Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 3
  • Print publication year: 2010
  • Online publication date: July 2010

3 - The legacy of aqueous environments on soils of the McMurdo Dry Valleys: contexts for future exploration of martian soils

Summary

Introduction

The McMurdo Dry Valleys are the largest and one of the most southernly exposed terrestrial antarctic environments (Ugolini and Bockheim,2008) and have been a prominent analog environment for speculations about surface processes (Mahaney et al., 2001; Dickenson and Rosen, 2003; Marchant and Head, 2007) and potential biology (McKay, 1997; Wynn-Williams and Edwards, 2000) on Mars. The extremes in cold and aridity, the paucity of visually conspicuous life forms, and the undisturbed conditions of the McMurdo Dry Valleys make this region an obvious candidate for such comparisons. Recent discoveries of evidence demonstrating past and perhaps present availability of liquid water on the martian surface detected by the Mars Global Surveyor (Malin and Edgett, 2000; Baker, 2001) and the Spirit and Opportunity rovers (Squires et al., 2004a; Haskin et al., 2005) have extended the foundation of these comparisons beyond similarities in climate to surface geomorphology, geochemistry, and mineralogy (Chevrier et al., 2006; Marchant and Head, 2007; Amundson et al., 2008).

Water is the primary limitation to geochemical weathering and biological activity in the McMurdo Dry Valleys of Antarctica and other cold desert ecosystems where availability and movement of liquid water is limited by low temperatures (Kennedy, 1993; Convey et al., 2003; Barrett et al., 2008). This limitation of liquid water results in slow weathering and highly constrained biological activity contributing to relatively stable geochemical conditions in surface environments. Thus, in the McMurdo Dry Valleys, the legacy of paleo-aquatic environments is preserved in contemporary patterns of soil geochemistry.

Related content

Powered by UNSILO
References
Adams, B. J., Bardgett, R. D., Ayres, E., et al. (2006). Diversity and distribution of Victoria Land biota. Soil Biology and Biochemistry, 38, 3003–3018.
Aislabie, J. M., Chhour, K. L., Saul, D. J., et al. (2006). Dominant bacteria in soils of Marble Point and Wright Valley, Victoria Land, Antarctica. Soil Biology and Biochemistry, 38, 3041–3056.
Amundson, R. A., et al. (2008). On the in situ aqueous alteration of soil on Mars. Geochimica et Cosmochimica Acta, 72, 3845–3864.
Ayers, E., Adams, B. J., Barrett, J. E., Virginia, R. A., and Wall, D. H. (2007). Soil and sediment biogeochemistry and faunal community structure across aquatic-terrestrial interfaces in a polar desert ecosystem. Ecosystems, doi: 10.1007/s10021–007–9035-x.
Baker, V. R. (2001). Water and the martian landscape. Nature, 412, 228–235.
Baker, V. R., Strom, R. G., Gulick, V. C., et al. (1991). Ancient oceans, ice sheets and the hydrological cycle on Mars. Nature, 352, 589–594.
Bandfield, J. L., Hamilton, V. E., and Christensen, P. R. (2000). A global view of Martian surface composition from MGS-TES. Science, 287, 1626–30.
Barrett, J. E., Virginia, R. A., and Wall, D. H. (2002). Trends in resin and KCl-extractable soil nitrogen across landscape gradients in Taylor Valley, Antarctica. Ecosystems, 5, 289–299.
Barrett, J. E., Wall, D. H., Virginia, R. A., et al. (2004). Biogeochemical parameters and constraints on the structure of soil biodiversity. Ecology, 85, 3105–3118.
Barrett, J. E., Virginia, R. A., Parsons, A. N., and Wall, D. H. (2005). Potential soil organic matter turnover in Taylor Valley, Antarctica. Arctic Antarctic and Alpine Research, 37, 107–116.
Barrett, J. E., Virginia, R. A., Hopkins, D. W., et al. (2006). Terrestrial ecosystem processes of Victoria Land, Antarctica. Soil Biology and Biochemistry, 38, 3019–3034.
Barrett, J. E., Virginia, R. A., Lyons, W. B., et al. (2007). Biogeochemical stoichiometry of Antarctic Dry Valley ecosystems. Journal of Geophysical Research, Biogeosciences, 112, G01010.
Barrett, J. E., Virginia, R. A., Wall, D. H., et al. (2008). Persistent effects of a discrete climate event on a polar desert ecosystem. Global Change Biology, 14, 2249–2261.
Bate, D. B., Barrett, J. E., Poage, M. A., and Virginia, R. A. (2008). Soil phosphorus cycling in an Antarctic Polar Desert. Geoderma, 144, 21–31.
Bedard, J. H. J., Marsh, B. D., Hersum, T. G., Naslund, H. R., and Mukasa, S. B. (2007). Large-scale mechanical redistribution of orthopyroxene and plagioclase in the basement sill, Ferrar dolerites, McMurdo Dry Valleys, Antarctica. Journal of Petrology, 48, 2289–2326.
Bell, J. F., McSeen, H. Y., Crisp, J. A., et al. (2000). Mineralogic and compositional properties of Martian soil and dust: results from Mars Pathfinder. Journal of Geophysical Research, Planets, 105(E1), 1721–1755.
Benner, S. A., Devine, K. G., Matveeva, L. N., and Powell, D. H. (2000). The missing organic molecules on Mars. Proceedings of the National Academy of Sciences of the United States of America, 97, 2425–2430.
Bockheim, J. G. (1997). Properties and classification of cold desert soils from Antarctica. Soil Science Society of America, 61, 224–231.
Bockheim, J. G. (2002). Landform and soil development in the McMurdo Dry valleys, Antarctica: a regional synthesis. Arctic Antarctic and Alpine Research, 34, 308–317.
Bockheim, J. G. (2007). Soil processes and development rates in the Quartermain Mountains, upper Taylor Glacier region, Antarctica. Geografiska Annaler Series A, Physical Geography, 89A, 153–165.
Bockheim, J. G. and Hall, K. J. (2002). Permafrost, active-layer dynamics and periglacial environments of continental Antarctica. South African Journal of Science, 98, 82–90.
Bockheim, J. G., Campbell, I. B., and McLeod, M. (2007). Permafrost distribution and active-layer depths in the McMurdo dry valleys, Antarctica. Permafrost and Periglacial Processes, 18, 217–227.
Bomblies, A., McKnight, D. M., and Andrews, E. D. (2001). Retrospective simulation of lake-level rise in Lake Bonney based on recent 21-year record, indication of recent climate change in the McMurdo Dry Valleys, Antarctica. Journal of Paleolimnology, 25, 477–492.
Burkins, M. B., Virginia, R. A., Chamberlain, C. P., and Wall, D. H. (2000). Origin and distribution of soil organic matter in Taylor Valley, Antarctica. Ecology, 81, 2377–2391.
Burkins, M. B., Virginia, R. A., and Wall, D. H. (2001). Organic carbon cycling in Taylor Valley, Antarctica, quantifying soil reservoirs and soil respiration. Global Change Biology, 7, 113–125.
Cabrol, N. A. and Grin, E. A. (1999). Distribution, classification, and ages of Martian impact crater lakes. Icarus, 142, 160–172.
Campbell, I. B. (2003). Soil characteristics at a long-term ecological research site in Taylor Valley, Antarctica. Australian Journal of Soil Research, 41, 351–364.
Campbell, I. B. and Claridge, G. G. C. (1987). Antarctica: Soils, Weathering Processes and Environment. Developments in Soil Science 16. Amsterdam, Netherlands: Elsevier.
Carr, M. H. (2006). The Surface of Mars. Cambridge, UK: Cambridge University Press.
Carr, M. H. and Head, J. W. (2003). Oceans on Mars: an assessment of the observational evidence and possible fate. Journal of Geophysical Research, Planets, 108, 5042.
Chevrier, V. and Mathe, P. E. (2007). Mineralogy and evolution of the surface of Mars: a review. Planetary and Space Science, 55, 289–314.
Chevrier, V., Mathe, P. -E., Rochette, P., and Gunnlaugsson, H. P. (2006). Magnetic study of an Antarctic weathering profile on basalt, implication for recent weathering on Mars. Earth and Planetary Science Letters, 244, 501–514.
Chinn, T. H. (1993). Physical hydrology of the dry valley lakes. In Physical and Biogeochemical Processes in Antarctic Lakes, ed. Green, W. J. and Freidmann, E. I.. Antarctic Research Series 59. Washington, D.C.: American Geophysical Union, pp. 1–51.
Christensen, P. R., Bandfield, J. L., Hamilton, V. E., et al. (2001). Mars Global Surveyor thermal emission spectrometer experiment, investigation description and surface science results. Journal of Geophysical Research, Planets, 106, 23 823–23 871.
Connell, L., Redman, R., Craig, S., and Rodriguez, R. (2006). Distribution and abundance of fungi in the soils of Taylor Valley, Antarctica. Soil Biology and Biochemistry, 38, 3083–3094.
Convey, P., Block, W., and Peat, H. J. (2003). Soil arthropods as indicators of water stress in Antarctic terrestrial habitats?Global Change Biology, 9, 1718–1730.
Cuneo, N. R., Taylor, E. L., Taylor, T. N., and Krings, M. (2003). In situ fossil forest from the upper Fremouw Formation (Triassic) of Antarctica: paleoenvironmental setting and paleoclimate analysis. Palaeogegraphy Palaeoclimatology Palaeoecology, 197, 239–261.
Denton, G. H. and Hall, B. L. (2000). Glacial and paleoclimatic history of the Ross ice drainage system of Antarctica: preface. Geografiska Annaler Series A, Physical Geography, 82A,139–141.
Denton, G. H., Bockheim, J. G., Wilson, S. C., and Stuiver, M. (1989). Late Wisconsin and Early Holocene glacial history, Inner Ross Embayment, Antarctica. Quaternary Research, 31, 151–182.
Dickinson, W. W. and Rosen, M. R. (2003). Antarctic permafrost: an analogue for water and diagenetic minerals on Mars. Geology, 31, 199–202.
Doran, P. T., McKay, C. P., Clow, G. D., et al. (2002). Valley floor climate observations from the McMurdo dry valleys, Antarctica 1986–2000. Journal of Geophysical Research, Atmospheres, 107, Article 4772.
Doran, P. T., McKay, C. P., Fountain, A. G., et al. (2008). Hydrologic response to extreme warm and cold summers in the McMurdo Dry Valleys, East Antarctica. Antarctic Science, 20, 499–509.
Elberling, B., Gregorich, E. G., Hopkins, D. W., et al. (2006). Distribution and dynamics of soil organic matter in an Antarctic dry valley. Soil Biology and Biochemistry, 38, 3095–3106.
Foley, K. K., Lyons, W. B., Barrett, J. E., and Virginia, R. A. (2006). Pedogenic carbonate distribution within glacial till in Taylor Valley, Southern Victoria Land, Antarctica. In Paleoenvironmental Records of Calcretes and Palustrine Carbonates, ed. Alonso-Zara, A. M. and Tanner, L. H.. GSA Special Paper 416. Boulder, CO: Geological Society of America, pp. 89–103.
Foreman, C., Wolf, C. F., and Priscu, J. C. (2004). Impact of episodic warming events on the physical, chemical and biological relationships of lakes in the McMurdo Dry Valleys, Antarctica. Aquatic Geochemistry, 10, 239–268.
Fountain, A. G., Lyons, W. B., Burkins, M. B., et al. (1999). Physical controls on the Taylor Valley ecosystem, Antarctica. BioScience, 49, 961–971.
Gellert, R., Rieder, R., Anderson, R. C., et al. (2004). Chemistry of rocks and soils in Gusev crater from the alpha particle x-ray spectrometer. Science, 305, 829–832.
Gooseff, M. N., Barrett, J. E., Doran, P. T., et al. (2003). Snow-patch influence on soil biogeochemical processes and invertebrate distribution in the McMurdo Dry Valleys, Antarctica. Arctic Antarctic and Alpine Research, 35, 92–100.
Gooseff, M. N., Northcott, N. L., Barrett, J. E., et al. (2007). Controls on soil water dynamics in near-shore lake environments in an Antarctic polar desert. Vadose Zone Journal, 6, 841–848.
Haberle, R. M., McKay, C. P., Schaeffer, J., et al. (2001). On the possibility of liquid water on present-day Mars. Journal of Geophysical Research, Planets, 106, 23 317–23 326.
Hall, B. L. and Denton, G. H. (2000). Radiocarbon chronology of Ross Sea drift, eastern Taylor Valley, Antarctica: evidence for a grounded ice sheet in the Ross Sea at the last glacial maximumGeografiska Annaler Series A, Physical Geography, 82A, 305–336.
Hall, B. L., Denton, G. H., and Hendy, C. H. (2000). Evidence from Taylor Valley for a grounded ice sheet in the Ross Sea, Antarctica. Geografiska Annaler Series A, Physical Geography, 82A, 275–303.
Hagedorn, B., Sletten, R. S., and Hallet, B. (2007). Sublimation and ice condensation in hyperarid soils: modeling results using field data from Victoria Valley, Antarctica. Journal of Geophysical Research, 112, F03017.
Harris, K. J., Carey, A. E., Lyons, W. B., Welch, K. A., and Fountain, A. G. (2007). Solution and isotope geochemistry of subsurface ice melt seeps in Taylor Valley, Antarctica. Geological Society of America Bulletin, 119, 548–555.
Haskin, L. A., Wang, A., Jollif, B. L., et al. (2005). Water alteration of rocks and soils on Mars at the Spirit rover site in Gusev crater. Nature, 436, 66–69.
Head, J. W., Hiesinger, H., Ivanov, M. A., et al. (1999). Possible ancient oceans on Mars: evidence from Mars Orbiter Laser Altimeter data. Science, 286, 2134–2137.
Heldmann, J. L., Carlsson, E., Johansson, H., Mellon, M. T., and Toon, O. B. (2007). Observations of martian gullies and constraints on potential formation mechanisms. II. The northern hemisphere. Icarus, 188, 324–344.
Hendy, C. H., Sadler, A. J., Denton, G. H., and Hall, B. L. (2000). Proglacial lake-ice conveyors: a new mechanism for deposition of drift in polar environments. Geografiska Annaler Series A, Physical Geography, 82A, 249–270.
Higgins, S. M., Denton, G. H., and Hendy, C. H. (2000). Glacial geomorphology of Bonney drift, Taylor Valley, Antarctica. Geografiska Annaler Series A, Physical Geography, 82A, 365–389.
Hvidberg, C. S. (2005). Polar caps. In Water on Mars and Life, ed. Tokano, T.. Berlin: Springer, pp. 129–152.
Howard, A. D. (2000). The role of eolian processes in forming surface features of the Martian polar layered deposits. Icarus, 144, 267–288.
Kasting, J. F. (1993). Earth's early atmosphere. Science, 259, 920–926.
Kasting, J. F. and Siefert, J. L. (2002). Life and the evolution of Earth's atmosphere. Science, 296, 1066–1068.
Kennedy, A. D. (1993). Water as a limiting factor in the Antarctic terrestrial environment: a biogeographical synthesis. Arctic and Alpine Research, 25, 308–315.
Klein, H. P. (1978). The Viking biological experiments on Mars. Icarus, 34, 666–674.
Klingelhöfer, G., Morris, R. V, Bernhardt, B., et al. (2004). Jarosite and hematite at Meridiani Planum from Opportunity's Mössbauer spectrometer. Science, 306, 1740–1745.
Kuzmin, R. O. (2005). Ground ice in the Martian regolith. In Water on Mars and Life, ed. Tokano, T.. Berlin: Springer, pp. 155–189.
Lancaster, N. (2002). Flux of eolian sediment in the McMurdo Dry Valleys, Antarctica: a preliminary assessment. Arctic Antarctic and Alpine Research, 34, 318–323.
Lazcano, A. and Miller, S. L. (1994). How long did it take for life to begin and evolve to cyanobacteria?Journal of Molecular Evolution, 39, 546–554.
Lazcano, A. and Miller, S. L. (1999). On the origin of metabolic pathways. Journal of Molecular Evolution, 49, 424–431.
Leovy, C. (2001). Weather and climate on Mars. Nature, 412, 245–249.
Lewis, K. J., Fountain, A. G., and Dana, G. L. (1998). Surface energy balance and meltwater production for a Dry Valley glacier, Taylor Valley, Antarctica. Annals of Glaciology, 27, 603–609.
Lichtenberg, K. A., Arvidson, R. E., Poulet, F., et al. (2007). Coordinated analyses of orbital and Spirit Rover data to characterize surface materials on the cratered plains of Gusev Crater, Mars. Journal of Geophysical Research, Planets, 112, E12S90.
Lundin, R., Barabash, S., Andersson, H., et al. (2004). Solar wind-induced atmospheric erosion at Mars: first results from ASPERA-3 on Mars Express. Science, 305, 1933–1936.
Lyons, W. B., Welch, K. A., Nezat, C. A., et al. (1997). Chemical weathering rates and reactions in the Lake Fryxell Basin, Taylor Valley: comparison to temperate river basins. In Ecosystem Processes in Antarctic Ice-free Landscapes, ed. Lyons, W. B., Howard-Williams, C., and Hawes, I., Rotterdam Netherlands: Balkema Press, pp. 147–154.
Lyons, W. B., Fountain, A. G., Doran, P. T., et al. (2000). Importance of landscape position and legacy, the evolution of the lakes in Taylor Valley, Antarctica. Freshwater Biology, 43, 355–367.
Lyons, W. B., Welch, K. A., Carey, A. E., et al. (2005). Groundwater seeps in Taylor Valley, Antarctica: an example of a decadal subsurface melt event. Annals of Glaciology, 40, 200–206.
Madronich, S., McKenzie, R. L., Bjorn, L. O., et al. (1998). Changes in biologically active ultraviolet radiation reaching the Earth's surface. Journal of Photochemistry and Photobiology, Biology, 46, 5–19.
Mahaney, W. C., Dohm, J. C., and Baker, V. R. (2001). Morphogenesis of Antarctic paleosols, Martian analogue. Icarus, 154, 113–130.
Malin, M. C. and Edgett, K. S. (2000). Evidence for recent groundwater seepage and surface runoff on Mars. Science, 288, 2330–2335.
Mangold, N. (2005). High latitude patterned grounds on Mars: classification, distribution and climatic control. Icarus, 174, 336–359.
Marchant, D. R. and Head, J. W. (2007). Antarctic dry valleys: microclimate zonation, variable geomorphic processes, and implications for assessing climate change on Mars. Icarus, 192, 187–222.
Marchant, D. R., Lewis, A. R., Phillips, W. M., et al. (2002). Formation of patterned ground and sublimation till over Miocene glacier ice in Beacon Valley, southern Victoria Land, Antarctica. Geological Society of America Bulletin, 114, 718–730.
Margulis, L. and Sagan, D. (1986). Microcosmos: Four Billion Years of Microbial Evolution. Berkeley, CA: University of California Press.
McKay, C. P. (1997). The search for life on Mars. Origins Of Life And Evolution of the Biosphere, 27, 262–289.
McGinnis, L. D. (1981). Dry Valley Drilling Project. Antarctic Research Series 33. Washington, D.C.: American Geophysical Union, 465 pp.
McLennan, S. M., Bell, J. F., Calvin, W. M., et al. (2005). Provenance and diagenesis of the evaporite-bearing Burns formation, Meridani Planum, Mars. Earth and Planetary Science Letters, 240, 95–121.
McSween, H. Y., Arvidson, R. E., Bell, J. F., et al. (2004). Basaltic rocks analyzed by the Spirit Rover in Gusev Crater. Science, 305, 842–848.
Mellon, M. T. and Phillips, R. J. (2001). Recent gullies on Mars and the source of liquid water. Journal of Geophysical Research, Planets, 106, 23 165–23 179.
Mellon, M. T., Feldman, W. C., and Prettyman, T. H. (2004). The presence and stability of ground ice in the southern hemisphere of Mars. Icarus, 169, 324–340.
Michalski, G., Bockheim, J. G., Kendall, C., and Thiemens, M. (2005). Isotopic composition of Antarctic Dry Valley nitrate: implication for NOy sources and cycling in Antarctica. Geophysical Research Letters, 32, L13817.
Ming, D. W., Mittlefehldt, D. W., and Morris, R. V. (2006). Geochemical and mineralogical indicators for aquerous processes in the Columbia Hills of Gusev crater, Mars. Journal of Geophysical Research, Planets, 111, E02S12.
Mitrofanov, I. G. (2005). Global distribution of subsurface water measured by Mars Odyssey. In Water on Mars and Life, ed. Tokano, TBerlin: Springer, pp. 99–128.
Morris, R. V., Golden, D. C., Bell, J. F., et al. (2000). Mineralogy, composition, and alteration of Mars Pathfinder rocks and soils: evidence from multispectral, elemental, and magnetic data on terrestrial analogues, SNSC meteorite, and Pathfinder samples. Journal of Geophysical Research, Planets, 105, 1757–1817.
Morris, R. V., Klingelhöfer, G., Bernhardt, B., et al. (2004). Mineralogy at Gusev Crater from the Mössbauer Spectrometer on the Spirit Rover. Science, 305, 833–836.
Navarro-Gonzalez, R., Rainey, F. A, Molina, P., et al. (2003). Mars-like soils in the Atacama Desert, Chile, and the dry limit of microbial life. Science, 302, 1018–1021.
Ng, F., Hallet, B., Sletten, R. S., and Stone, J. O. (2005). Fast-growing till over ancient ice in Beacon Valley, Antarctica. Geology, 33, 121–124.
Nisbet, E. G. and Sleep, N. H. (2001). The habitat and nature of early life. Science, 409, 1083–1091.
Northcott, M. L., Gooseff, M. N., Barrett, J. E., et al. (2009). Hydrologic characteristics of lake- and stream-side riparian margins in the McMurdo Dry Valleys, Antarctica. Hydrological Processes, 23, 1255–1267.
Ori, G. G., Marinangeli, L., and Baliva, A. (2000). Terraces and Gilbert-type deltas in crater lakes in Ismenius Lacus and Memnonia (Mars). Journal of Geophysical Research, Planets, 105, 17 629–17 641.
Parsons, A. N., Barrett, J. E., Wall, D. H., and Virginia, R. A. (2004). Soil carbon dioxide flux in Antarctic Dry Valley ecosystems. Ecosystems, 7, 286–295.
Perron, J. T., Mitrovica, J. X., Manga, M., Matsuyama, I., and Richards, M. A. (2007). Evidence for an ancient martian ocean in the topography of deformed shorelines. Nature, 447, 840–843.
Poage, M. A., Barrett, J. E., Virginia, R. A., and Wall, D. H. (2008). The influence of soil geochemistry on nematode distribution, McMurdo Dry Valleys, Antarctica. Arctic Antarctic and Alpine Research, 40, 119–128.
Poreda, R. J., Hunt, A. G., Lyons, W. B., and Welch, K. A. (2004). The helium isotopic chemistry of Lake Bonney, Taylor Valley, Antarctica: timing of Late Holocene climate change in Antarctica. Aquatic Geochemistry, 10, 353–371.
Powers, L. E., Freckman, D. W., and Virginia, R. A. (1995). Spatial distribution of nematodes in polar desert soils of Antarctica. Polar Biology, 15, 325–333.
Powers, L. E., Ho, M. C., Freckman, D. W., and Virgina, R. A. (1998). Distribution, community structure, and microhabitats of soil invertebrates along an elevational gradient in Taylor Valley, Antarctica. Arctic Antarctic and Alpine Research, 30, 133–141.
Quinn, R. C., Zent, A. P., Grunthaner, F. J., et al. (2005). Detection and characterization of oxidizing acids in the Atacama Desert using the Mars Oxidation Instrument. Planetary and Space Science, 53, 1376–1388.
Rieder, R., Gellert, R., Anderson, R. C., et al. (2004). Chemistry of rocks and soils at Meridiani Planum from the alpha particle X-ray spectrometer. Science, 306, 1746–1749.
Schwarz, A. M. J., Green, J. D., Green, T. G. A., and Seppelt, R. D. (1993). Invertebrates associated with moss communities at Canada Glacier, southern Victoria Land, Antarctica. Polar Biology, 13, 157–162.
Seibert, N. M. and Kargel, J. S. (2001). Small-scale Martian polygonal terrain: implications for liquid surface water. Geophysical Research Letters, 28, 899–902.
Sizemore, H. G. and Mellon, M. T. (2006). Effects of soil heterogeneity on martian ground-ice stability and orbital estimates of ice table depth. Icarus, 185, 358–369.
Sletten, R. S., Hallet, B., and Fletcher, R. C. (2003). Resurfacing time of terrestrial surfaces by the formation and maturation of polygonal patterned ground. Journal of Geophysical Research, Planets, 108, 8044.
Squyres, S. W. (1989). Water on Mars. Icarus, 79, 229–288.
Squyres, S. W., Grotzinger, J. P., Arvidson, R. E., et al. (2004a). In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars. Science, 306, 1709–1714.
Squyres, S. W., Arvidson, R. E., Bell, III, J. F., et al. (2004b). The Opportunity Rover's Athena science investigation at Meridiani Planum, Mars. Science, 306,1698–1703.
Sugden, D. E., Marchant, D. R., Potter, N., et al. (1995). Preservation of Miocene glacier ice in East Antarctica. Nature, 376, 412–414.
Taton, A., Grubisic, S., Brambilla, E., Wit, R., and Wilmotte, A. (2003). Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Applied and Environmental Microbiology, 69, 5157–5169.
Titus, T. N., Kieffer, H. H., and Christensen, P. R. (2003). Exposed water ice discovered near the South Pole of Mars. Science, 299, 1048–1051.
Tosi, S., Onofri, S., Brusoni, M., Zucconi, L., and Vishniac, H. (2005). Response of Antarctic soil fungal assemblages to experimental warming and reduction of UV radiation. Polar Biology, 28, 470–482.
Treonis, A. M., Wall, D. H., and Virginia, R. A. (1999). Invertebrate biodiversity in Antarctic dry valley soils and sediments. Ecosystems, 2, 482–492.
Treonis, A. M., Wall, D. H., and Virginia, R. A. (2000). The use of anhydrobiosis by soil nematodes in the Antarctic Dry Valleys. Functional Ecology, 14, 460–467.
Ugolini, F. C. and Bockheim, J. G. (2008). Antarctic soils and soil formation in a changing environment. Geoderma, 114, 1–8.
Wentworth, S. J., Gibson, E. K., Velbel, M. A., and McKay, D. S. (2005). Antarctic Dry Valleys and indigenous weathering in Mars meterorites: implications for water and life on Mars. Icarus, 174, 383–395.
Weber, K. A., Achenbach, L. A., and Coates, J. D. (2006). Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nature Reviews Microbiology, 4, 752–764.
Westall, F. (2005). Early life on Earth and analogies to Mars. In Water on Mars and Life, ed. Tokano, T. Berlin: Springer, pp. 45–64.
Witherow, R. A., Lyons, W. B., Bertler, N. A. N., et al. (2006). The aeolian flux of calcium, chloride and nitrate to the McMurdo Dry Valleys landscape, evidence from snow pit analysis. Antarctic Science, 18, 497–505.
Wood, S. A., Rueckert, A., Cowan, D. A., and Cary, S. C. (2008). Sources of edaphic cyanobacterial diversity in the Dry Valleys of Eastern Antarctica. ISME Journal, 2, 308–320.
Wynn-Williams, D. D. and Edwards, H. G. M. (2000). Proximal analysis of regolith habitats and protective biomolecules in situ by laser Raman spectroscopy: overview of terrestrial Antarctic habitats and Mars analogs. Icarus, 144, 486–503.
Yen, A. S., Gellert, R., Schroder, C., et al. (2005). An integrated view of the chemistry and mineralogy of Martian soils. Nature, 436, 49–54.
Zeglin, L. H., Sinsabaugh, R. L., Barrett, J. E., Gooseff, M. N., and Takacs-Vesbach, C. D. (2009). Landscape distribution of microbial activity in the McMurdo Dry Valleys: linked biotic processes, hydrology and geochemistry in a cold desert ecosystem. Ecosystems, 12, doi: 10.1007/s10021–009–9242–8.
Zuber, M. T. (2007). Mars at the tipping point. Nature, 447, 785–786.