation of the fumarylacetoacetate hydrolase gene in French Canadians with hereditary tyrosinemia type I. N Engl J Med 1994;331:353–7.CrossRefGoogle ScholarPubMed
Poudrier, J, St-Louis, M, Lettre, F. Frequency of the IVS12+5G-A splice mutation of the fumarylacetoacetate hydrolase gene in carriers of hereditary tyrosinaemia in the French-Canadian population of Saguenay-Lac-St-Jean. Prenat Diagn 1996;16:59–64.3.0.CO;2-D>CrossRefGoogle Scholar
Ploos van Amstel, J K, Bergman, A J, Beurden, E A. Hereditary tyrosinemia type 1: novel missense, nonsense and splice consensus mutations in the human fumarylacetoacetate hydrolase gene; variability of the genotype-phenotype relationship. Hum Genet 1996;97:51–9.CrossRefGoogle ScholarPubMed
St-Louis, M, Leclerc, B, Laine, J. Identification of a stop mutation in five Finnish patients suffering from hereditary tyrosinemia type I. Hum Mol Genet 1994;3:69–72.CrossRefGoogle ScholarPubMed
Rootwelt, H, Hoie, K, Berger, R. Fumarylacetoacetate mutations in tyrosinaemia type I. Hum Mutat 1996;7:239–43.3.0.CO;2-5>CrossRefGoogle Scholar
Rootwelt, H, Berger, R, Gray, G. Novel splice, missense, and nonsense mutations in the fumarylacetoacetase gene causing tyrosinemia type 1. Am J Hum Genet 1994;55:653–8.Google ScholarPubMed
Kvittingen, E A, Borresen, A L, Stokke, O. Deficiency of fumarylacetoacetase without hereditary tyrosinemia. Clin Genet 1985;27:550–4.CrossRefGoogle ScholarPubMed
Gentz, J, Johansson, S, Lindblad, B. Excretion of delta-aminolevulinic acid in hereditary tyrosinemia. Clin Chim Acta 1969;23:257–63.CrossRefGoogle Scholar
Croffie, J M, Gupta, S K, Chong, S K. Tyrosinemia type 1 should be suspected in infants with severe coagulopathy even in the absence of other signs of liver failure. Pediatrics 1999;103:675–8.CrossRefGoogle ScholarPubMed
Almeida, I T, Leandro, P P, Silva, M F. Tyrosinaemia type I with normal levels of plasma tyrosine. J Inherit Metab Dis 1990;13:305–7.CrossRefGoogle ScholarPubMed
Grenier, A, Lescault, A, Laberge, C. Detection of succinylacetone and the use of its measurement in mass screening for hereditary tyrosinemia. Clin Chim Acta 1982;123:93–9.CrossRefGoogle ScholarPubMed
Haagen, A A M, Duran, M. Absence of increased succinylacetone in the urine of a child with hereditary tyrosinaemia type I. J Inherit Metab Dis 1987;10(suppl 2):323–5.CrossRefGoogle Scholar
Laberge, C, Grenier, A, Valet, J P. Fumarylacetoacetase measurement as a mass-screening procedure for hereditary tyrosinemia type I. Am J Hum Genet 1990;47:325–8.Google ScholarPubMed
Jakobs, C, Stellaard, F, Kvittingen, E A. First-trimester prenatal diagnosis of tyrosinemia type I by amniotic fluid succinylacetone determination [letter]. Prenat Diagn 1990;10:133–4.CrossRefGoogle Scholar
Segal, S. Disorders of galactose metabolism. In: Scriver, C R, Beaudet, A L, SlyWS, et al WS, et al. The metabolic basis of inherited disease. New York: McGraw-Hill, 1989:453–80.Google Scholar
Gitzelman, R, Steinmann, B, Berghe, G. Disorders of fructose metabolism. In: Scriver, C R, Beaudet, A L, SlyWS, et al WS, et al. The metabolic basis of inherited disease. New York: McGraw-Hill, 1989:556–62.Google Scholar
Danks, D M. Disorders of copper transport. In: Scriver, C R, Beaudet, A L, SlyWS, et al WS, et al. The metabolic basis of inherited disease. New York: McGraw-Hill, 1989:1411–32.Google Scholar
Chen, Y T, Coleman, R A, Scheinman, J I. Renal disease in type 1 glycogen storage disease. N Engl J Med 1988;318:7–11.CrossRefGoogle Scholar
Nyhan, W L. Abnormalities in amino acid metabolism in clinical medicine. Norwalk, CT: Appleton-Century-Crofts, 1984.Google Scholar
Berger, R, Michals, K, Galbraeth, J. Tyrosinemia type Ib caused by maleylacetoacetate isomerase deficiency: a new enzyme defect [abstract]. Pediatr Res 1988;23:328.Google Scholar
Fernandez-Canon, J M, Baetscher, M W, Finegold, M. Maleylacetoacetate isomerase (MAAI/GSTZ)-deficient mice reveal a glutathione-dependent nonenzymatic bypass in tyrosine catabolism. Mol Cell Biol 2002;22:4943–51.CrossRefGoogle ScholarPubMed
Evans, D I, Sardharwalla, I B. Coagulation defect of congenital tyrosinaemia. Arch Dis Child 1984;59:1088–90.CrossRefGoogle ScholarPubMed
Gentz, J, Jagenburg, R, Zetterström, R. Tyrosinemia: an inborn error of tyrosine metabolism with cirrhosis of the liver and multiple renal tubular defects. J Pediatr 1965;66:670–96.CrossRefGoogle Scholar
Ferrell, L D, Crawford, J M, Dhillon, A P. Proposal for standardized criteria for the diagnosis of benign, borderline, and malignant hepatocellular lesions arising in chronic advanced liver disease. Am J Surg Pathol 1993;17:1113–23.CrossRefGoogle Scholar
Weinberg, A G, Mize, C E, Worthen, H G. The occurrence of hepatoma in the chronic form of hereditary tyrosinemia. J Pediatr 1976;88:434–8.CrossRefGoogle ScholarPubMed
Dionisi-Vici, C, Boglino, C, Marcellini, M. Tyrosinemia type I with early metastatic hepatocellular carcinoma: combined treatment with NTBC, chemotherapy and surgical mass removal. J Inherit Metab Dis 1997;20(suppl 1):3.Google Scholar
Cole, D E C, Tithecott, G A, Crocker, J F S. Alphaxalone/alphadolone and porphyria. Lancet 1984;1:690.CrossRefGoogle ScholarPubMed
Paradis K, Mitchell GA, Russo P. Tyrosinemia. In: Suchy, F J. Liver disease in children. St. Louis: CV Mosby, 1994:803–18.Google Scholar
Kvittingen, E A, Talseth, T, Halvorsen, S. Renal failure in adult patients with hereditary tyrosinaemia type I. J Inherit Metab Dis 1991;14:53–62.CrossRefGoogle ScholarPubMed
Halvorsen, S. Dietary treatment of tyrosinosis. Am J Dis Child 1967;113:38–40.Google ScholarPubMed
Kogut, M D, Shaw, K N, Donnell, G N. Tyrosinosis. Am J Dis Child 1967;113:47–53.Google ScholarPubMed
Sass-Kortsak, A, Ficici, S, Paunier, L. Observations on treatment in patients with tyrosyluria. Can Med Assoc J 1967;97:1089–95.Google ScholarPubMed
Suzuki, Y, Konda, M, Imai, I. Effect of dietary treatment on the renal tubular function in a patient with hereditary tyrosinemia. Int J Pediatr Nephrol 1987;8:171–6.Google Scholar
Bendon, P W, Hug, G. Glycogen accumulation in the pars recta of the proximal tubule in Fanconi syndrome. Pediatr Pathol 1986;6:411–29.CrossRefGoogle ScholarPubMed
Parington, M W, Haust, M D. A patient with tyrosinemia and hypermethioninemia. Can Med Assoc J 1967;97:1059–64.Google Scholar
Baumann, U, Preece, M A, Green, A. Hyperinsulinism in tyrosinaemia type I. J Inherit Metab Dis 2005;28:131–5.CrossRefGoogle ScholarPubMed
Lindberg, T, Nilsson, K O, Jeppsson, J O. Hereditary tyrosinaemia and diabetes mellitus. Acta Paediatr Scand 1979;68: 619–20.CrossRefGoogle ScholarPubMed
Edwards, M A, Green, A, Colli, A. Tyrosinaemia type I and hypertrophic obstructive cardiomyopathy [letter]. Lancet 1987;1:1437–8.CrossRefGoogle Scholar
Lindblad, B, Fällström, S P, Höyer, S. Cardiomyopathy in fumarylacetoacetase deficiency (hereditary tyrosinaemia): a new feature of the disease. J Inherit Metab Dis 1987;10:319–22.CrossRefGoogle Scholar
Andre, N, Roquelaure, B, Jubin, V, Ovaert, C. Successful treatment of severe cardiomyopathy with NTBC in a child with tyrosinaemia type I. J Inherit Metab Dis 2005;28:103–6.CrossRefGoogle Scholar
Arora, N, Stumper, O, Wright, J. Cardiomyopathy in tyrosinaemia type I is common but usually benign. J Inherit Metab Dis 2006;29:54–7.CrossRefGoogle ScholarPubMed
Dubois, J, Garel, L, Patriquin, H. Imaging features of type 1 hereditary tyrosinemia: a review of 30 patients. Pediatr Radiol 1996;26:845–51.CrossRefGoogle ScholarPubMed
Crone, J, Möslinger, D, Bodamer, O A. Reversibility of cirrhotic regenerative liver nodules upon NTBC treatment in a child with tyrosinemia type 1. Acta Pediatr 2003;92:625–8.CrossRefGoogle Scholar
Privé, L. Pathological findings in patients with tyrosinemia. Can Med Assoc J 1967;97:1054–6.Google ScholarPubMed
Carson, N A, Biggart, J D, Bittles, A H. Hereditary tyrosinaemia. Clinical, enzymatic, and pathological study of an infant with the acute form of the disease. Arch Dis Child 1976;51:106–13.CrossRefGoogle ScholarPubMed
Halvorsen, S, Pande, H, Loken, A C. Tyrosinosis. A study of 6 cases. Arch Dis Child 1966;41:238–49.CrossRefGoogle ScholarPubMed
Dehner, L P, Snover, D C, Sharp, H L. Hereditary tyrosinemia type I (chronic form): pathologic findings in the liver. Hum Pathol 1989;20:149–58.CrossRefGoogle ScholarPubMed
Yu, J S, Walker-Smith, J A, Burnard, E D. Neonatal hepatitis in premature infants simulating hereditary tyrosinosis. Arch Dis Child 1971;46:306–9.CrossRefGoogle ScholarPubMed
Watanabe, S, Okita, K, Harada, T. Morphologic studies of the liver cell dysplasia. Cancer 1983;51:2197–205.3.0.CO;2-5>CrossRefGoogle ScholarPubMed
Laberge, C, Lescault, A, Tanguay, R M. Hereditary tyrosinemias (type I): a new vista on tyrosine toxicity and cancer. Adv Exp Med Biol 1986;206:209–21.Google ScholarPubMed
Tremblay, M, Bélanger, L, Larochelle, J. Hereditary tyrosinemia: examination of the liver by electron microscopy of hepatic biopsies: observation of 7 cases [in French]. Union Med Can 1977;106:1014–16.Google Scholar
Phillips, M J, Poucell, S, Patterson, J. The liver: an atlas and text of ultrastructural pathology. New York: Raven, 1987.Google Scholar
Jetvic, M M, Thorp, F K, Hruban, Z. Hereditary tyrosinemia with hyperplasia of juxtaglomerular apparatus. Am J Clin Pathol 1974;61:423–37.Google Scholar
Tuchman, M, Freese, D K, Sharp, H L. Contribution of extrahepatic tissues to biochemical abnormalities in hereditary tyrosinemia type I: study of three patients after liver transplantation. J Pediatr 1987;110:399–403.CrossRefGoogle ScholarPubMed
Flatmark, A, Bergan, A, Sodal, G. Does liver transplantation correct the metabolic defect in hereditary tyrosinemia?Transplant Proc 1986;18:67–8.Google Scholar
Callurel, P, Feldman, G, Prandi, D. Immune complex type glomerulonephritis in cirrhosis of the liver. Am J Pathol 1975;80:329–36.Google Scholar
Perry, T L. Tyrosinemia associated with hypermethioninemia and islet cell hyperplasia. Can Med Assoc J 1967;97:1067–75.Google ScholarPubMed
Jaffe, R, Hashida, Y, Yunis, E J. The endocrine pancreas of the neonate and infant. In: Rosenberg, H S, Bernstein, J. Perspectives in pediatric pathology. Paris: Masson, 1980:137–66.Google Scholar
Hardwick, D F, Dimmick, J E. Metabolic cirrhoses of infancy and early childhood. In: Rosenberg, H S, Bolande, R P. Perspectives in pediatric pathology. Chicago: Year Book, 1976:103–44.Google Scholar
Mitchell, G A, Lambert, M, Tanguay, R M. Hypertyrosinemia. In: Scriver, C R, Beaudet, A L, SlyWS, et al WS, et al. The metabolic and molecular bases of inherited disease. New York: McGraw-Hill, 1995:1077–176.Google Scholar
Ameen, V Z, Powell, G K, Rassin, D K. Cholestasis and hypermethioninemia during dietary management of hereditary tyrosinemia type 1. J Pediatr 1986;108:949–53.CrossRefGoogle ScholarPubMed
Mudd, S H, Levy, H L, Skovby, F. Disorders of transsulfuration. In: Scriver, C R, Beaudet, A L, SlyW, et al W, et al. The metabolic basis of inherited disease. New York: McGraw-Hill, 1989:693–741.Google Scholar
Freese, D K, Tuchman, M, Schwarzenberg, S J. Early liver transplantation is indicated for tyrosinemia type I. J Pediatr Gastroenterol Nutr 1991;13:10–15.CrossRefGoogle ScholarPubMed
Flye, M W, Riely, C A, Hainline, B E. The effects of early treatment of hereditary tyrosinemia type I in infancy by orthotopic liver transplantation. Transplantation 1990;49:916–21.CrossRefGoogle ScholarPubMed
Jehan, P, Buchman, M, Odièvre, M. Dietary management of hereditary tyrosinemia. Apropos of 7 cases. Ann Pediatr (Paris) 1984;31:33–40.Google ScholarPubMed
Lindblad, B. Treatment with glutathione and other sulfhydryl compounds in hereditary tyrosinemia. In: Larsson, A. Functions of glutathione: biochemical, physiological, toxicological, and clinical aspects. New York: Raven, 1983:337–46.Google Scholar
Herzog, D, Martin, S, Turpin, S, Alvarez, F. Normal glomerular filtration rate in long-term follow-up of children after orthotopic liver transplantation. Transplantation 2006;81:672–7.CrossRefGoogle ScholarPubMed
McDiarmid, S V, Ettenger, R B, Fine, R F. Serial decrease in glomerular filtration rate in long-term pediatric liver transplantation survivors treated with cyclosporine. Transplantation 1989;47:314–18.CrossRefGoogle ScholarPubMed
Paradis, K, O'Regan, S, Seidman, E. Improvement in true glomerular filtration rate after cyclosporine fractionation in pediatric liver transplant recipients. Transplantation 1991;51:922–4.Google ScholarPubMed
Laine, J, Salo, M K, Krogerus, L. The nephropathy of type I tyrosinemia after liver transplantation. Pediatr Res 1995;37:640–5.CrossRefGoogle ScholarPubMed
al Edreesi, M, Caille, G, Dupuis, C. Safety, tolerability, and pharmacokinetic actions of diltiazem in pediatric liver transplant recipients on cyclosporine. Liver Transplant Surg 1995;1:383–8.CrossRefGoogle ScholarPubMed
Pierik, L J, Spronsen, F J, Bijleveld, C M, Dael, C M. Renal function in tyrosinaemia type I after liver transplantation: a long-term follow-up. J Inherit Metab Dis 2005;28:871–6.CrossRefGoogle ScholarPubMed
Overturf, K, Al-Dhalimy, M, OuCN, et al CN, et al. Serial transplantation reveals the stem-cell-like regenerative potential of adult mouse hepatocytes. Am J Pathol 1997;151:1273–80.Google ScholarPubMed
Grompe, M. Therapeutic liver repopulation for the treatment of metabolic liver diseases. Hum Cell 1999;12:171–80.Google ScholarPubMed
Lee, L A. Advances in hepatocyte transplantation: a myth becomes reality. J Clin Invest 2001;108:367–9.CrossRefGoogle ScholarPubMed
Wang, X, Foster, M, Al Dhalimy, M. The origin and liver repopulating capacity of murine oval cells. Proc Natl Acad Sci U S A 2003;100(suppl 1):11881–8.CrossRefGoogle Scholar
Lock, E A, Gaskin, P, Ellis, M K. Tissue distribution of 2-(2-nitro-4-trifluoromethylbenzoyl)cyclohexane-1,3-dione (NTBC): effect on enzymes involved in tyrosine catabolism and relevance to ocular toxicity in the rat. Toxicol Appl Pharmacol 1996;141:439–47.CrossRefGoogle ScholarPubMed
Magera, M J, Gunawardena, N D, Hahn, S H. Quantitative determination of succinylacetone in dried blood spots for newborn screening of tyrosinemia type I. Mol Genet Metab 2006;88:16–21.CrossRefGoogle ScholarPubMed
Allard, P, Grenier, A, Korson, M S. Newborn screening for hepatorenal tyrosinemia by tandem mass spectrometry: analysis of succinylacetone extracted from dried blood spots. Clin Biochem 2004;37:1010–15.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Tyrosinemia
    • By Grant A. Mitchell, M.D., Professor, Department of Pediatrics, CHU Sainte-Justine and Université de Montréal, Montréal, Québec, Canada, Pierre A. Russo, M.D., Professor of Pathology and Pediatrics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, Josée Dubois, M.D., F.R.C.P., Professor of Radiology, Department of Radiology, CHU Sainte-Justine and Université de Montréal, Montréal, Québec, Canada, Fernando Alvarez, M.D., Professor of Pediatrics, Department of Pediatric Gastroenterology, CHU Sainte-Justine and Université de Montréal, Montréal, Québec, Canada
  • Edited by Frederick J. Suchy, Mount Sinai School of Medicine, New York, Ronald J. Sokol, University of Colorado, Denver, William F. Balistreri, University of Cincinnati
  • Book: Liver Disease in Children
  • Online publication: 18 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511547409.031
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Tyrosinemia
    • By Grant A. Mitchell, M.D., Professor, Department of Pediatrics, CHU Sainte-Justine and Université de Montréal, Montréal, Québec, Canada, Pierre A. Russo, M.D., Professor of Pathology and Pediatrics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, Josée Dubois, M.D., F.R.C.P., Professor of Radiology, Department of Radiology, CHU Sainte-Justine and Université de Montréal, Montréal, Québec, Canada, Fernando Alvarez, M.D., Professor of Pediatrics, Department of Pediatric Gastroenterology, CHU Sainte-Justine and Université de Montréal, Montréal, Québec, Canada
  • Edited by Frederick J. Suchy, Mount Sinai School of Medicine, New York, Ronald J. Sokol, University of Colorado, Denver, William F. Balistreri, University of Cincinnati
  • Book: Liver Disease in Children
  • Online publication: 18 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511547409.031
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Tyrosinemia
    • By Grant A. Mitchell, M.D., Professor, Department of Pediatrics, CHU Sainte-Justine and Université de Montréal, Montréal, Québec, Canada, Pierre A. Russo, M.D., Professor of Pathology and Pediatrics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, Josée Dubois, M.D., F.R.C.P., Professor of Radiology, Department of Radiology, CHU Sainte-Justine and Université de Montréal, Montréal, Québec, Canada, Fernando Alvarez, M.D., Professor of Pediatrics, Department of Pediatric Gastroenterology, CHU Sainte-Justine and Université de Montréal, Montréal, Québec, Canada
  • Edited by Frederick J. Suchy, Mount Sinai School of Medicine, New York, Ronald J. Sokol, University of Colorado, Denver, William F. Balistreri, University of Cincinnati
  • Book: Liver Disease in Children
  • Online publication: 18 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511547409.031
Available formats
×