Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T18:43:42.350Z Has data issue: false hasContentIssue false

17 - Letters on Nature and Nurture

Published online by Cambridge University Press:  17 July 2009

Onur Güntürkun
Affiliation:
Professor of Biopsychology, Institute of Cognitive Neuroscience Ruhr-University, Bochum, Germany
Paul B. Baltes
Affiliation:
Max-Planck-Institut für Bildungsforschung, Berlin
Patricia A. Reuter-Lorenz
Affiliation:
University of Michigan, Ann Arbor
Frank Rösler
Affiliation:
Philipps-Universität Marburg, Germany
Get access

Summary

ABSTRACT

Humans and most other animals have a dual origin. One of these origins is defined by the genetic background that assembles brains, thereby implanting prewired expectations about the sensory and causal regularities of the world in which we are born. The second origin is the organized system of experiences that provides a plethora of feedback and instructions that slowly shape the brain into its final status. In humans, these experiences start especially early to modify the newborn brain and provide an unusually variable tapestry. For decades, scientists have tried to disentangle the impact of nature and nurture, and have proposed mental territories that are mostly governed by one or the other. Here, I argue that genetic predispositions and environmentally dependent learning processes interact continuously at every neural and mental entity, from cortical development to social customs. Not a single territory of our mind is outside the scope of this interaction.

PRELUDE

Scientific inquiries into the interaction of biology and culture usually study a certain developmental span, an important event, or a neural, affective, or cognitive system to set a stage on which the details of biocultural co-constructivism can be outlined. This approach necessarily takes a narrow focus but provides great depth and insight into the interactive mechanisms. This book provides many outstanding examples of this kind of approach.

Type
Chapter
Information
Lifespan Development and the Brain
The Perspective of Biocultural Co-Constructivism
, pp. 379 - 398
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, B. B., Gundersen, H. J., & Pakkenberg, B. (2003). Aging of the human cerebellum: A stereological study. Journal of Comparative Neurology, 466, 356–365CrossRefGoogle ScholarPubMed
Bischof, H.-J. (1983). Imprinting and cortical plasticity: A comparative review. Neuroscience and Biobehavioral Reviews, 7, 213–225CrossRefGoogle ScholarPubMed
Blakemore, C., & Cooper, G. F. (1970). Development of the brain depends on the visual environment. Nature, 228, 477–478CrossRefGoogle ScholarPubMed
Born, J., Hansen, K., Marshall, L., Molle, M., & Fehm, H. L. (1999). Timing the end of nocturnal sleep. Nature, 397, 29–30CrossRefGoogle ScholarPubMed
Buss, D. (2003). Evolutionary psychology: The new science of the mind (2nd ed.). Boston:Pearson Allyn & BaconGoogle Scholar
Claverie, J.-M. (2001). Gene number: What if there are only 30,000 human genes?Science, 291, 1255–1257CrossRefGoogle ScholarPubMed
Corballis, M. C. (1997). The genetics and evolution of handedness. Psychological Review, 105, 714–777CrossRefGoogle Scholar
Crowley, J. C., & Katz, L. C. (1999). Development of ocular dominance columns in the absence of retinal input. Nature Neuroscience, 2, 1125–1130CrossRefGoogle ScholarPubMed
Dawkins, R. (1989). The selfish gene (2nd ed.). Oxford, UK: Oxford University PressGoogle Scholar
Elzinga, B. M., Schmal, C. G., Vermetten, E., Dyck, R., & Bremner, J. D. (2003). Higher cortisol levels following exposure to traumatic reminders in abuse-related PTSD. Neuropsychopharmacology, 28, 1656–1665CrossRefGoogle ScholarPubMed
Fehr, E., & Fischbacher, U. (2003). The nature of human altruism. Nature, 425, 785–791CrossRefGoogle ScholarPubMed
Gilbertson, M. W., Shenton, M. E., Ciszewski, A., Kasai, K., Lasko, N. B., Orr, S. P., & Pitman, R. K. (2002). Smaller hippocampal volume predicts pathologic vulnerability to psychological trauma. Nature Neuroscience, 5, 1242–1247CrossRefGoogle ScholarPubMed
Gladue, B. A., Boechler, M., & McCaul, K. D. (1989). Hormonal responses to competition in human males. Aggressive Behavior, 15, 409–4223.0.CO;2-P>CrossRefGoogle Scholar
Güntürkün, O. (2002). Hemispheric asymmetry in the visual system of birds. In K. Hugdahl & R. J. Davidson (Eds.), Brain asymmetry (2nd ed., pp. 3–36). Cambridge, MA: MIT PressGoogle Scholar
Güntürkün, O. (2003). Human behaviour: Adult persistence of head turning asymmetry. Nature, 421, 711CrossRefGoogle ScholarPubMed
Hepper, P. G., Shahidullah, S., & White, R. (1991). Handedness in the human fetus. Neuropsychologia, 29, 1107–1111CrossRefGoogle ScholarPubMed
Jarvis, E. D., Scharff, C., Grossman, M. R., Ramos, J. A., & Nottebohm, F. (1998). For whom the bird sings: Context-dependent gene expression. Neuron, 21, 775–788CrossRefGoogle ScholarPubMed
Klar, A. J. S. (2003). Human handedness and scalp hair-whorl direction develop from a common genetic mechanism. Genetics, 165, 269–276Google ScholarPubMed
Lévi-Strauss, C. (1984). Die elementaren Strukturen der Verwandtschaft [The elemental structures of relatedness]. Frankfurt a.M.:SuhrkampGoogle Scholar
Mathis, U., Eschbach, S., & Rossel, S. (1992). Functional binocular vision is not dependent on visual experience in the praying mantis. Visual Neuroscience, 9 (2), 199–203CrossRefGoogle Scholar
Meister, M., Wong, R. O., Baylor, D. A., & Shatz, C. J. (1991). Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. Science, 252, 939–943CrossRefGoogle ScholarPubMed
Michel, G. F., & Harkins, D. A. (1986). Postural and lateral asymmetries in the ontogeny of handedness during infancy. Developmental Psychobiology, 19, 247–258CrossRefGoogle ScholarPubMed
Mitchell, D. E., Kind, P. C., Sengpiel, F., & Murphy, K. (2003). Brief daily periods of binocular vision prevent deprivation-induced acuity loss. Current Biology, 13, 1704–1708CrossRefGoogle ScholarPubMed
Montag-Sallaz, M., Welzl, H., Kuhl, D., Montag, D., & Schachner, M. (1999). Novelty-induced increased expression of immediate early-genes c-fos and arg 3.1 in the mouse brain. Journal of Neurobiology, 38, 234–2463.0.CO;2-G>CrossRefGoogle ScholarPubMed
Neave, N., & Wolfson, S. (2003). Testosterone, territoriality, and the “home advantage.” Physiology and Behavior, 78, 269–275CrossRefGoogle Scholar
Pääbo, S. (2003). The mosaic that is our genome. Nature, 421, 409–412CrossRefGoogle ScholarPubMed
Pakkenberg, B., & Gundersen, H. J. (1997). Neocortical neuron number in humans: Effect of sex and age. Journal of Comparative Neurology, 384, 312–3203.0.CO;2-K>CrossRefGoogle ScholarPubMed
Ramsdell, A. F., & Yost, H. J. (1998). Molecular mechanisms of vertebrate left–right development. Trends in Genetics, 14, 459–465CrossRefGoogle ScholarPubMed
Redies, C. (2000). Cadherins in the central nervous system. Progress in Neurobiology, 61, 611–648CrossRefGoogle ScholarPubMed
Reed, T. E., & Jensen, A. R. (1991). Arm nerve conduction velocity (NCV), brain NCV, reaction time, and intelligence. Intelligence, 15, 33–47CrossRefGoogle Scholar
Robaey, P., Cansino, S., Dugas, M., & Renault, B. (1995). A comparative study of ERP correlates of psychometric and Piagetian intelligence measures in normal and hyperactive children. Electroencephalography and Clinical Neurophysiology, 96, 56–75CrossRefGoogle ScholarPubMed
Röder, B., Teder-Sälejärvi, W., Sterr, A., Rösler, F., Hillyard, S. A., & Neville, H. J. (1999). Improved auditory spatial tuning in blind humans. Nature, 400, 162–166CrossRefGoogle ScholarPubMed
Rogers, L. J. (1982). Light experience and asymmetry of brain function in chickens. Nature, 297, 223–225CrossRefGoogle ScholarPubMed
Rogers, L. (1996). Behavioral, structural and neurochemical asymmetries in the avian brain: A model system for studying visual development and processing. Neuroscience and Biobehavioral Reviews, 20, 487–503CrossRefGoogle Scholar
Salvador, A., Suay, F., Gonzalez-Bono, E., & Serrano, M. A. (2003). Anticipatory cortisol, testosterone and psychological responses to judo competition in young men. Psychoneuroendocrinology, 28, 364–375CrossRefGoogle ScholarPubMed
Sapolsky, R. M., Uno, H., Rebert, C. S., & Finch, C. E. (1990). Hippocampal damage associated with prolonged glucocorticoid exposure in primates. Journal of Neuroscience, 10, 2897–2902CrossRefGoogle ScholarPubMed
Schüz, A., & Palm, G. (1989). Density of neurons and synapses in the cerebral cortex of the mouse. Journal of Comparative Neurology, 286, 442–455CrossRefGoogle ScholarPubMed
Sengpiel, F., Stawinski, P., & Bonhoeffer, T. (1999). Influence of experience on orientation maps in cat visual cortex. Nature Neuroscience, 2, 727–732CrossRefGoogle ScholarPubMed
Shepher, J. (1983). Incest: A biosocial view. New York:Academic PressGoogle Scholar
Singh, J. A. L. (1964). Die “Wolfskinder” von Midnapore [The wolf-children of Midnapore]. Heidelberg: Quelle & MeyerGoogle Scholar
Stein, M. B., Koverola, C., Hanna, C., Torchia, M. G., & McClarty, B. (1997). Hippocampal volume in women victimized by childhood sexual abuse. Psychological Medicine, 27, 951–959CrossRefGoogle ScholarPubMed
Sur, M., & Leamey, C. A. (2001). Development and plasticity of cortical areas and networks. Nature Reviews Neuroscience, 2, 251–261CrossRefGoogle ScholarPubMed
Tan, Ü., Akgun, A., Komsuoglu, S., & Telatar, M. (1993). Inverse relationship between nonverbal intelligence and the parameters of pattern reversal visual evoked potentials in left-handed male subjects: Importance of right brain and testosterone. International Journal of Neuroscience, 71, 189–200CrossRefGoogle ScholarPubMed
White, S. A. (2001). Learning to communicate. Current Opinion in Neurobiology, 11, 510–520CrossRefGoogle ScholarPubMed
Wolf, A. P. (1995). Sexual attraction and childhood association: A Chinese brief for Edward Westermarck. Stanford, CA:Stanford University PressGoogle Scholar
Wright, M. J., Hansell, N. K., Geffen, G. M., Geffen, L. B., Smith, G. A., & Martin, N. G. (2001). Genetic influence on the variance in P3 amplitude and latency. Behavioral Genetics, 31, 555–565CrossRefGoogle ScholarPubMed
Yanai, J., & McClearn, G. E. (1972). Assortative mating in mice and the incest taboo. Nature, 238, 281–282CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×