[1] W. R., Gilks, S., Richardson, and D. J., Spiegelhalter, Markov Chain Monte Carlo in Practice. London: Chapman & Hall, 1996.
[2] N., Metropolis and S., Ulam, “The Monte Carlo method,” J. Amer. Statist. Assoc., no. 44, pp. 335–341, 1949.
[3] N., Metropolis, A. W., Rosenbluth, M. N., Rosenbluth, A., Teller, and H., Teller, “Equations of state calculations by fast computing machines,” Journal of Chemical Physics, no. 21, pp. 1087–1091, 1953.
[4] W. K., Hastings, “Monte Carlo sampling methods using Markov chains and their applications,” Biometrika, no. 57, pp. 97–109, 1970.
[5] S., Chib and E., Greenberg, “Understand ing the Metropolis-Hastings algorithm,” American Statistician, no. 49, pp. 327–335, 1995.
[6] J., Geweke, “Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments,” in Bayesian Statistics, J. M., Bernardo, J. O., Berger, A. P., Dawid, and A. F. M., Smith, Eds. Oxford, UK: Oxford University Press, 1992, ch. 4, pp. 169–193.
[7] A. E., Raftery and S., Lewis, “How many iterations in the Gibbs sampler?” in Bayesian Statistics, J. M., Bernardo, J. O., Berger, A. P., Dawid, and A. F. M., Smith, Eds. Oxford, UK: Oxford University Press, 1992, ch. 4, pp. 763–773.
[8] S., Geman and D., Geman, “Stochastic relaxation, Gibbs distribution and Bayesian restoration of images,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. PAMI-6, no. 6, pp. 721–741, Nov. 1984.
[9] R., Chen and T.-H., Li, “Blind restoration of linearly degraded discrete signals by Gibbs sampler,” IEEE Trans. Signal Process., vol. 43, no. 9, pp. 2410–2413, Sep. 1995.
[10] R., Chen, J. S., Liu, and X., Wang, “Convergence analyses and comparisons of Markov chain Monte Carlo algorithms in digital communications,” IEEE Trans. Signal Process., vol. 50, no. 2, pp. 255–270, Feb. 2002.
[11] B., Farhang-Boroujeny, H., Zhu, and Z., Shi, “Markov chain Monte Carlo algorithms for CDMA and MIMO communication systems,” IEEE Trans. Signal Process., vol. 54, no. 5, pp. 1896–1909, May 2006.
[12] S., Henriksen, B., Ninness, and S. R., Weller, “Convergence of Markov-Chain MonteCarlo approaches to multiuser and MIMO detection,” IEEE J. Sel. Areas in Commun., vol. 26, no. 3, pp. 497–505, Apr. 2008.
[13] R., Peng, R.-R., Chen, and B., Farhang-Boroujeny, “Markov chain Monte Carlo detectors for channels with intersymbol interference,” IEEE Trans. Signal Process., vol. 58, no. 4, pp. 2206–2217, Apr. 2010.
[14] R. R., Chen, R., Peng, A., Ashikhmin, and B., Farhang-Boroujeny, “Approaching MIMO capacity using bitwise Markov chain Monte Carlo detection,” IEEE Trans. Commun., vol. 58, no. 2, pp. 423–428, Nov. 2010.
[15] D. J. C., MacKay, Information Theory, Inference and Learning Algorithms. Cambridge, UK: Cambridge University Press, 2003.
[16] M. K., Hanawal and R., Sundaresan, “Rand omised attacks on passwords,” in Technical Report TR-PME-2010-11, DRDO-IISc Programme on Advanced Research in Mathematical Engineering, IISc, Bangalore, 12 February 2010. Online: http://www.pal.ece.iisc.ernet.in/PAM/docs/techreports/tech_rep10/TR-PME-2010-ll.pdf.
[17] M. K., Hanawal and R., Sundaresan, “Guessing revisited: A large deviations approach,” IEEE Trans. Inform. Theory, vol. 57, no. 1, pp. 70–78, Jan. 2011.
[18] E., Arikan, “An inequality on guessing and its application to sequential decoding,” IEEE Trans. Inform. Theory, vol. 42, no. 1, pp. 99–105, Jan. 1996.
[19] M., Hansen, B., Hassibi, A. G., Dimakis, and W., Xu, “Near-optimal detection in MIMO systems using Gibbs sampling,” in IEEE GLOBECOM'2009, Hondulu Nov.-Dec. 2009, pp. 1–6.
[20] T., Datta, N. A., Kumar, A., Chockalingam, and B. S., Rajan, “A novel Monte Carlo sampling based receiver for large-scale uplink multiuser MIMO systems,” IEEE Trans. Veh. Tech., vol. 62, no. 7, pp. 3019–3038, Sep. 2013.
[21] A., Kumar, S., Chandrasekaran, A., Chockalingam, and B. S., Rajan, “Near-optimal large-MIMO detection using rand omized MCMC and rand omized search algorithms,” in IEEE ICC'2011, Kyoto, Jun. 2011, pp. 1–5.
[22] T., Datta, N. A., Kumar, A., Chockalingam, and B. S., Rajan, “A novel MCMC algorithm for near-optimal detection in large-scale uplink mulituser MIMO systems,” in ITA '2012, San Diego, CA, Feb. 2012, pp. 69–77.
[23] X., Mao, P., Amini, and B., Farhang-Boroujeny, “Markov chain Monte Carlo MIMO detection methods for high signal-to-noise ratio regimes,” in IEEE GLOBE-COM'2007, Washington, DC, Nov. 2008, pp. 3979–3983.
[24] S., Akoum, R., Peng, R.-R., Chen, and B., Farhang-Boroujeny, “Markov chain Monte Carlo MIMO detection methods for high SNR regimes,” in IEEE ICC'2009, Glasgow, Jun. 2009, pp. 1–5.