Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-24T02:34:10.324Z Has data issue: false hasContentIssue false

4 - Surface Engineering with Deposition Technologies

Published online by Cambridge University Press:  20 January 2017

P. A. Dearnley
Affiliation:
Boride Services Ltd.
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alpas, A. T. and Inagaki, J. (2000), ‘Effect of microstructure on fracture mechanisms in galvannealed coatings’, ISIJ International 40 (2), 172181.CrossRefGoogle Scholar
Andersson, G. S., Mayer, W. N. and Wehner, G. K. (1962), ‘Sputtering of dielectrics by high frequency fields’, Journal of Applied Physics 33, 29912997.CrossRefGoogle Scholar
Ang, A. S. M. and Berndt, C. C. (2014), ‘A review of testing methods for thermal spray coatings’, International Materials Reviews 59 (4), 179223.CrossRefGoogle Scholar
Archer, N. J. (1975),‘Tungsten carbide coatings on steel’, Proceedings of the 5th International Conference on CVD, Electrochemical Society, USA, 556573.Google Scholar
Archer, N. J. (1981), ‘Plasma assisted chemical vapour deposited tungsten carbide wear resistant coatings formed at low temperature’, Thin Solid Films 80, 221225.CrossRefGoogle Scholar
Archer, N. J. and Yee, K. K. (1978), ‘Chemical vapour deposited tungsten carbide wear resistant coatings formed at low temperature’, Wear 48, 237250.CrossRefGoogle Scholar
Ashby, M. F. and Jones, D. R. H. (1985), Engineering Materials 2, Pergamon Press, Oxford, 165167.Google Scholar
Ashby, M. F. and Jones, D. R. H. (2006), Engineering Materials 2, 3rd edn, Elsevier, Amsterdam.Google Scholar
Asmann, M., Heberlein, J. and Pfender, E. (1999), ‘A review of diamond CVD utilising halogenated precursors’, Diamond & Related Materials 8, 116.CrossRefGoogle Scholar
Baker, R. G. (1985), ‘Bearings in the automobile – challenge for the materials engineer’, Metals and Materials 1 (1), 4552.Google Scholar
Bauer, C., Leiste, H., Stüber, M., Ulrich, S. and Holleck, H. (2003), ‘Constitution, microstructure, mechanical properties and performance of magnetron sputtered carbon films with additions of silicon’, Mat.-wiss. U. Werkstoff. 34 (10/11), 912918.CrossRefGoogle Scholar
Baum, G. A. (1967), Dow Chemical Company report, RFP-686 UC-25, Golden, Colorado.Google Scholar
Bello, I. (and 10 others) (2012), ‘Materials with extreme properties: Their structuring and applications’, Vacuum 86 (6), 575585.CrossRefGoogle Scholar
Bendavid, A. and Martin, P. J. (2014), ‘Review of thin film materials deposited by the filtered cathodic vacuum arc process at CSIRO’, Journal of the Australian Ceramics Society 50 (1), 86101.Google Scholar
Bendavid, A., Martin, P. J., Comte, C. E., Preston, W., Haq, A. J., Magdon Ismail, F. S. and Singh, R. K. (2007), ‘The mechanical and biocompatibility of DLC-Si films prepared by pulsed DC plasma activated chemical vapour deposition’, Diamond and Related Materials 16, 16161622.CrossRefGoogle Scholar
Berghaus, B. (1939), British Patent, 508,278.Google Scholar
Berghaus, B. (1940a), British Patent, 520,591.Google Scholar
Berghaus, B. (1940b), British Patent, 520,592.Google Scholar
Bergman, C. (1986), ‘TiN deposition using a vacuum arc source’, in Ion plating and implantation, American Society for Metals, 115122, edited by Hochman, R. F..Google Scholar
Besmann, T. M., Stinton, D. P., Lowden, R. A. and Lee, W. Y. (1997), ‘Chemical vapor deposition (CVD) and infiltration (CVI)’, in ‘Carbide, nitride and boride materials synthesis and processing, Chapman & Hall, London, 547577, edited by Weimer, A. W..CrossRefGoogle Scholar
Bewilogua, K., Brand, J., Thomsen, H., Weber, M. and Wittorf, R. (2005), ‘Structure, properties and applications of diamond-like carbon coatings prepared by reactive magnetron sputtering’, Zeitschrift für Metallkunde 96 (9), 9981004.CrossRefGoogle Scholar
Bewilogua, K., Wittorf, R., Thomsen, H. and Weber, M. (2004), ‘DLC based coatings prepared by reactive d.c. magnetron sputtering’, Thin Solid Films 447–448, 142147.CrossRefGoogle Scholar
Blocher, J. M. (1974), ‘Structure property process relationships in chemical vapor deposition CVD’, Journal of Vacuum Science and Technology 11 (4), 680686.CrossRefGoogle Scholar
Bonettii, R. S., Wiprächtiger, H. and Mohn, E. (1990), ‘CVD of titanium carbonitride at moderate temperature: Properties and applications’, Metal Powder Report, 1990 45 (12), 837840.CrossRefGoogle Scholar
Bonetti-Lang, M., Bonett, R. and Hintermann, H. E. (1981), ‘Carbon nitride coatings at moderate temperature from organic C/N compounds’, Proceedings of the 9th International Conference on CVD, Electrochemical Society, USA, 606616.Google Scholar
Boston, M. E., Turner, R. N., Morton, P. H. and Bell, ., Lanagan, J. (1992), ‘Surface treatment of metals and alloys’, UK patent GB2245601 (B).Google Scholar
Bouché, K., Barbier, F. and Coulet, A. (1998), ‘Intermetallic compound layer growth between solid iron and molten aluminium’, Materials Science & Engineering A249, 167175.CrossRefGoogle Scholar
Brinker, C. J., Frye, G. C. and Hurd, A. J. (1991), ‘Fundamentals of Sol-gel dip coating’, Thin Solid Films 201 (1), 97108.CrossRefGoogle Scholar
Browning, J. A. (1989), US Patent 4,836,447.Google Scholar
Browning, J. A. (1992a), ‘Hypervelocity impact fusion – a technical note’, Journal of Thermal Spray Technology 1 (4), 289292.CrossRefGoogle Scholar
Browning, J. A. (1992b), US Patent 5,120,582.Google Scholar
Bryant, W. A. (1977), ‘Review: The fundamentals of chemical vapour deposition’, Journal of Materials Science 12, 12851306.CrossRefGoogle Scholar
Bryant, W. A. and Grab, G. P. (1991), US Patent 4,984,940.Google Scholar
Bull, S. J. and Rickerby, D. S. (1990), ‘New developments in the modelling of the hardness and scratch adhesion of thin-films’, Surface & Coatings Technology 42 (2), 149164.CrossRefGoogle Scholar
Burnett, P. J. and Rickerby, D. S. (1988), ‘The scratch adhesion test – An elastic-plastic indentation analysis’, Thin Solid Films 157 (2), 233254.CrossRefGoogle Scholar
Butler, E. P. (1985), ‘Transformation toughened zirconia ceramics’, Materials Science and technology 1 (6), 417432.CrossRefGoogle Scholar
Campbell, I. E., Powell, C. F, Nowicki, D. H. and Gonser, B. W. (1949), ‘The vapor phase deposition of refractory materials’, J. Electrochem. Soc. 96, 318333.CrossRefGoogle Scholar
Canning (1982), The Canning Handbook, 23rd edn, W. Canning, Plc, Birmingham, UK.Google Scholar
Carter, V. E. (1977), Metallic coatings for corrosion control, Newnes-Butterworths, London.Google Scholar
Carter, V. E. (1982), ‘Atmospheric corrosion of non-ferrous metals’, ch. 2, in Corrosion Processes, Applied Sciences Publishers, London, 77113, edited by Parkins, R. N..Google Scholar
Chambers, D. L. and Carmichael, D. C. (1971), ‘Electron beam techniques for ion plating’, Research & Development Magazine 22 (5), 3235.Google Scholar
Chapin, J. S. (1974), ‘The planar magnetron’, Research Development 25 (1), 3741.Google Scholar
Chatterjee-Fischer, R. and Mayr, P. (1986), ‘Erzeugung und unterschung von Mitteltemperatur CVD-Schicten’, Harterei Technische Mitteilungen 41 (3), 113126.Google Scholar
Church, P. K. and Knutson, O. J. (1975a), US Patent 3,873,344.Google Scholar
Church, P. K. and Knutson, O. J. (1975b), US Patent 3,925,575.Google Scholar
Christie, I. R. and Cameron, B. P. (1994), ‘Gold electroplating within the electronics industry’, Gold Bulletin 27 (1), 1220.CrossRefGoogle Scholar
Cullity, B. D. (1978), Elements of X-ray diffraction, 2nd edn, Addison Wesley Publishing Company, Reading, Massachusetts, 101102, 447478.Google Scholar
Dahm, K. L. and Dearnley, P. A. (1996), ‘S-phase coatings produced by unbalanced magnetron sputtering’, Surface Engineering 12 (1), 6167.CrossRefGoogle Scholar
Dearnley, P. A. (1999), ‘A review of metallic, ceramic and surface-treated metals used for bearing surfaces in human joint replacements’, Proc. Inst. Mech. Eng. 213 (H), 107135.CrossRefGoogle ScholarPubMed
Dearnley, P. A. (1980), ‘Wear mechanisms of coated cemented carbide cutting tools’, PhD thesis, University of Birmingham, UK.Google Scholar
Dearnley, P. A. and Anderson, K. (1987), ‘A preliminary evaluation of the potential of laser beam heating for the production of high melting point oxide coatings’, Journal of Materials Science 22 (2), 679682.CrossRefGoogle Scholar
Dearnley, P. A., OestGaard, M., Betts, A. J. and Wright, G. A. (1996), ‘Corrosion response of fusion coated austenitic stainless steel’, British Corrosion Journal 31 (3), 235238.CrossRefGoogle Scholar
Dearnley, P. A. and Roberts, K. (1991a), ‘Titanium matrix composites via vacuum plasma spraying. Part 1: Optimising process parameters’, Powder Metallurgy 34 (1), 2332.CrossRefGoogle Scholar
Dearnley, P. A. and Roberts, K. (1991b), ‘Titanium matrix composites via vacuum plasma spraying. Part 2: Plasma instability and mechanisms of co-spray deposition’, Powder Metallurgy 34 (2), 112118.CrossRefGoogle Scholar
Dearnley, P. A., Roberts, K. A. and Clyne, T. W. (1989), ‘Some observations on the microstructure of boron carbide reinforced titanium composites produced by spray co-deposition’, 12th International Plansee Seminar ’89, Proceedings Volume 3, Paper C31, Metallwerk Plansee, Reutte, Austria, 523538, edited by Bildstein, H. and Ortner, H. M..Google Scholar
Dearnley, P. A. and Trent, E. M. (1982), ‘Wear mechanisms of coated carbide tools’, Metals Technology 9 (1982), 6075.CrossRefGoogle Scholar
Dennis, J. K. and Such, T. E. (1993), Nickel and chromium plating, 3rd edn, Woodhead Publishing Limited, Cambridge, 163190, 314323.CrossRefGoogle Scholar
Elvins, J., Spittle, J. A. and Worsley, D. A. (2005), ‘Microstructural changes in zinc aluminium alloy galvanising as a function of processing parameters and their influence on corrosion’, Corrosion Science 47, 27402759.CrossRefGoogle Scholar
Fancey, K. S. and Matthews, A. (1991), ‘Plasma assisted physical vapour deposition’, ch. 6, in Advanced Surface Coatings, Blackie, Glasgow, 127159, edited by Rickerby, D. S. and Matthews, A..CrossRefGoogle Scholar
Gabe, D. R. (2000), ‘Emergence of chemical and electrochemical processes in surface engineering’, Surface Engineering 16 (5), 379385.CrossRefGoogle Scholar
Garg, D., Dyer, P. N., Dimos, D. B., Sunder, S. M., Hintermann, H. E. and Maillet, M. (1988), ‘Low temperature CVD tungsten carbide coatings for wear/erosion resistance’, Ceramic Engineering Science Proceedings 9 (9–10), 12151222.CrossRefGoogle Scholar
Garg, D, Wrecsics, E. I., Schaffer, E. L., Mueller, C. F., Dyer, P. N. and Fabregas, K. R. (1991), ‘Low temperature Chemical Vapor Deposition Method for forming tungsten and tungsten carbide’, US Patent 5,006,371.Google Scholar
Gaudiello, J. G. (1996), ‘Autocatalytic gold plating process for electronic packaging applications’, IEEE Transactions on components packaging and manufacturing technology, Part A, Vol. 19, 4144.CrossRefGoogle Scholar
Gill, W. D. and Kay, E. (1965), ‘Efficient low pressure sputtering in a large inverted magnetron suitable for film synthesis’, Review of Scientific Instruments 36, 277281.CrossRefGoogle Scholar
Green, T. A. (2007), ‘Gold electrodeposition for microelectronic, opto-electronic and micro-system applications’, Gold Bulletin 40 (2), 105114.CrossRefGoogle Scholar
Griffiths, W. J. and Cantow, F. G. (1995), Proceedings of T&N Technical Symposium, Würzburg-Indianapolis, USA, May 1995, Paper T&N 23; also see European Patent 0217126.Google Scholar
Grove, W. R. (1852), ‘On the electro-chemical polarity of gases’, Philosophical Transactions of the Royal Society of London 142, 87101.Google Scholar
Hara, A., Yamamoto, T. and Tobioko, M. (1977), Proceedings of the 9th Plansee Seminar, Vol. II, Paper 33, Reutte, Austria.Google Scholar
Hatschek, R. L. (1983), ‘Coatings revolution in HSS tools’, Special Report 752, American Machinist (March 1983), 129144.Google Scholar
Haubner, R. (2013), ‘The history of CVD coatings for tool applications at the University of Technology Vienna’, International Journal of Refractory Metals and Hard Materials 41, 2234.CrossRefGoogle Scholar
Hilton, M. R., Narasimhan, L. R. and Nakumara, S. (1986), ‘Composition, morphology and mechanical properties of plasma assisted chemical vapor deposited TiN films on M2 tool steel’, Thin Solid Films 139, 247260.CrossRefGoogle Scholar
Hmiel, A. F. (1985), ‘Partial pressure control of reactively sputtered titanium nitride’, Journal of Vacuum Science and Technology A3 (3), 592595.CrossRefGoogle Scholar
HMSO (1986), Wear resistant surfaces in engineering – A guide to their production properties and selection, Department of Trade and Industry, Her Majesty’s Stationary Office, London.Google Scholar
Hutchings, I. M. (1992), Tribology – Friction and wear of engineering materials, Edward Arnold, London, 250257.Google Scholar
Hüttebräucker, K.-F., Litzke, H., Rudolph, W., Schonenberg, R., Steck, K. and Tacke, G. (1994), ‘Die neue Feuerverzinkungsanlage der Krupp Hoesch Stahl AG in Bochum’, Stahl und Eisen 114, 193200.Google Scholar
Jang, J. H., Joo, B. D., van Tyne, C. J. and Moon, Y. H. (2010), ‘Characterization of the aluminium coating layer in the hot press forming of boron steel’, Proceedings of the Institution of Mechanical Engineers, Part B, Journal of Engineering Manufacture 224, 8793.CrossRefGoogle Scholar
Janssen, G. C. A. M., Tichelaar, F. D. and Visser, C. C. G. (2006), ‘Stress gradients in CrN coatings’, Journal of Applied Physics 100, 093512.CrossRefGoogle Scholar
Jianliang, L., Sproul, W. D. and Moore, J. J. (2012), ‘Tribological behaviour of thick CrN coatings deposited by modulated pulsed power magnetron sputtering’, Surface and Coatings Technology 206, 24742483.Google Scholar
Jones, J. L. and Chidester, K. M. (1986), ‘Multilayered chromium oxide bonded, hardened and densified coatings and method of making same’, US Patent 4,615,913.Google Scholar
Jordon, H. (and 9 others) (2004), ‘Superior thermal barrier coatings using solution precursor plasma spray’, Journal of Thermal Spray Technology 13 (1), 5765.CrossRefGoogle Scholar
Joy, K., Berlin, I. and Nair, J. (2011), ‘Effects of annealing temperature on the structural and photoluminescence properties of nano-crystalline ZrO2 thin films processed by the sol-gel route’, Journal of Physics and Chemistry of Solids 72 (6), 673677.CrossRefGoogle Scholar
Kafizas, A., Carmalt, C. J. and Parkin, I. P. (2013), ‘CVD and precursor chemistry of transition metal nitrides’, Coordination Chemistry Reviews 257, 20732119.CrossRefGoogle Scholar
Kamminga, J.-D., de Keijser, Th. H., Delhez, R. and Mittemeijer, E. J. (2000), ‘On the origin of stress in magnetron sputtered TiN layers’, Journal of Applied Physics 88 (11), 63326345.CrossRefGoogle Scholar
Karbasian, H. and Tekkaya, A. E. (2010), ‘A review on hot stamping’, Journal of Materials Processing Technology 210, 21032118.CrossRefGoogle Scholar
Kattner, U. R. and Burton, B. P. (1999), in ASM Handbook, Volume 3: Alloy Phase Diagrams, 3rd prntg, ASM International, Materials Park, Ohio, 2.44.Google Scholar
Kay, E. (1963), ‘Magnetic field effects on an abnormal truncated glow discharge and their relation to sputtered thin film growth’, Journal of Applied Physics 34, 760766.CrossRefGoogle Scholar
Kim, J.-G., Lee, K.-R. and Yang, S.-J. (2008), ‘Wear-corrosion performance of Si-DLC coatings on Ti-6Al-4V substrate’, Journal of Biomedical Materials Research 86A, 4147.CrossRefGoogle Scholar
Kingery, W. D., Bowen, H. K. and Uhlmann, D. R. (1976), Introduction to Ceramics, John Wiley & Sons, New York, 817830.Google Scholar
Kobayashi, S. and Yakou, T. (2002), ‘Control of intermetallic compound layers …’, Materials Science and EngineeringA338, 4453.CrossRefGoogle Scholar
Koda, S., Morozumi, S. and Kan, A. (1962), ‘Composition and formation mechanism of the alloy layer in aluminum coated steel’, J. Jpn. Inst. Metals 26, 764769.CrossRefGoogle Scholar
Kohr, K. A. and Loh, N. L. (1995), ‘Hot isostatic pressing of plasma sprayed thermal barrier coating systems’, in Surface Modification Technologues VIII, Institute of Materials, Book No. 617, 688703.Google Scholar
Kondratiuk, J. and Kuhn, J. (2011), ‘Tribological investigation on friction and wear behaviour of coatings for hot steel sheet metal forming’, Wear 270, 839849.CrossRefGoogle Scholar
Kübel, E. (1991), ‘New developments in chemically vapour deposited coatings from an industrial point of view’, Surface and Coatings Technology 49, 268274.CrossRefGoogle Scholar
Kumagai, H. Y. (1984), Proceedings of the 9th International Conference on CVD, Electrochemical Society, USA, 189203.Google Scholar
Langford, J. I. (1968), ‘The variance and other measures of line broadening in powder diffractometry. I: Practical considerations’, Journal of Applied Crystallography 1 (1), 4859.CrossRefGoogle Scholar
Larsson, A. and Ruppi, S. (2002), ‘Microstructure and properties of Ti(C,N) coatings produced by moderate temperature chemical vapour deposition’, Thin Solid Films 402, 203210.CrossRefGoogle Scholar
Lebaili, S., Durand-Charre, M. and Hamar-Thibault, S. (1988), ‘The metallurgical structure of as solidified Ni-Cr-B-Si-C hardfacing alloys’, Journal of Materials Science 23 (10), 303361.CrossRefGoogle Scholar
Lee, W. W. and Oblas, D. (1970), ‘Argon concentration in tungsten films deposited by DC sputtering’, Journal of Vacuum Science & Technology 7 (1), 129133.CrossRefGoogle Scholar
Liew, M. J., Roy, S. and Scott, K. (2003), ‘Development of non-toxic elelctrolyte for soft gold electrodeposition’, Green Chemistry 40 (2), 105114.Google Scholar
Lindström, J. N. and Johannesson, R. T. (1975), ‘Nucleation of Al2O3 layers on cemented carbide tools’, Proceedings of the 5th International Conference on CVD, Electrochemical Society, USA, 453468.Google Scholar
Mackowiak, J. and Short, N. R. (1979), ‘Metallurgy of galvanized coatings’, Int. Met. Rev 24, 119.CrossRefGoogle Scholar
Marder, A R. (2000), ‘The metallurgy of zinc coated steel’, Progress in Materials Science 45, 191271.CrossRefGoogle Scholar
Martin, P. J. and Bendavid, A. (2001), ‘Review of the filtered arc process and materials deposition’, Thin Solid Films 394, 115.CrossRefGoogle Scholar
Matejka, D. and Benko, B. (1989), ‘Plasma spraying of metallic and ceramic materials’, John Wiley & Sons, Chichester, UK.Google Scholar
Matthews, A. (1985), ‘Titanium nitride PVD coating technology’, Surface Engineering 1 (2), 93104.CrossRefGoogle Scholar
Matthews, A. and Teer, D.G. (1980), ‘Evaluation of coating wear resistance for bulk metal forming’, Thin Solid Films 73 (2), 315321.CrossRefGoogle Scholar
Matthews, A. and Teer, D. G. (1981), ‘Characteristics of a thermionically assisted triode ion plating system’, Thin Solid Films 80 (1–3), 4148.CrossRefGoogle Scholar
Mattox, D. M. (1973), ‘Fundamentals of ion plating’, J. Vac. Sci. Technol. 10 (1), 4752.CrossRefGoogle Scholar
Mattox, D. M. and Kominiak, G. J. (1972), ‘Structure modification by ion bombardment during deposition’, J. Vac. Sci. Technol. 9 (1), 528532.CrossRefGoogle Scholar
McClanahan, E. D. and Laegreid, N. (1991), ‘Production of thin films by controlled deposition of sputtered material’, in Sputtering by Particle Bombardment III, Springer-Verlag, Berlin, 339377, edited by Behrisch, R. and Wittmaack, K..CrossRefGoogle Scholar
McPherson, R. (1981), ‘The relationship between the mechanism of formation, microstructure and properties of plasma sprayed coatings’, Thin Solid Films 83, 297310.CrossRefGoogle Scholar
Movchan, B. A. and Demchishin, A. V. (1969), ‘Investigation of the structure and properties of thick vacuum deposited films’, Physics of Metals and Metallography (English translation) 28(4), 8390.Google Scholar
Muehlberger, D. E. (1986), ‘Applications of ion vapour deposited aluminium coatings’, in Ion plating and implantation, American Society for Metals, 7579, edited by Hochman, R. F..Google Scholar
Münster, A. and Ruppert, W. (1953), ‘Oberflächenschichten aus hochschmelzenden titan verbindungen’, Z. Electrochem. 57 (7), 564571.Google Scholar
Murray, J. L. (1999), in ASM Handbook, Volume 3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 3rd prntg, 2.56.Google Scholar
Nash, P. and Nash, A. (1991), in ASM Handbook, Volume 3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 3rd prntg, 2.318.Google Scholar
Nicoll, A. R., Gruner, H., Prince, R. and Wuest, G. (1985), ‘Thermal spray coatings for high temperature protection’, Surface Engineering 1 (1), 5971.CrossRefGoogle Scholar
Okinaka, Y. (1974), ‘Electroless solutions’, ch. 11, in Gold plating technology, Electrochemical Publications Limited, Ayr, Scotland, edited by Reid, F. and Goldie, W..Google Scholar
Okinaka, Y. and Hoshino, M. (1998), ‘Some recent topics in gold plating for electronics applications’, Gold Bulletin 31 (1), 313.CrossRefGoogle Scholar
Osaka, T., Kodera, A., Misato, T., Homma, T., Okinaka, Y. and Yoshioko, O. (1997), ‘Electrodeposition of soft gold from a thiosulfate-sulfite bath for electronics applications’, Journal of the Electrochemical Society 144 (10), 34623469.CrossRefGoogle Scholar
Pawlowski, L. (1995), The Science & Engineering of Thermal Spray Coatings, John Wiley & Sons, Chichester, UK.Google Scholar
Peng, X. L. and Clyne, T. W. (1998a), ‘Residual stress and debonding of DLC films on metallic substrates’, Diamond and Related Materials (Switzerland) 7 (7), 944950.CrossRefGoogle Scholar
Peng, X. L. and Clyne, T. W. (1998b), ‘Mechanical stability of DLC films on metallic substrates … Part lI: Interfacial toughness, debonding and blistering’, Thin Solid Films 312, 219227.CrossRefGoogle Scholar
Petrov, I., Hultman, L., Helmersson, U., Sundgren, J.-E. and Greene, J. E. (1989), ‘Microstructure modification of TiN by ion bombardment during reactive sputter deposition’, Thin Solid Films 169, 299301.CrossRefGoogle Scholar
Pierson, H. O. (1992), Handbook of chemical vapour deposition CVD, Noyes Publishing, Park Ridge, New Jersey.Google Scholar
Powell, C. F. (1966), ‘Chemically deposited non-metals’, ch. 11, in Vapour deposition, John Wiley & Sons, New York., 343419, edited by Powell, C. F., Oxley, J. J. H. and Blocher, J. M..Google Scholar
Pratt, G. C. (1973), ‘Materials for plain bearings’, International Metallurgical Reviews 18 (2), 6268.CrossRefGoogle Scholar
Redhead, P. A. (1999), ‘History of vacuum devices’, CERN Accelerator School Vacuum Technology Proceedings, Book Series: CERN Reports 99 (5), 281290.Google Scholar
Reineck, I., Sjostrand, M. E., Karner, J. and Pedrazzini, M. (1996), ‘HCDCA diamond coated cutting tools’, Diamond & Related Materials 5, 819824.CrossRefGoogle Scholar
Richards, R. W., Jones, R. D. and Clements, P. D. (1994), ‘Metallurgy of continuous hot dip aluminizing’, International Materials Reviews 39 (5), 191212.CrossRefGoogle Scholar
Richerson, D. W. (1992), Modern ceramic engineering, Marcel Dekker, New York, 166, 399401.Google Scholar
Rickerby, D. S. and Newberry, R. B. (1988), ‘Structure, properties and applications of TiN produced by sputter ion plating’, Vacuum 38 (3), 161166.CrossRefGoogle Scholar
Rigney, D. V., Viguie, R., Wortman, D. J. and Skelly, D. W. (1997), ‘PVD thermal barrier coating applications and process development for aircraft engines’, Journal of Thermal Spray Technology 6 (2), 167175.CrossRefGoogle Scholar
Robertson, J. (2002), ‘Diamond-like amorphous carbon’, Materials Science and Engineering Reports R37, 129281.CrossRefGoogle Scholar
Ruppi, S. (2004), US Patent 6,689,450.Google Scholar
Sablev, L. P. (1974), US Patent 3,734,179.CrossRefGoogle Scholar
Santhanam, A. T., Quinto, D. T. and Grab, G. P. (1996), ‘Comparison of the steel milling performance of carbide inserts with MTCVD and PVD TiCN coatings’, International Journal of Refractory Metals & Hard Materials 14 (1–3), 3140.CrossRefGoogle Scholar
Saunders, S. R. J. (1993), ‘Measurement methods in surface engineering’, Surface Engineering 9 (4), 293299.CrossRefGoogle Scholar
Savvides, N. and Window, B. (1986), ‘Unbalanced magnetron ion assisted deposition and property modification of thin films’, J. Vac Sci Technol. A4 (1), 504508.CrossRefGoogle Scholar
Schaffer, P. S. (1965), ‘Vapor-phase growth of alpha alumina single crystals’, Journal of the American Ceramic Society 48 (10), 508511.CrossRefGoogle Scholar
Schneider, J. M., Sproul, W. D., Chia, R. W. J., Wong, M.-S., Matthews, A. (1997), ‘Very high rate reactive sputtering of alumina hard coatings’, Surface and Coatings Technology 96, 262266.CrossRefGoogle Scholar
Schulz, U., Terry, S. G. and Levi, C. G. (2003), ‘Microstructure and texture of EB-PVD TBCs grown under different rotation modes’, Materials Science & Engineering A 360, 319329.CrossRefGoogle Scholar
Scott, K. T. and Kingswell, R. (1991), ‘Thermal spraying’, ch. 9, in Advanced surface coatings, Blackie, Glasgow, 217242, edited by Rickerby, D. S. and Matthews, A..CrossRefGoogle Scholar
Sendzimer, T. (1938), US Patent 2,110,893.CrossRefGoogle Scholar
Sendzimer, T. (1964), US Patent 3,383,189.Google Scholar
Shih, H. C., Hsu, J. W., Sun, C. N. and Chung, S. C. (2002), ‘The lifetime assessment of hot dip 5% Al-Zn coatings in chloride environments’, Surface and Coatings Technology 150, 7075.CrossRefGoogle Scholar
Skelly, D. W. (1998), US Patent 5,773,078.CrossRefGoogle Scholar
Sloof, W. G., Kooi, B. J., de Keojser, Th. and Mittemeijer, E. J. (1996), ‘Diffraction analysis of nonuniform stresses in surface layers: Application to cracked TiN coatings chemically vapor depositedon Mo’, Journal of Materials Research 11 (6), 14401457.CrossRefGoogle Scholar
Spalvins, T. (1978), ‘Coatings for wear and lubrication’, Thin Solid Films 53 (3), 285300.CrossRefGoogle Scholar
Sproul, W. D. and Rothstein, R. (1985), ‘High rate reactively sputtered TiN coatings on high speed steel drills’, Thin Solid Films 126, 257263.CrossRefGoogle Scholar
Sproul, W. D., Rudnik, P. and Gogol, C. A. (1989), ‘The effect of target power on the nitrogen partial pressure level and hardness of reactively sputtered titanium nitride coatings’, Thin Solid Films 171, 171181.CrossRefGoogle Scholar
Sproul, W. D., Rudnik, P., Graham, M. E. and Rohde, S. L. (1990), ‘High rate reactive sputtering in an opposed cathode closed field unbalanced magnetron sputtering system’, Surface and Coatings Technology 43 /44, 270278.CrossRefGoogle Scholar
Staines, A. M. (1990), ‘Trends in plasma assisted surface engineering processes’, Heat Treatment of Metals, Part 4, 8592.Google Scholar
Steffens, H. D., Babiak, Z. and Wewel, M. (1990), ‘Recent developments in arc spraying’, IEEE Transactions on Plasma Science 18 (10), 974979.CrossRefGoogle Scholar
Stoney, G. G. (1909), ‘The tension of metallic films deposited by electrolysis’, Proceedings of the Royal Society London A 82, 172175.Google Scholar
Strondl, C., van der Kolk, G. J., Hurkmans, T., Fleischer, W., Trinh, T., Carvalho, N. M. and de Hosson, J. Th. M. (2001), ‘Properties and characterization of multilayers of carbides and diamond-like carbon’, Surface & Coatings Technology 142 –144, 707713.CrossRefGoogle Scholar
Sulin, A., Olofsson, R., Ruppi, S. and Qvick, J. (2003), US Patent 6,632,514 B1.Google Scholar
Sun, Y. (1989), ‘Plasma nitriding and PVD ceramic coating of low alloy steel’, PhD thesis, University of Birmingham.Google Scholar
Takahashi, T., Sugiyama, K. and Suzuki, Y. (1971), Journal of Crystal Growth 10, 139143.CrossRefGoogle Scholar
Tanner, D. A. and Robinson, J. S. (2014), ‘Reducing residual stress in 2014 aluminium alloy die forgings’, Materials & Design 29, 14891496.CrossRefGoogle Scholar
Thornton, J. A. (1977), ‘High rate thick film growth’, Ann. Rev. Mater. Sci. 7, 239260.CrossRefGoogle Scholar
Thornton, J. A. and Hoffman, D. W. (1977), ‘Internal stress in titanium, nickel, molybdenum and nickel films deposited by cylindrical magnetron sputtering,’ Journal of Vacuum Science and Technology 14 (1), 164168.CrossRefGoogle Scholar
Thornton, J. A. and Hoffman, D. W. (1989), ‘Stress related effects in thin films’, Thin Solid Films 171, 1531.CrossRefGoogle Scholar
Tsui, Y.C. and Clyne, T. W. (1996), ‘Adhesion of thermal barrier coating systems and incorporation an oxidation barrier layer’, in Thermal Spray: Practical Solutions for Engineering Problems, Proceedings of the 9th National Thermal Spray Conference, ASM International, Materials Park, Ohio, 275284.Google Scholar
Uchima, Y., Hasaka, M. and Koga, H. (1989), ‘Effect of structure and mischmetal addition on the corrosion behaviour of Zn-5 mass% Al Alloy’, in GALVETECH ’89, Tokyo, Iron and Steel Institute of Japan, 545.Google Scholar
Vakerlis, G., Halverston, W. D., Garg, D. and Dyer, P. N. (1991), US Patent 5052339, 1 October.Google Scholar
Vandenbulcke, L. and Vuillard, G. (1976), ‘Chemical vapor deposition of amorphous boron on massive substrates’, Journal of the Electrochemical Society 123 (2), 278285.CrossRefGoogle Scholar
VDI (1992), VDI-Richtlinien 3198, German Standard.Google Scholar
Voigt, K. and Westphal, H. (1981), Proceedings of the 10th Plansee Seminar, Vol. 2, 611624, Reutte, Austria (Risley Translation 4877).Google Scholar
Vossen, J. L. and Kern, W., Eds (1978), Thin Film Processes, Academic Press, Orlando, USA.Google Scholar
Vossen, J. L. and Kern, W., Eds (1991), Thin Film Processes II, Academic Press, Boston, USA.Google Scholar
Walker, P. F. (1980), ‘Furnace fused hardfacings’, in Heat Treatment 79, Metals Society, London, 2226.Google Scholar
Wan, C. T., Chambers, D. L. and Caermichael, D. C. (1974), ‘Effect of processing conditions on characteristics of coatings vacuum deposited by ion plating’, Proc. 4th Int. Conf. Vac. Tech., Tokyo, 231237.Google Scholar
Weiss, H., Mennningen, M. and Sauer, H. (1996), ‘Applications of fracture mechanics to the adhesion of metal coatings on CFRP’, in Surface Modifications IX, The Minerals, Metals & Materials Society, Warrendale, USA, 595600, edited by Sudarshan, T. S..Google Scholar
Window, B. and Savvides, N. (1986), ‘Unbalanced DC magnetrons as sources of high ion fluxes’, J. Vac Sci Technol. A4 (2), 453456.CrossRefGoogle Scholar
Wong, M. S., Chia, W. J., Yashar, P., Schneider, J. M., Sproul, W. D. and Barnett, S. A. (1996), ‘High rate reactive d.c. magnetron sputtering of ZrOx coatings’, Surface and Coatings Technology 86 –87, 381387.CrossRefGoogle Scholar
Wong, P. and Robinson, M. (1970), ‘Chemical vapour deposition of polycrystalline Al2O3Journal of the American Ceramic Society 13 (11), 617621.CrossRefGoogle Scholar
Wright, A. W. (1877), ‘On the production of transparent metallic films by the electrical discharge in exhausted tubes’, American Journal of Sciences and Arts 13 (73–78), 4955.Google Scholar
Yee, K. K. (1978), ‘Protective coatings for metals by chemical vapour deposition’, International Metals Reviews 226 (23), 1941.Google Scholar
Ziebell, A. (2011), ‘Method and device for producing a metal component’, World Patent, WO 2011/026712 A2.Google Scholar
Zywitzki, O. and Hoetzsch, G. (1996), ‘Influence of coating parameters on the structure and properties of Al2O3 layers reactively deposited by means of pulsed magnetron sputtering’, Surface and Coatings Technology 82 (1–2), 169175.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×