Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-10T23:37:15.088Z Has data issue: false hasContentIssue false

6 - Temperature Control in Liquid Cells for TEM

from Part I - Technique

Published online by Cambridge University Press:  22 December 2016

Frances M. Ross
Affiliation:
IBM T. J. Watson Research Center, New York
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Butler, E. P., In situ experiments in the transmission electron microscope. Rep. Prog. Phys., 42 (1979), 833896.Google Scholar
White, E. R., Mecklenburg, M., Singer, S. B., Aloni, S. and Regan, B. C., Imaging nanobubbles in water with scanning transmission electron microscopy. Appl. Phys. Express., 4 (2011), 055201.Google Scholar
Cahill, D. G., Thermal conductivity measurement from 30 to 750 K: the 3ω method. Rev. Sci. Instrum., 61 (1990), 802808.Google Scholar
Alan, T., Yokosawa, T., Gaspar, J. et al., Micro-fabricated channel with ultra-thin yet ultra-strong windows enables electron microscopy under 4-bar pressure. Appl. Phys. Lett., 100 (2012), 081903.Google Scholar
Yokosawa, T., Alan, T., Pandraud, G., Dam, B. and Zandbergen, H., In-situ TEM on (de)hydrogenation of Pd at 0.5–4.5 bar hydrogen pressure and 20–400 °C. Ultramicroscopy, 112 (2012), 4752.Google Scholar
Liu, Y., Chen, X., Noh, K. W. and Dillon, S. J., Electron beam induced deposition of silicon nanostructures from a liquid phase precursor. Nanotechnology, 23 (2012), 385302/1.CrossRefGoogle ScholarPubMed
Xin, H. L. and Zheng, H., In situ observation of oscillatory growth of bismuth nanoparticles. Nano Lett., 12 (2012), 14701474.CrossRefGoogle ScholarPubMed
Knight, C. A., DeVries, A. L. and Oolman, L. D., Fish antifreeze protein and the freezing and recrystallization of ice. Nature, 308 (1984), 295296.Google Scholar
Browning, N. D., Bonds, M. A., Campbell, G. H. et al., Recent developments in dynamic transmission electron microscopy. Curr. Opin. Solid State Mater. Sci., 16 (2012), 2330.CrossRefGoogle Scholar
Evans, J. E., Jungjohann, K. L., Browning, N. D. and Arslan, I., Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett., 11 (2011), 28092813.Google Scholar
Mueller, C., Harb, M., Dwyer, J. R. and Miller, R. J. D., Nanofluidic cells with controlled pathlength and liquid flow for rapid, high-resolution in situ imaging with electrons. J. Phys. Chem. Lett., 4 (2013), 23392347.CrossRefGoogle Scholar
Klein, K. L., Anderson, I. M. and de Jonge, J. N., Transmission electron microscopy with a liquid flow cell, J. Microsc., 242 (2011), 117123.CrossRefGoogle ScholarPubMed
Unocic, R. R., Sacci, R. L., Brown, G. M. et al., Quantitative electrochemical measurements using in situ ec-S/TEM devices. Microsc. Microanal., 20 (2014), 452461.Google Scholar
Grogan, J. M., Schneider, N. M., Ross, F. M. and Bau, H. H., Bubble and pattern formation in liquid induced by an electron beam. Nano Lett., 14 (2014), 359364.CrossRefGoogle ScholarPubMed
Liu, Y., Tai, K. and Dillon, S. J., Growth kinetics and morphological evolution of ZnO precipitated from solution. Chem. Mater., 25 (2013), 29272933.Google Scholar
Zheng, H., Claridge, S. A., Minor, A. M., Alivisatos, A. P. and Dahmen, U., Nanocrystal diffusion in a liquid thin film observed by in situ transmission electron microscopy. Nano Lett., 9 (2009), 24602465.Google Scholar
Christofferson, J., Maize, K., Ezzahri, Y. et al., Microscale and nanoscale thermal characterization techniques. J. Electron. Packaging, 130 (2008), 041101.Google Scholar
Shapira, E., Marchak, D., Tsukernik, A. and Selzer, Y., Segmented metal nanowires as nanoscale thermocouples. Nanotechnology, 19 (2008), 125501.Google Scholar
Lai, S. L., Ramanath, G., Allen, L. H. and Infante, P., Heat capacity measurements of Sn nanostructures using a thin-film differential scanning calorimeter with 0.2 nJ sensitivity. Appl. Phys. Lett., 70 (1997), 4345.Google Scholar
Shi, L. and Majumdar, A., Thermal transport mechanisms at nanoscale point contacts. J. Heat Transfer, 124 (2002), 329337.CrossRefGoogle Scholar
Yokota, T., Murayama, M. and Howe, J. M., In situ transmission-electron-microscopy investigation of melting in submicron Al-Si alloy particles under electron-beam irradiation. Phys. Rev. Lett., 91 (2003), 265504/1.CrossRefGoogle ScholarPubMed
Lai, S. L., Guo, J. Y., Petrova, V., Ramanath, G. and Allen, L. H., Size-dependent melting properties of small tin particles: nanocalorimetric measurements. Phys. Rev. Lett., 77 (1996), 99102.CrossRefGoogle ScholarPubMed
Sun, L., Noh, K. W., Wen, J.-G. and Dillon, S. J., In situ transmission electron microscopy observation of silver oxidation in ionized/atomic gas. Langmuir, 27 (2011), 1420114206.Google Scholar
Niu, K.-Y., Park, J., Zheng, H. and Alivisatos, A. P., Revealing bismuth oxide hollow nanoparticle formation by the Kirkendall effect. Nano Lett., 13 (2013), 57155719.Google Scholar
Stokes, D. J. and Donald, A. M.. In situ mechanical testing of dry and hydrated breadcrumb in the environmental scanning electron microscope (ESEM). J. Mater. Sci., 35 (2000), 599607.CrossRefGoogle Scholar
Bromley, E. H. C., Krebs, M. R. H. and Donald, A. M., Aggregation across the length-scales in β-lactoglobulin. Faraday Discuss., 128 (2004), 1327.Google Scholar
Blennow, A., Hansen, M., Schulz, A. et al., The molecular deposition of transgenically modified starch in the starch granule as imaged by functional microscopy. J. Struct. Biol., 143 (2003), 229241.Google Scholar
Liu, K.-L., Wu, C.-C., and Huang, Y.-J., Novel microchip for in situ TEM imaging of living organisms and bio-reactions in aqueous conditions Lab Chip, 8 (2008), 19151921.Google Scholar
Klein, K. L., Anderson, I. M., de Jonge, N. et al., Transmission electron microscopy with a liquid flow cell. J. Microsc. Oxford, 242 (2011), 117123.CrossRefGoogle ScholarPubMed
Tanaka, S., Tanaka, H., Kawasaki, T. et al., EBIC imaging using scanning transmission electron microscopy: experiment and analysis. J. Mater. Sci.: Mater. Electron., 19 (2008), S324–327.Google Scholar
Cabanel, C., Maurice, J. L. and Laval, J. Y., Scanning transmission electron beam induced current in polycrystalline silicon. Mater. Sci. Forum., 1012 (1986), 545550.CrossRefGoogle Scholar
Tai, K., Liu, Y. and Dillon, S. J., In situ cryogenic transmission electron microscopy for characterizing the evolution of solidifying water ice in colloidal systems. Microsc. Microanal., 20 (2014), 330337.CrossRefGoogle ScholarPubMed
Hattar, K., Bufford, D. C. and Buller, D. L., Concurrent in situ ion irradiation transmission electron microscope. Nucl. Instrum. Methods Phys. Res., Sect. B., 338 (2014), 5665.Google Scholar
Gogotsi, Y., Libera, J. A., Güvenç-Yazicioglu, A. and Megaridis, C. M., In situ multiphase fluid experiments in hydrothermal carbon nanotubes. Appl. Phys. Lett., 79 (2001), 10211023.CrossRefGoogle Scholar
Naguib, N., Ye, H., Gogotsi, Y. et al., Observation of water confined in nanometer channels of closed carbon nanotubes. Nano Lett., 4 (2004), 22372243.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×