Skip to main content Accessibility help
  • Print publication year: 2016
  • Online publication date: December 2016

15 - Liquid Cell TEM for Studying Environmental and Biological Mineral Systems

from Part II - Applications
1.Beveridge, T. J., Role of cellular design in bacterial metal accumulation and mineralization. Annu. Rev. Microbiol., 43 (1989), 147171.
2.Banfield, J. F. and Zhang, H. Z., Nanoparticles in the environment. In Banfield, J. F. and Navrotsky, A., eds., Nanoparticles and the Environment, Reviews in Mineralogy & Geochemistry 44 (Mineralogical Society of America, 2001) pp. 158.
3.Schmidt, M. W. I., Torn, M. S., Abiven, S. et al., Persistence of soil organic matter as an ecosystem property. Nature, 478 (2011), 4956.
4.Knoll, A. H., Biomineralization and evolutionary history. In Dove, P. M., DeYoreo, J. J. and Weiner, S., eds., Biomineralization, Reviews in Mineralogy & Geochemistry 54 (Mineralogical Society of America, 2003) pp. 329356.
5.Lowenstam, H. A. and Weiner, S., On Biomineralization (New York: Oxford University Press, 1989).
6.Hoose, C. and Mohler, O., Heterogeneous ice nucleation on atmospheric aerosols: a review of results from laboratory experiments. Atmos. Chem. Phys., 12 (2012), 98179854.
7.Hendricks, S. B., Nelson, R. A. and Alexander, L. T., Hydration mechanism of the clay mineral montmorillonite saturated with various cations. J. Am. Chem. Soc., 62 (1940), 14571464.
8.Sposito, G., Skipper, N. T., Sutton, R. et al., Surface geochemistry of the clay minerals. Proc. Natl. Acad. Sci. USA, 96 (1999), 33583364.
9.Hu, Q., Nielsen, M. H., Freeman, C. L. et al., The thermodynamics of calcite nucleation at organic interfaces: classical vs. non-classical pathways. Faraday Discuss., 159 (2012), 509523.
10.Giuffre, A. J., Hamm, L. M., Han, N., De Yoreo, J. J. and Dove, P. M., Polysaccharide chemistry regulates kinetics of calcite nucleation through competition of interfacial energies. Proc. Natl. Acad. Sci. USA, 110 (2013), 92619266.
11.Hamm, L. M., Giuffre, A. J., Han, N. et al., Reconciling disparate views of template-directed nucleation through measurement of calcite nucleation kinetics and binding energies. Proc. Natl. Acad. Sci. USA, 111 (2014), 13041309.
12.Fang, P. A., Conway, J. F., Margolis, H. C., Simmer, J. P. and Beniash, E., Hierarchical self-assembly of amelogenin and the regulation of biomineralization at the nanoscale. Proc. Natl. Acad. Sci. USA, 108 (2011), 1409714102.
13.Nudelman, F., Pieterse, K., George, A. et al., The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat. Mater., 9 (2010), 10041009.
14.Tester, C. C., Brock, R. E., Wu, C. H. et al., In vitro synthesis and stabilization of amorphous calcium carbonate (ACC) nanoparticles within liposomes. CrystEngComm, 13 (2011), 39753978.
15.Smeets, P. J. M., Cho, K. R., Kempen, R. G. E., Sommerdijk, N. A. J. M. and De Yoreo, J. J., In situ TEM shows ion binding is key to directing CaCO3 nucleation in a biomimetic matrix. Nat. Mater., 14 (2015), 394399.
16.Rieger, J., Frechen, T., Cox, G. et al., Precursor structures in the crystallization/precipitation processes of CaCO3 and control of particle formation by polyelectrolytes. Faraday Discuss., 136 (2007), 265277.
17.Lee, J. R. I., Han, T. Y. J., Willey, T. M. et al., Structural development of mercaptophenol self-assembled monolayers and the overlying mineral phase during templated CaCO3 crystallization from a transient amorphous film. J. Am. Chem. Soc., 129 (2007), 1037010381.
18.Radha, A. V., Forbes, T. Z., Killian, C. E., Gilbert, P. and Navrotsky, A., Transformation and crystallization energetics of synthetic and biogenic amorphous calcium carbonate. Proc. Natl. Acad. Sci. USA, 107 (2010), 1643816443.
19.Bots, P., Benning, L. G., Rodriguez-Blanco, J. D., Roncal-Herrero, T. and Shaw, S., Mechanistic insights into the crystallization of amorphous calcium carbonate (ACC). Crys. Growth Des., 12 (2012), 38063814.
20.Gibbs, J. W., On the equilibrium of heterogeneous substances. Trans. Connect. Acad. Arts Sci., 3 (1876), 108248; (1878), 343–524.
21.Gebauer, D., Volkel, A. and Colfen, H., Stable prenucleation calcium carbonate clusters. Science, 322 (2008), 18191822.
22.Pouget, E. M., Bomans, P. H. H., Goos, J. A. C. M. et al., The initial stages of template-controlled CaCO3 formation revealed by cryo-TEM. Science, 323 (2009), 14551458.
23.Bewernitz, M. A., Gebauer, D., Long, J., Colfen, H. and Gower, L. B., A metastable liquid precursor phase of calcium carbonate and its interactions with polyaspartate. Faraday Discuss., 159 (2012), 291312.
24.Demichelis, R., Raiteri, P., Gale, J. D., Quigley, D. and Gebauer, D., Stable prenucleation mineral clusters are liquid-like ionic polymers. Nat. Commun., 2 (2011), 590.
25.Wallace, A. F., Hedges, L. O., Fernandez-Martinez, A. et al., Microscopic evidence for liquid-liquid separation in supersaturated CaCO3 solutions. Science, 341 (2013), 885889.
26.Brecevic, L. and Nielsen, A. E., Solubility of amorphous calcium carbonate. J. Cryst. Growth, 98 (1989), 504510.
27.Rieger, J., Thieme, J. and Schmidt, C., Study of precipitation reactions by X-ray microscopy: CaCO3 precipitation and the effect of polycarboxylates. Langmuir, 16 (2000), 83008305.
28.Habraken, W. J. E. M., Tao, J. H., Brylka, L. J. et al., Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate. Nat. Commun., 4 (2013), 1507.
29.Erdemir, D., Lee, A. Y. and Myerson, A. S., Nucleation of crystals from solution: classical and two-step models. Accounts Chem. Res., 42 (2009), 621629.
30.Galkin, O., Chen, K., Nagel, R. L., Hirsch, R. E. and Vekilov, P. G., Liquid-liquid separation in solutions of normal and sickle cell hemoglobin. Proc. Natl. Acad. Sci. USA, 99 (2002), 84798483.
31.Chung, S., Shin, S. H., Bertozzi, C. R. and De Yoreo, J. J., Self-catalyzed growth of S layers via an amorphous to-crystalline transition limited by folding kinetics. Proc. Natl. Acad. Sci. USA, 107 (2010), 1653616541.
32.Penn, R. L. and Banfield, J. F., Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science, 281 (1998), 969971.
33.Frandsen, C., Legg, B. A., Comolli, L. R. et al., Aggregation-induced growth and transformation of beta-FeOOH nanorods to micron-sized alpha-Fe2O3 spindles. CrystEngComm, 16 (2014), 14511458.
34.Baumgartner, J., Dey, A., Bomans, P. H. H. et al., Nucleation and growth of magnetite from solution. Nat. Mater., 12 (2013), 310314.
35.De Yoreo, J. J., Gilbert, P. U. P. A., Sommerdijk, N. A. J. M. et al., Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science, 349 (2015), aaa6760.
36.Zheng, H. M., Smith, R. K., Jun, Y. W. et al., Observation of single colloidal platinum nanocrystal growth trajectories. Science, 324 (2009), 13091312.
37.Williamson, M. J., Tromp, R. M., Vereecken, P. M., Hull, R. and Ross, F. M., Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface. Nat. Mater., 2 (2003), 532536.
38.Nielsen, M. H., Lee, J. R. I., Hu, Q. N., Han, T. Y. J. and De Yoreo, J. J., Structural evolution, formation pathways and energetic controls during template-directed nucleation of CaCO3. Faraday Discuss., 159 (2012), 105121.
39.Nielsen, M. H., Aloni, S. and De Yoreo, J. J., In situ TEM imaging of CaCO3 nucleation reveals coexistence of direct and indirect pathways. Science, 345 (2014), 11581162.
40.Bischoff, J. L., Fitzpatrick, J. A. and Rosenbauer, R. J., The solubility and stabilization of ikaite (CaCO3.6H2O) from 0–25 °C: environmental and paleoclimatic implications for thinolite tufa. J. Geol., 101 (1993), 2133.
41.Chernov, A. A., Modern Crystallography III. Springer Series in Solid-State Sciences (Berlin: Springer, 1984).
42.Trotsenko, O., Roiter, Y. and Minko, S., Conformational transitions of flexible hydrophobic polyelectrolytes in solutions of monovalent and multivalent salts and their mixtures. Langmuir, 28 (2012), 60376044.
43.Addadi, L., Moradian, J., Shay, E., Maroudas, N. G. and Weiner, S., A chemical model for the cooperation of sulfates and carboxylates in calcite crystal nucleation: relevance to biomineralization. Proc. Natl. Acad. Sci. USA, 84 (1987), 27322736.
44.Nudelman, F., Gotliv, B. A., Addadi, L. and Weiner, S., Mollusk shell formation: mapping the distribution of organic matrix components underlying a single aragonitic tablet in nacre. J. Struct. Biol., 153 (2006), 176187.
45.Yuk, J. M., Park, J., Ercius, P. et al., High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science, 336 (2012), 6164.
46.Li, D. S., Nielsen, M. H., Lee, J. R. I. et al., Direction-specific interactions control crystal growth by oriented attachment. Science, 336 (2012), 10141018.
47.Liao, H.-G., Zherebetskyy, D., Xin, H. et al., Facet development during platinum nanocube growth. Science, 345 (2014), 916919.
48.Liao, H. G., Cui, L. K., Whitelam, S. and Zheng, H. M., Real-time imaging of Pt3Fe nanorod growth in solution. Science, 336 (2012), 10111014.
49.Parent, L. R., Robinson, D. B., Woehl, T. J. et al., Direct in situ observation of nanoparticle synthesis in a liquid crystal surfactant template. ACS Nano, 6 (2012), 35893596.
50.Woehl, T. J., Evans, J. E., Arslan, L., Ristenpart, W. D. and Browning, N. D., Direct in situ determination of the mechanisms controlling nanoparticle nucleation and growth. ACS Nano, 6 (2012), 85998610.
51.Nielsen, M. H., Li, D. S., Zhang, H. Z. et al., Investigating processes of nanocrystal formation and transformation via liquid cell TEM. Microsc. Microanal., 20 (2014), 425436.
52.Fukami, A., Fukushima, K., Kohyama, N., Observation technique for wet clay minerals using film-sealed environmental cell equipment attached to high-resolution electron microscope. In Bennett, R. et al., eds., Microstructure of Fine-Grained Sediments ( New York: Springer, 1991) pp. 321331.
53.Adachi, K., Freney, E. J. and Buseck, P. R., Shapes of internally mixed hygroscopic aerosol particles after deliquescence, and their effect on light scattering. Geophys. Res. Lett., 38 (2011), L13804.