Skip to main content Accessibility help
  • Print publication year: 2007
  • Online publication date: December 2009

30 - The Liver in Lysosomal Storage Diseases

    • By T. Andrew Burrow, Resident, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Resident, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, Kevin E. Bove, Professor of Pathology and Pediatrics, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Pediatric Pathologist, Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, Gregory A. Grabowski, Professor, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Director, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
  • Edited by Frederick J. Suchy, Mount Sinai School of Medicine, New York, Ronald J. Sokol, University of Colorado, Denver, William F. Balistreri, University of Cincinnati
  • Publisher: Cambridge University Press
  • DOI:
  • pp 714-735


Lysosomes are membrane-bound cellular organelles that contain multiple hydrolases needed for the digestion of various macromolecules, including mucopolysaccharides, glycosphingolipids, and oligosaccharides [1]. The lysosomal storage diseases are a group of more than 40 diseases that are characterized by defective lysosomal function leading to an accumulation of specific substrates within the lysosomes and eventual impairment of cellular function. A schematic of the lysosomal system, enzyme trafficking, and substrate accumulation is shown in Figure 30.1.

These diseases are classified by the nature of the stored material that results from defects in selected lysosomal enzymes, their cofactors, and/or enzyme or substrate transport (Table 30.1). The lysosomal storage diseases are heterogeneous, progressive, multisystemic diseases that have a spectrum of ages of onset, severity, rates of progression, and organ involvement. Lysosomal storage diseases have significant morbidity and mortality in the absence of effective treatment. The majority of these diseases are autosomal recessive, and although individually each is rare, the combined birth prevalence is approximately 1 in 7000 live births [2]. The diseases are traditionally diagnosed biochemically but in many cases, may also be diagnosed molecularly by the discovery of pathogenic mutations in both copies of the particular gene.

The liver is nearly always involved in lysosomal storage diseases; this can be seen at the light or electron microscopic level. The degree of clinical involvement depends on the disorder. In many cases, mild elevations in liver studies and hepatomegaly are the only manifestations. However, significant hepatic injury may be present, resulting in considerable morbidity.

Recommend this book

Email your librarian or administrator to recommend adding this book to your organisation's collection.

Liver Disease in Children
  • Online ISBN: 9780511547409
  • Book DOI:
Please enter your name
Please enter a valid email address
Who would you like to send this to *
Sabatini, D D, Adesnik, M B. The biogenesis of membranes and organelles. In: Scriver, C R, Beaudet, A L, SlyWS, et al WS, et al. The metabolic and molecular bases of inherited disease. New York: McGraw-Hill, 2001:433–517.
Poorthuis, B J, Wevers, R A, Kleijer, W J. The frequency of lysosomal storage diseases in The Netherlands. Hum Genet 1999;105:151–6.
Grabowski, G A, Hopkin, R J. Enzyme therapy for lysosomal storage disease: principles, practice, and prospects. Annu Rev Genomics Hum Genet 2003;4:403–36.
Proia, R L, Wu, Y P. Blood to brain to the rescue. J Clin Invest 2004;113:1108–10.
Degroote, S, Wolthoorn, J, Meer, G. The cell biology of glycosphingolipids. Semin Cell Dev Biol 2004;15:375–87.
Beutler, E, Grabowski, G A. Gaucher disease. In: Scriver, C R, Beaudet, A L, SlyWS, et al WS, et al. The metabolic and molecular bases of inherited disease. New York: McGraw Hill, 2001:3635–68.
Meikle, P J, Hopwood, J J, Clague, A E, Carey, W F. Prevalence of lysosomal storage disorders. JAMA 1999;281:249–54.
Grabowski, G A, Kolodny, E H, WeinrebNJ, et al NJ, et al. Gaucher disease: phenotypic and genetic variation. In: Scriver, C, Beaudet, A, Sly, W, Valle, D. The metabolic and molecular bases of inherited disease. New York: McGraw-Hill, 2006: in press.
Malhotra, A, Boxer, M, Mistry, P K. Hepatic response to enzyme replacement therapy (ERT) with mannose-terminated glucocerebrosidase in type 1 Gaucher disease. Hepatology 2004;40:161.
Lachmann, R H, Wight, D G, Lomas, D J. Massive hepatic fibrosis in Gaucher's disease: clinico-pathological and radiological features. Q J Med 2000;93:237–44.
James, S P, Stromeyer, F W, Chang, C, Barranger, J A. Liver abnormalities in patients with Gaucher's disease. Gastroenterology 1981;80:126–33.
James, S P, Stromeyer, F W, Stowens, D W, Barranger, J A. Gaucher disease: hepatic abnormalities in 25 patients. Prog Clin Biol Res 1982;95:131–42.
Perel, Y, Bioulac-Sage, P, Chateil, J F. Gaucher's disease and fatal hepatic fibrosis despite prolonged enzyme replacement therapy. Pediatrics 2002;109:1170–3.
Erjavec, Z, Hollak, C E, Vries, E G. Hepatocellular carcinoma in a patient with Gaucher disease on enzyme supplementation therapy. Ann Oncol 1999;10:243.
Barton, N W, Brady, R O, Dambrosia, J M. Replacement therapy for inherited enzyme deficiency – macrophage-targeted glucocerebrosidase for Gaucher's disease. N Engl J Med 1991;324:1464–70.
Weinreb, N J, Aggio, M C, Andersson, H C. Gaucher disease type 1: revised recommendations on evaluations and monitoring for adult patients. Semin Hematol 2004;41:15–22.
Weinreb, N J, Charrow, J, Andersson, H C. Effectiveness of enzyme replacement therapy in 1028 patients with type 1 Gaucher disease after 2 to 5 years of treatment: a report from the Gaucher Registry. Am J Med 2002;113:112–19.
Radin, N S. Treatment of Gaucher disease with an enzyme inhibitor. Glycoconj J 1996;13:153–7.
Platt, F M, Jeyakumar, M, Andersson, U. Inhibition of substrate synthesis as a strategy for glycolipid lysosomal storage disease therapy. J Inherit Metab Dis 2001;24:275–90.
Cox, T, Lachmann, R, Hollak, C. Novel oral treatment of Gaucher's disease with N-butyldeoxynojirimycin (OGT 918) to decrease substrate biosynthesis. Lancet 2000;355:1481–5.
Altarescu, G, Hill, S, Wiggs, E. The efficacy of enzyme replacement therapy in patients with chronic neuronopathic Gaucher's disease. J Pediatr 2001;138:539–47.
Prows, C A, Sanchez, N, Daugherty, C, Grabowski, G A. Gaucher disease: enzyme therapy in the acute neuronopathic variant. Am J Med Genet 1997;71:16–21.
Ricci, V, Stroppiano, M, Corsolini, F. Screening of 25 Italian patients with Niemann-Pick A reveals fourteen new mutations, one common and thirteen private, in SMPD1. Hum Mutat 2004;24:105.
Pittis, M G, Ricci, V, Guerci, V I. Acid sphingomyelinase: identification of nine novel mutations among Italian Niemann Pick type B patients and characterization of in vivo functional in-frame start codon. Hum Mutat 2004;24:186–7.
Sikora, J, Pavlu-Pereira, H, Elleder, M. Seven novel acid sphingomyelinase gene mutations in Niemann-Pick type A and B patients. Ann Hum Genet 2003;67:63–70.
Schuchman, E H, Desnick, R J. Niemann-Pick disease types A and B: acid sphingomyelinase deficiencies. In: Scriver, C R, Beaudet, A L, SlyWS, et al WS, et al. The metabolic and molecular bases of inherited disease. New York: McGraw-Hill, 2001:3589–610.
Simonaro, C M, Desnick, R J, McGovern, M M. The demographics and distribution of type B Niemann-Pick disease: novel mutations lead to new genotype/phenotype correlations. Am J Hum Genet 2002;71:1413–19.
Pavlu-Pereira, H, Asfaw, B, Poupctova, H. Acid sphingomyelinase deficiency. Phenotype variability with prevalence of intermediate phenotype in a series of twenty-five Czech and Slovak patients. A multi-approach study. J Inherit Metab Dis 2005;28:203–27.
Wasserstein, M P, Desnick, R J, Schuchman, E H. The natural history of type B Niemann-Pick disease: results from a 10-year longitudinal study. Pediatrics 2004;114:e672–7.
Labrune, P, Bedossa, P, Huguet, P. Fatal liver failure in two children with Niemann-Pick disease type B. J Pediatr Gastroenterol Nutr 1991;13:104–9.
Sogawa, H, Horino, K, Nakamura, F. Chronic Niemann-Pick disease with sphingomyelinase deficiency in two brothers with mental retardation. Eur J Pediatr 1978;128:235–40.
Takahashi, T, Akiyama, K, Tomihara, M. Heterogeneity of liver disorder in type B Niemann-Pick disease. Hum Pathol 1997;28:385–8.
Tassoni, J P, Fawaz, K A, Johnston, D E. Cirrhosis and portal hypertension in a patient with adult Niemann-Pick disease. Gastroenterology 1991;100:567–9.
Wilson, J A, Raufman, J P. Hepatic failure in adult Niemann-Pick disease. Am J Med Sci 1986;292:168–72.
Kayler, L K, Merion, R M, Lee, S. Long-term survival after liver transplantation in children with metabolic disorders. Pediatr Transplant 2002;6:295–300.
Smanik, E J, Tavill, A S, Jacobs, G H. Orthotopic liver transplantation in two adults with Niemann-Pick and Gaucher's diseases: implications for the treatment of inherited metabolic disease. Hepatology 1993;17:42–9.
Victor, S, Coulter, J B, Besley, G T. Niemann-Pick disease: sixteen-year follow-up of allogeneic bone marrow transplantation in a type B variant. J Inherit Metab Dis 2003;26:775–85.
Bayever, E, August, C S, Kamani, N. Allogeneic bone marrow transplantation for Niemann-Pick disease (type IA). Bone Marrow Transplant 1992;10(suppl 1):85–6.
Bar, J, Linke, T, Ferlinz, K. Molecular analysis of acid ceramidase deficiency in patients with Farber disease. Hum Mutat 2001;17:199–209.
Moser, H W, Linke, T, FensomAH, et al AH, et al. Acid ceramidase deficiency: Farber lipogranulomatosis. In: Scriver, C R, Beaudet, A L, ValleD, et al D, et al. The metabolic and molecular bases of inherited disease. New York: McGraw Hill, 2001:3573–88.
Abul-Haj, S K, Martz, D G, Douglas, W F, Geppert, L J. Farber's disease. Report of a case with observations on its histogenesis and notes on the nature of the stored material. J Pediatr 1962;61:221–32.
Zappatini-Tommasi, L, Dumontel, C, Guibaud, P, Girod, C. Farber disease: an ultrastructural study. Report of a case and review of the literature. Virchows Arch A Pathol Anat Histopathol 1992;420:281–90.
Fiumara, A, Nigro, F, Pavone, L, Moser, H W. Farber disease with prolonged survival. J Inherit Metab Dis 1993;16:915–16.
Antonarakis, S E, Valle, D, Moser, H W. Phenotypic variability in siblings with Farber disease. J Pediatr 1984;104:406–9.
Cartigny, B, Libert, J, Fensom, A H. Clinical diagnosis of a new case of ceramidase deficiency (Farber's disease). J Inherit Metab Dis 1985;8:8.
Nowaczyk, M J, Feigenbaum, A, Silver, M M. Bone marrow involvement and obstructive jaundice in Farber lipogranulomatosis: clinical and autopsy report of a new case. J Inherit Metab Dis 1996;19:655–60.
Kattner, E, Schafer, A, Harzer, K. Hydrops fetalis: manifestation in lysosomal storage diseases including Farber disease. Eur J Pediatr 1997;156:292–5.
Lijnschoten, G, Groener, J E, Maas, S M. Intrauterine fetal death due to Farber disease: case report. Pediatr Dev Pathol 2000;3:597–602.
Yeager, A M, Uhas, K A, Coles, C D. Bone marrow transplantation for infantile ceramidase deficiency (Farber disease). Bone Marrow Transplant 2000;26:357–63.
Vormoor, J, Ehlert, K, Groll, A H. Successful hematopoietic stem cell transplantation in Farber disease. J Pediatr 2004;144:132–4.
Georgiou, T, Drousiotou, A, Campos, Y. Four novel mutations in patients from the Middle East with the infantile form of GM1-gangliosidosis. Hum Mutat 2004;24:352.
Morrone, A, Bardelli, T, Donati, M A. β-Galactosidase gene mutations affecting the lysosomal enzyme and the elastin-binding protein in GM1-gangliosidosis patients with cardiac involvement. Hum Mutat 2000;15:354–66.
Yoshida, K, Oshima, A, Sakuraba, H. GM1 gangliosidosis in adults: clinical and molecular analysis of 16 Japanese patients. Ann Neurol 1992;31:328–32.
Abu-Dalu, K I, Tamary, H, Livni, N. GM1 gangliosidosis presenting as neonatal ascites. J Pediatr 1982;100:940–3.
Folkerth, R D, Alroy, J, Bhan, I, Kaye, E M. Infantile G(M1) gangliosidosis: complete morphology and histochemistry of two autopsy cases, with particular reference to delayed central nervous system myelination. Pediatr Dev Pathol 2000;3:73–86.
Bonduelle, M, Lissens, W, Goossens, A. Lysosomal storage diseases presenting as transient or persistent hydrops fetalis. Genet Couns 1991;2:227–32.
Suzuki, Y, Nakamura, N, Fukuoka, K. β-Galactosidase deficiency in juvenile and adult patients. Report of six Japanese cases and review of literature. Hum Genet 1977;36:219–29.
Bu-Ghanim, M, Sansaricq, C, Gordon, R, Morotti, R A. Pathologic quiz case: hepatosplenomegaly in an infant with hypotonia and coarse facial features. Gangliosidosis type 1. Arch Pathol Lab Med 2004;128:1297–8.
Suzuki, Y, Oshima, A, Nanba, E. β-Galactosidase deficiency (β-galactosidosis): GM1 gangliosidosis and morquio B disease. In: Scriver, C R, Beaudet, A L, SlyWS, et al WS, et al. The metabolic and molecular bases of inherited disease. New York: McGraw-Hill, 2001:3775–809.
Lowden, J A, Callahan, J W, Gravel, R A. Type 2 GM1 gangliosidosis with long survival and neuronal ceroid lipofuscinosis. Neurology 1981;31:719–24.
Patterson, M C, Vanier, M T, SuzukiK, et al K, et al. Niemann-Pick Disease Type C: A Lipid Trafficking Disorder. In: Scriver, C R, Beaudet, A L, SlyWS, et al WS, et al. The metabolic and molecular bases of inherited disease. New York: McGraw-Hill, 2001:3611–33.
Millat, G, Marcais, C, Tomasetto, C. Niemann-Pick C1 disease: correlations between NPC1 mutations, levels of NPC1 protein, and phenotypes emphasize the functional significance of the putative sterol-sensing domain and of the cysteine-rich luminal loop. Am J Hum Genet 2001;68:1373–85.
Vanier, M T, Millat, G. Niemann-Pick disease type C. Clin Genet 2003;64:269–81.
Naureckiene, S, Sleat, D E, Lackland, H. Identification of HE1 as the second gene of Niemann-Pick C disease. Science 2000;290:2298–301.
Ko, D C, Binkley, J, Sidow, A, Scott, M P. The integrity of a cholesterol-binding pocket in Niemann-Pick C2 protein is necessary to control lysosome cholesterol levels. Proc Natl Acad Sci U S A 2003;100:2518–25.
Vanier, M T, Wenger, D A, Comly, M E. Niemann-Pick disease group C: clinical variability and diagnosis based on defective cholesterol esterification. A collaborative study on 70 patients. Clin Genet 1988;33:331–48.
Kelly, D A, Portmann, B, Mowat, A P. Niemann-Pick disease type C: diagnosis and outcome in children, with particular reference to liver disease. J Pediatr 1993;123:242–7.
Mieli-Vergani, G, Howard, E R, Mowat, A P. Liver disease in infancy: a 20 year perspective. Gut 1991;(suppl):S123–8.
Yerushalmi, B, Sokol, R J, Narkewicz, M R. Niemann-pick disease type C in neonatal cholestasis at a North American Center. J Pediatr Gastroenterol Nutr 2002;35:44–50.
Fink, J K, Filling-Katz, M R, Sokol, J. Clinical spectrum of Niemann-Pick disease type C. Neurology 1989;39:1040–9.
Vanier, M T, Pentchev, P, Rodriguez-Lafrasse, C, Rousson, R. Niemann-Pick disease type C: an update. J Inherit Metab Dis 1991;14:580–95.
Fensom, A H, Grant, A R, Steinberg, S J. An adult with a non-neuronopathic form of Niemann-Pick C disease. J Inherit Metab Dis 1999;22:84–6.
Imrie, J, Vijayaraghaven, S, Whitehouse, C. Niemann-Pick disease type C in adults. J Inherit Metab Dis 2002;25:491–500.
Dumontel, C, Girod, C, Dijoud, F. Fetal Niemann-Pick disease type C: ultrastructural and lipid findings in liver and spleen. Virchows Arch A Pathol Anat Histopathol 1993;422:253–9.
Gilbert, E F, Callahan, J, Viseskul, C, Opitz, J M. Niemann-Pick disease type C. Pathological, histochemical, ultrastructural and biochemical studies. Eur J Pediatr 1981;136:263–74.
Ashkenazi, A, Yarom, R, Gutman, A. Niemann-Pick disease and giant cell transformation of the liver. Acta Paediatr Scand 1971;60:285–94.
Kovesi, T A, Lee, J, Shuckett, B, et, al. Pulmonary infiltration in Niemann-Pick disease type C. J Inherit Metab Dis 1996;19:792–3.
Birch, N C, Radio, S, Horslen, S. Metastatic hepatocellular carcinoma in a patient with niemann-pick disease, type C. J Pediatr Gastroenterol Nutr 2003;37:624–6.
Schofer, O, Mischo, B, Puschel, W. Early-lethal pulmonary form of Niemann-Pick type C disease belonging to a second, rare genetic complementation group. Eur J Pediatr 1998;157:45–9.
Patterson, M C, Di Bisceglie, A M, Higgins, J J. The effect of cholesterol-lowering agents on hepatic and plasma cholesterol in Niemann-Pick disease type C. Neurology 1993;43:61–4.
Hsu, Y S, Hwu, W L, Huang, S F. Niemann-Pick disease type C (a cellular cholesterol lipidosis) treated by bone marrow transplantation. Bone Marrow Transplant 1999;24:103–7.
Gartner, J C, Bergman, I, Malatack, J J. Progression of neurovisceral storage disease with supranuclear ophthalmoplegia following orthotopic liver transplantation. Pediatrics 1986;77:104–6.
Thomas, G H. Disorders of glycoprotein degradation: α-mannosidosis, β-mannosidosis, fucosidosis, and sialidosis. In: Scriver, C R, Beaudet, A L, ValleD, et al D, et al. The metabolic and molecular bases of inherited disease. New York: McGraw-Hill, 2001;3507–33.
Willems, P J, Gatti, R, Darby, J K. Fucosidosis revisited: a review of 77 patients. Am J Med Genet 1991;38:111–31.
Willems, P J, Seo, H C, Coucke, P. Spectrum of mutations in fucosidosis. Eur J Hum Genet 1999;7:60–7.
Freitag, F, Blumcke, S, Spranger, J. Hepatic ultrastructure in mucolipidosis I (lipomucopolysaccharidosis). Virchows Arch B Cell Pathol 1971;7:189–204.
Vellodi, A, Cragg, H, Winchester, B. Allogeneic bone marrow transplantation for fucosidosis. Bone Marrow Transplant 1995;15:153–8.
Miano, M, Lanino, E, Gatti, R. Four year follow-up of a case of fucosidosis treated with unrelated donor bone marrow transplantation. Bone Marrow Transplant 2001;27:747–51.
Berg, T, Riise, H M, Hansen, G M. Spectrum of mutations in α-mannosidosis. Am J Hum Genet 1999;64:77–88.
Desnick, R J, Sharp, H L, Grabowski, G A. Mannosidosis: clinical, morphologic, immunologic, and biochemical studies. Pediatr Res 1976;10:985–96.
Ara, J R, Mayayo, E, Marzo, M E. Neurological impairment in α-mannosidosis: a longitudinal clinical and MRI study of a brother and sister. Childs Nerv Syst 1999;15:369–71.
Monus, Z, Konyar, E, Szabo, L. Histomorphologic and histochemical investigations in mannosidosis. A light and electron microscopic study. Virchows Arch B Cell Pathol 1977;26:159–73.
Wall, D A, Grange, D K, Goulding, P. Bone marrow transplantation for the treatment of α-mannosidosis. J Pediatr 1998;133:282–5.
Albert, M H, Schuster, F, Peters, C. T-cell-depleted peripheral blood stem cell transplantation for α-mannosidosis. Bone Marrow Transplant 2003;32:443–6.
Lowden, J A, O'Brien, J S. Sialidosis: a review of human neuraminidase deficiency. Am J Hum Genet 1979;31:1–18.
Young, I D, Young, E P, Mossman, J. Neuraminidase deficiency: case report and review of the phenotype. J Med Genet 1987;24:283–90.
d'Azzo, A, Andria, G, Strisciuglio, P, Galjaard, H. Galactosialidosis. In: Scriver, C R, Beaudet, A L, Valle, D. The metabolic and molecular bases of inherited disease. New York: McGraw Hill, 2001:3811–26.
Spoel, A, Bonten, E, d'Azzo, A. Transport of human lysosomal neuraminidase to mature lysosomes requires protective protein/cathepsin A. EMBO J 1998;17:1588–97.
Aylsworth, A S, Thomas, G H, Hood, J L. A severe infantile sialidosis: clinical, biochemical, and microscopic features. J Pediatr 1980;96:662–8.
Nordborg, C, Kyllerman, M, Conradi, N, Mansson, J E. Early-infantile galactosialidosis with multiple brain infarctions: morphological, neuropathological and neurochemical findings. Acta Neuropathol (Berl) 1997;93:24–33.
Patel, M S, Callahan, J W, Zhang, S. Early-infantile galactosialidosis: prenatal presentation and postnatal follow-up. Am J Med Genet 1999;85:38–47.
Jackman, H L, Tan, F L, Tamei, H. A peptidase in human platelets that deamidates tachykinins. Probable identity with the lysosomal “protective protein.” J Biol Chem 1990;265:11265–72.
Jackman, H L, Morris, P W, Deddish, P A. Inactivation of endothelin I by deamidase (lysosomal protective protein). J Biol Chem 1992;267:2872–5.
Kleijer, W J, Geilen, G C, Janse, H C. Cathepsin A deficiency in galactosialidosis: studies of patients and carriers in 16 families. Pediatr Res 1996;39:1067–71.
Galjart, N J, Morreau, H, Willemsen, R. Human lysosomal protective protein has cathepsin A-like activity distinct from its protective function. J Biol Chem 1991;266:14754–62.
Hirschhorn, R, Reuser, A J J. Glycogen storage disease type II: acid α-glucosidase (acid maltase) deficiency. In: Scriver, C R, Beaudet, A L, ValleD, et al D, et al. The metabolic and molecular bases of inherited disease. New York: McGraw-Hill, 2001;3389–420.
Raben, N, Plotz, P, Byrne, B J. Acid α-glucosidase deficiency (glycogenosis type II, Pompe disease). Curr Mol Med 2002;2:145–66.
Hout, H M, Hop, W, Diggelen, O P. The natural course of infantile Pompe's disease: 20 original cases compared with 133 cases from the literature. Pediatrics 2003;112:332–40.
Kishnani, P S, Howell, R R. Pompe disease in infants and children. J Pediatr 2004;144:S35–43.
Martin, J J, Barsy, T, Hoof, F, Palladini, G. Pompe's disease: an inborn lysosomal disorder with storage of glycogen. A study of brain and striated muscle. Acta Neuropathol (Berl) 1973;23:229–44.
Slonim, A E, Bulone, L, Ritz, S. Identification of two subtypes of infantile acid maltase deficiency. J Pediatr 2000;137:283–5.
Hagemans, M L, Winkel, L P, Doorn, P A. Clinical manifestation and natural course of late-onset Pompe's disease in 54 Dutch patients. Brain 2005;128:671–7.
Di Fiore, M T, Manfredi, R, Marri, L. Elevation of transaminases as an early sign of late-onset glycogenosis type II. Eur J Pediatr 1993;152:784.
Bruni, C B, Paluello, F M. A biochemical and ultrastructural study of liver, muscle, heart and kidney in type II glycogenosis. Virchows Arch B Cell Pathol 1970;4:196–207.
Watson, J G, Gardner-Medwin, D, Goldfinch, M E, Pearson, A D. Bone marrow transplantation for glycogen storage disease type II (Pompe's disease). N Engl J Med 1986;314:385.
Klinge, L, Straub, V, Neudorf, U. Safety and efficacy of recombinant acid α-glucosidase (rhGAA) in patients with classical infantile Pompe disease: results of a phase II clinical trial. Neuromuscul Disord 2005;15:24–31.
Klinge, L, Straub, V, Neudorf, U, Voit, T. Enzyme replacement therapy in classical infantile Pompe disease: results of a ten-month follow-up study. Neuropediatrics 2005;36:6–11.
Hout, H, Reuser, A J, Vulto, A G. Recombinant human α-glucosidase from rabbit milk in Pompe patients. Lancet 2000;356:397–8.
Hout, J M, Reuser, A J, Klerk, J B. Enzyme therapy for Pompe disease with recombinant human α-glucosidase from rabbit milk. J Inherit Metab Dis 2001;24:266–74.
Winkel, L P, Hout, J M, Kamphoven, J H. Enzyme replacement therapy in late-onset Pompe's disease: a three-year follow-up. Ann Neurol 2004;55:495–502.
Amalfitano, A, Bengur, A R, Morse, R P. Recombinant human acid α-glucosidase enzyme therapy for infantile glycogen storage disease type II: results of a phase I/II clinical trial. Genet Med 2001;3:132–8.
Pagani, F, Pariyarath, R, Garcia, R. New lysosomal acid lipase gene mutants explain the phenotype of Wolman disease and cholesteryl ester storage disease. J Lipid Res 1998;39:1382–8.
Assmann, G, Seedorf, U. Acid lipase deficiency: Wolman disease and cholesteryl ester storage disease. In: Scriver, C R, Beaudet, A L, ValleD, et al D, et al. The metabolic and molecular bases of inherited disease. New York: McGraw-Hill, 2001:3551–72.
Grabowski, G A, Bove, K, Du, H. Lysosomal acid lipase deficiencies: Wolman disease and cholesteryl ester storage disease. In: Walker, W A, Goulet, O J, KleinmanRE, et al RE, et al. Pediatric gastrointestinal disease: pathophysiology, diagnosis and management. Hamilton, Ontario: BC Decker, 2004:1429–39.
Boldrini, R, Devito, R, Biselli, R. Wolman disease and cholesteryl ester storage disease diagnosed by histological and ultrastructural examination of intestinal and liver biopsy. Pathol Res Pract 2004;200:231–40.
Drebber, U, Andersen, M, Kasper, H U. Severe chronic diarrhea and weight loss in cholesteryl ester storage disease: a case report. World J Gastroenterol 2005;11:2364–6.
Lough, J, Fawcett, J, Wiegensberg, B. Wolman's disease. An electron microscopic, histochemical, and biochemical study. Arch Pathol 1970;89:103–10.
Bambirra, E A, Tafuri, W L, Borges, H H. Wolman's disease: a clinicopathologic, electron microscopic, and histochemical study. South Med J 1982;75:595–6.
Browne, M, Somers, G, Savoia, H, Kukuruzovic, R. Wolman's disease in an infant. Br J Haematol 2003;122:522.
Guazzi, G C, Martin, J J, Philippart, M. Wolman's disease. Eur Neurol 1968;1:334–62.
Marshall, W C, Ockenden, B G, Fosbrooke, A S, Cumings, J N. Wolman's disease. A rare lipidosis with adrenal calcification. Arch Dis Child 1969;44:331–41.
Mitsudo, S, Zucker, P. Case 4. Wolman's disease. Pediatr Pathol 1989;9:193–8.
Wallis, K, Gross, M, Kohn, R, Zaidman, J. A case of Wolman's disease. Helv Paediatr Acta 1971;26:98–111.
Beaudet, A L, Ferry, G D, Nichols, B L, Rosenberg, H S. Cholesterol ester storage disease: clinical, biochemical, and pathological studies. J Pediatr 1977;90:910–14.
Lohse, P, Maas, S, Sewell, A C. Molecular defects underlying Wolman disease appear to be more heterogeneous than those resulting in cholesteryl ester storage disease. J Lipid Res 1999;40:221–8.
Brown, M S, Kovanen, P T, Goldstein, J L. Regulation of plasma cholesterol by lipoprotein receptors. Science 1981;212:628–35.
Krivit, W, Freese, D, Chan, K W, Kulkarni, R. Wolman's disease: a review of treatment with bone marrow transplantation and considerations for the future. Bone Marrow Transplant 1992;10(suppl 1):97–101.
Krivit, W, Peters, C, Dusenbery, K. Wolman disease successfully treated by bone marrow transplantation. Bone Marrow Transplant 2000;26:567–70.
Arterburn, J N, Lee, W M, Wood, R P. Orthotopic liver transplantation for cholesteryl ester storage disease. J Clin Gastroenterol 1991;13:482–5.
Di Bisceglie, A M, Ishak, K G, Rabin, L, Hoeg, J M. Cholesteryl ester storage disease: hepatopathology and effects of therapy with lovastatin. Hepatology 1990;11:764–72.
Ginsberg, H N, Le, N A, Short, M P. Suppression of apolipoprotein B production during treatment of cholesteryl ester storage disease with lovastatin. Implications for regulation of apolipoprotein B synthesis. J Clin Invest 1987;80:1692–7.
Leone, L, Ippoliti, P, Antonicelli, R. Use of simvastatin plus cholestyramine in the treatment of lysosomal acid lipase deficiency. J Pediatr 1991;119:1008–9.
Tarantino, M D, McNamara, D J, Granstrom, P. Lovastatin therapy for cholesterol ester storage disease in two sisters. J Pediatr 1991;118:131–5.
Du, H, Schiavi, S, Levine, M. Enzyme therapy for lysosomal acid lipase deficiency in the mouse. Hum Mol Genet 2001;10:1639–48.
Du, H, Heur, M, Witte, D P. Lysosomal acid lipase deficiency: correction of lipid storage by adenovirus-mediated gene transfer in mice. Hum Gene Ther 2002;13:1361–72.
Neufeld, E B, Muenzer, J. The mucopolysaccharidoses. In: Scriver, C R, Beaudet, A L, ValleD, et al D, et al. The metabolic and molecular bases of inherited disease. New York: McGraw-Hill, 2001:3421–51.
Kakkis, E D, Muenzer, J, Tiller, G E. Enzyme-replacement therapy in mucopolysaccharidosis I. N Engl J Med 2001;344:182–8.
Harmatz, P, Whitley, C B, Waber, L. Enzyme replacement therapy in mucopolysaccharidosis VI (Maroteaux-Lamy syndrome). J Pediatr 2004;144:574–80.
Parfrey, N A, Hutchins, G M. Hepatic fibrosis in the mucopolysaccharidoses. Am J Med 1986;81:825–9.
Resnick, J M, Krivit, W, Snover, D C. Pathology of the liver in mucopolysaccharidosis: light and electron microscopic assessment before and after bone marrow transplantation. Bone Marrow Transplant 1992;10:273–80.
Resnick, J M, Whitley, C B, Leonard, A S. Light and electron microscopic features of the liver in mucopolysaccharidosis. Hum Pathol 1994;25:276–86.
Muenzer, J. The mucopolysaccharidoses: a heterogeneous group of disorders with variable pediatric presentations. J Pediatr 2004;144:S27–34.
Herskhovitz, E, Young, E, Rainer, J. Bone marrow transplantation for Maroteaux-Lamy syndrome (MPS VI): long-term follow-up. J Inherit Metab Dis 1999;22:50–62.
Peters, C, Balthazor, M, Shapiro, E G. Outcome of unrelated donor bone marrow transplantation in 40 children with Hurler syndrome. Blood 1996;87:4894–902.
Peters, C, Shapiro, E G, Anderson, J. Hurler syndrome: II. Outcome of HLA-genotypically identical sibling and HLA-haploidentical related donor bone marrow transplantation in fifty-four children. The Storage Disease Collaborative Study Group. Blood 1998;91:2601–8.
Sivakumur, P, Wraith, J E. Bone marrow transplantation in mucopolysaccharidosis type IIIA: a comparison of an early treated patient with his untreated sibling. J Inherit Metab Dis 1999;22:849–50.
Yamada, Y, Kato, K, Sukegawa, K. Treatment of MPS VII (Sly disease) by allogeneic BMT in a female with homozygous A619V mutation. Bone Marrow Transplant 1998;21:629–34.
Wraith, J E, Clarke, L A, Beck, M. Enzyme replacement therapy for mucopolysaccharidosis I: a randomized, double-blinded, placebo-controlled, multinational study of recombinant human α-L-iduronidase (laronidase). J Pediatr 2004;144:581–8.
Kornfeld, S, Sly, W S. I-cell disease and pseudo-Hurler polydystrophy: disorders of lysosomal enzyme phosphorylation and localization. In: Scriver, C R, Beaudet, A L, ValleD, et al D, et al. The metabolic and molecular bases of inherited disease. New York: McGraw-Hill, 2001;3469–82.
Raas-Rothschild, A, Cormier-Daire, V, Bao, M. Molecular basis of variant pseudo-Hurler polydystrophy (mucolipidosis IIIC). J Clin Invest 2000;105:673–81.
Canfield, W M, Bao, M, Pan, J. Mucolipidosis II and mucolipidosis IIIA are caused by mutations in the GlcNAc-phosphotransferace a/B gene on chromosome 12. Am J Hum Genet 1998;63:A15.
Tiede, S, Muschol, N, Reutter, G. Missense mutations in N-acetylglucosamine-1-phosphotransferase α/β subunit gene in a patient with mucolipidosis III and a mild clinical phenotype. Am J Med Genet A 2005;137:235–40.
Hochman, J A, Treem, W R, Dougherty, F, Bentley, R C. Mucolipidosis II (I-cell disease) presenting as neonatal cholestasis. J Inherit Metab Dis 2001;24:603–4.
Leroy, J G, Spranger, J W, Feingold, M. I-cell disease: a clinical picture. J Pediatr 1971;79:360–5.
Sprigz, R A, Doughty, R A, Spackman, T J. Neonatal presentation of I-cell disease. J Pediatr 1978;93:954–8.
Burin, M G, Scholz, A P, Gus, R. Investigation of lysosomal storage diseases in nonimmune hydrops fetalis. Prenat Diagn 2004;24:653–7.
Tylki-Szymanska, A, Czartoryska, B, Groener, J E, Lugowska, A. Clinical variability in mucolipidosis III (pseudo-Hurler polydystrophy). Am J Med Genet 2002;108:214–18.
Kelly, T E, Thomas, G H, Taylor, H A. Mucolipidosis III (pseudo-Hurler polydystrophy): Clinical and laboratory studies in a series of 12 patients. Johns Hopkins Med J 1975;137:156–75.
Kenyon, K R, Sensenbrenner, J A, Wyllie, R G. Hepatic ultrastructure and histochemistry in mucolipidosis II (I-cell disease). Pediatr Res 1973;7:560–8.
Grewal, S, Shapiro, E, Braunlin, E. Continued neurocognitive development and prevention of cardiopulmonary complications after successful BMT for I-cell disease: a long-term follow-up report. Bone Marrow Transplant 2003;32:957–60.
Hopwood, J J, Ballabio, A. Multiple sulfatase deficiency and the nature of the sulfatase family. In: Scriver, C R, Beaudet, A L, ValleD, et al D, et al. The metabolic and molecular bases of inherited disease. New York: McGraw-Hill, 2001:3725–32.
Blanco-Aguirre, M E, Kofman-Alfaro, S H, Rivera-Vega, M R. Unusual clinical presentation in two cases of multiple sulfatase deficiency. Pediatr Dermatol 2001;18:388–92.
Burch, M, Fensom, A H, Jackson, M. Multiple sulphatase deficiency presenting at birth. Clin Genet 1986;30:409–15.
Burk, R D, Valle, D, Thomas, G H. Early manifestations of multiple sulfatase deficiency. J Pediatr 1984;104:574–8.
Diaz-Font, A, Santamaria, R, Cozar, M. Clinical and mutational characterization of three patients with multiple sulfatase deficiency: report of a new splicing mutation. Mol Genet Metab 2005;86:206–11.
Macaulay, R J, Lowry, N J, Casey, R E. Pathologic findings of multiple sulfatase deficiency reflect the pattern of enzyme deficiencies. Pediatr Neurol 1998;19:372–6.
Vamos, E, Liebaers, I, Bousard, N. Multiple sulphatase deficiency with early onset. J Inherit Metab Dis 1981;4:103–4.
Diez-Roux, G, Ballabio, A. Sulfatases and human disease. Annu Rev Genomics Hum Genet 2005;6:355–79.
Dierks, T, Schmidt, B, Borissenko, L V. Multiple sulfatase deficiency is caused by mutations in the gene encoding the human C(α)-formylglycine generating enzyme. Cell 2003;113:435–44.
Cosma, M P, Pepe, S, Annunziata, I. The multiple sulfatase deficiency gene encodes an essential and limiting factor for the activity of sulfatases. Cell 2003;113:445–56.
Schmidt, B, Selmer, T, Ingendoh, A, Figura, K. A novel amino acid modification in sulfatases that is defective in multiple sulfatase deficiency. Cell 1995;82:271–8.
Dierks, T, Lecca, M R, Schlotterhose, P. Sequence determinants directing conversion of cysteine to formylglycine in eukaryotic sulfatases. EMBO J 1999;18:2084–91.
Muenzer, J, Wraith, J E, Beck, M. A phase II/III clinical study of enzyme replacement therapy with idursulfase in mucopolysaccharidosis II (Hunter syndrome). Genet Med 2006;8:465–73.