Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 1
  • Print publication year: 2007
  • Online publication date: September 2009

7 - Lagrangian data assimilation in ocean general circulation models

Summary

Introduction

In the last 20 years, the deployment of surface and subsurface buoys has increased significantly, and the scientific community is now focusing on the development of new techniques to maximize the use of these data. As shown by Davis (1983, 1991), oceanic observations of quasi-Lagrangian floats provide a useful and direct description of lateral advection and eddy dispersal. Data from surface drifters and subsurface floats have been intensively used to describe the main statistics of the general circulation in most of the world ocean, in terms of mean flow structure, second-order statistics and transport properties (e.g. Owens, 1991; Richardson, 1993; Fratantoni, 2001; Zhang et al., 2001; Bauer et al., 2002; Niiler et al., 2003; Reverdin et al., 2003). Translation, swirl speed and evolution of surface temperature in warm-core rings, which are ubiquitous in the oceans, have also been studied with floats by releasing them inside of the eddies (Hansen and Maul, 1991). Trajectories of freely drifting buoys allow estimation of horizontal divergence and vertical velocity in the mixed layer (Poulain, 1993). Also, data from drifters allows investigation of properties and statistics of near-inertial waves, which provide much of the shear responsible for mixing in the upper thermocline and entrainment at the base of the mixed layer (Poulain et al., 1992). Drifters have proved to be robust autonomous platforms with which to observe ocean circulation and return data from a variety of sensors.

Related content

Powered by UNSILO
References
Aref, H., 1984. Mixing by chaotic advection. J. Fluid Mech., 143, 1–24.
Bauer, S., Swenson, M. S., and Griffa, A., 2002. Eddy-mean flow decomposition and eddy-diffusivity estimates in the tropical Pacific Ocean. 2. Results. J. Geophys. Res., 107, 3154–71.
Bennett, A. F., 1992. Inverse Methods in Physical Oceanography. New York: Cambridge University Press.
Berloff, P. and McWilliams, J. C., 2002. Material transport in oceanic gyres. Part II: Hierarchy of stochastic models. J. Phys. Oceanogr., 32, 797–830.
Bleck, R. and Boudra, D. B., 1986. Wind-driven spin-up eddy-resolving ocean models formulated in isopycnic and isobaric coordinates. J. Geophys. Res., 91/C, 7611–21.
Bleck, R., Hanson, H. P., Hu, D., and Kraus, E. B., 1989. Mixed layer-thermocline interaction in a three-dimensional isopycnic coordinate model. J. Phys. Oceanogr., 19C, 1417–39.
Bleck, R., Rooth, C., Hu, D., and Smith, L. T., 1992. Ventilation and mode water formation in a wind- and thermohaline-driven isopycnic coordinate model of the North Atlantic. J. Phys. Oceanogr., 22, 1486–1505.
Cane, M. A., Kaplan, A., Miller, R. N., Tang, B., Hackert, E. C., and Busalacchi, A. J., 1996. Mapping tropical Pacific sea level: Data assimilation via a reduced state space Kalman filter. J. Phys. Oceanogr., 101, 22599–617.
Carter, E. F., 1989. Assimilation of Lagrangian data into a numerical model. Dyn. Atmos. Oceans, 13, 335–48.
Chin, T. M., Mariano, A. J., and Chassignet, E. P., 1999. Spatial regression with Markov Random Fields for Kalman filter approximation in least-squares solution of oceanic data assimilation problems. J. Geophys. Res., 104, 1233–57.
Chin, T. M., Haza, A. C., and Mariano, A. J., 2002. A reduced-order information filter for multi-layer shallow water models: profiling and assimilation of sea surface height. J. Atmos. Ocean. Tech., 19(4), 517–33.
Davis, R. E., 1983. Oceanic property transport, Lagrangian particle statistics, and their prediction. J. Mar. Res., 41, 163–94.
Davis, R. E., 1991. Observing the general circulation with floats. Deep-Sea Res., 38, 5531–71.
Davis, R. E., 1996. Comparison of Autonomous Lagrangian Circulation Explorer and fine resolution Antarctic model results in the South Atlantic. J. Geophys. Res., 101, C1, 855–84.
Davis, R., 1998. Preliminary results from directly measuring mid-depth circulation in the Tropical and South Pacific. J. Geophys. Res., 103, 24619–39.
Evensen, G., D. P. Dee, and J. Schroter, 1998. Parameter estimation in dynamical models. In Ocean Modeling and Parameterization, ed. Chassignet, E. P. and Veron, J.. Dordrecht: Kluwer Academic Publishers, 373–98.
Fratantoni, D. M., 2001. North Atlantic surface circulation during the 1990s observed with satellite-tracked drifters. J. Geophys. Res., 106, 22,067–93.
Garraffo, Z. D., Mariano, A. J., Griffa, A., Veneziani, C., and Chassignet, E. P., 2001. Lagrangian data in a high-resolution numerical simulation of the North Atlantic. 1. Comparison with in situ drifter data. J. Mar. Sys., 29, 157–76.
Ghil, M. and Malanotte-Rizzoli, P., 1991. Data assimilation in meteorology and oceanography. Adv. Geophy., 33, 141–266.
Griffa, A., 1996. Applications of stochastic particle models to oceanographic problems. In Stochastic Modeling in Physical Oceanography, ed. Adler, R., Muller, P., Rozovskiim, B.. Cambridge, MA: Birkhauser Boston, 113–28.
Hansen, D. V. and Maul, G. A., 1991. Anticyclonic current rings in the eastern tropical Pacific Ocean. J. Geophys. Res., 96, 6965–79.
Hansen, D. V. and Poulain, P.-M., 1996. Quality control and interpolations of WOCE/TOGA drifter data. J. Atmos. Oceanic Tec., 13, 900–9.
Hernandez, F., Traon, P. Y., and Barth, N. H., 1995. Optimizing a drifter cast strategy with a genetic algorithm. J. Atmos. Ocean Tech., 12, 330–45.
Holland, W. R., 1978. The role of mesoscale eddies in the general circulation of the ocean. J. Phys. Oceanogr., 22, 1033–46.
Ide, K. and Ghil, M., 1997a. Extended Kalman filtering for vortex systems. Part I: Methodology and point vortices. Dyn. Atm. Oceans, 27, 301–32.
Ide, K. and Ghil, M., 1997b. Extended Kalman filtering for vortex systems. Part II: Rankine vortices and observing system design. Dyn. Atm. Oceans, 27, 333–50.
Ide, K., Kuznetsov, L., and Jones, C. K. R. T., 2002. Lagrangian data assimilation for point-vortex system. J. Turbulence, 3, 053.
Ishikawa, Y. I., Awaji, T., and Akimoto, K., 1996. Successive correction of the mean sea surface height by the simultaneous assimilation of drifting buoy and altimetric data. J. Phys. Oceanogr., 26, 2381–97.
Kamachi, M. and O'Brien, J. J., 1995. Continuous assimilation of drifting buoy trajectories into an equatorial Pacific Ocean model. J. Mar. Sys., 6, 159–78.
Kuznetsov, L., Toner, M., Kirwan, A. D., Jones, C. K. R. T., Kantha, L. H., and Choi, J., 2002. The Loop Current and adjacent rings delineated by Lagrangian analysis of near-surface flow. J. Mar. Res., 60, 405–29.
Lorenc, A. C., 2000. A Bayesian approach to observation quality control in variational and statistical assimilation. Proceedings of Aha Huliko Hawaiian Winter Workshop, 249–63.
Malanotte-Rizzoli, P. and Holland, W. R., 1988. Data constraint applied to models of the ocean general circulation. Part 2. The transient, eddy resolving case. J. Phys. Oceanogr., 18, 1093–107.
McClean, J. L., Poulain, P.-M., and Pelton, J. W., 2002. Eulerian and Lagrangian statistics from surface drifters and a high-resolution POP simulation in the North Atlantic. J. Phys. Oceanogr., 32, 2472–91.
Molcard, A., Griffa, A., and Özgökmen, T. M., 2005. Lagrangian data assimilation in multi-layer primitive equation ocean models. J. Atmos. Ocean. Tech., 22, 1, 70–83.
Molcard, A., Piterbarg, L. I., Griffa, A., Özgökmen, T. M., and Mariano, A. J., 2003. Assimilation of drifter positions for the reconstruction of the Eulerian circulation field. J. Geophys. Res., 108, C3, 3056.
Niiler, P. P., Maximenko, N. A., Panteleev, G. G., Yamagata, T., and Olson, D. B., 2003. Near surface dynamical structure of the Kuroshio extension. J. Geophys. Res., 108, C6.
Oschlies, A. and Willebrand, J., 1996. Assimilation of Geosat altimeter data into an eddy-resolving primitive equation model of the North Atlantic Ocean. J. Geophys. Res., 101/C6, 14,175–90.
Owens, W. B., 1991. A statistical description of the mean circulation and eddy variability in the northwestern Atlantic using SOFAR floats. Prog. Oceanogr., 28, 257–303.
Özgökmen, T. M., Molcard, A., Chin, T. M., Piterbarg, L. I., and Griffa, A., 2003. Assimilation of drifter positions in primitive equation models of midlatitude ocean circulation. J. Geophys. Res., 108, C7, 3238.
Poje, A. C., Toner, M., Kirwan, A. D. Jr., and Jones, C. K. R. T., 2002. Drifter launch strategies based on Lagrangian templates. J. Phys. Oceanogr., 32, 1855–69.
Poulain, P. M., 1993. Estimates of horizontal divergence and vertical velocity in the equatorial Pacific. J. Phys. Oceanogr., 23/4, 601–7.
Poulain, P. M., Luther, D. S., and Patzert, W. C., 1992. Deriving inertial wave characteristics from surface drifter velocities – frequency variability in the Tropical Pacific. J. Geophys. Res., 97(C11), 17947–59.
Richardson, P. L., 1993. A census of eddies observed in North Atlantic SOFAR float data. Prog. Oceanogr., 31, 1–50.
Reverdin, G., Niiler, P. P., and Valdimarsson, H., 2003. North Atlantic Ocean surface currents. J. Geophys. Res., 108, C1, 3002.
Samelson, R. M., 1992. Fluid exchange across a meandering jet. J. Phys. Oceanogr., 22, 431–40.
Samelson, R. M., 1996. Chaotic transport by mesoscale motions. In Stochastic Modeling in Physical Oceanography, ed. Adler, R. J., Müuller, P., and Rozovskii, B.. Cambridge, MA: Birkhäuser Boston, 423–38.
Smith, R. D., Maltrud, M. E., Bryan, F. O., and Hecht, M. W., 2000. Numerical simulation of the North Atlantic ocean at 1/10°. J. Phys. Oceanogr., 30, 1532–61.
Toner, M., Poje, A. C., Kirwan, A. D., Jones, C. K. R. T., Lipphardt, B. L., and Grosch, C. E., 2001. Reconstructing basin-scale Eulerian velocity fields from simulated drifter data. J. Phys. Oceanogr., 31, 1361–76.
Veneziani, M., Griffa, A., Reynolds, A. M., and Mariano, A. J., 2004. Oceanic turbulence and stochastic models from subsurface Lagrangian data for the North-West Atlantic Ocean. J. Phys. Oceanogr., 34(8), 1884–906.
Zhang, H.-M., Prater, M. D., and Rossby, T., 2001. Isopycnal Lagrangian statistics from the North Atlantic Current RAFOS floats observations. J. Geophys. Res., 106, 13, 817–36.