Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-tdptf Total loading time: 0 Render date: 2024-08-16T08:25:25.887Z Has data issue: false hasContentIssue false

7 - Surface Engineering for Cutting Tools

Published online by Cambridge University Press:  20 January 2017

P. A. Dearnley
Affiliation:
Boride Services Ltd.
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alpert, C. P., Chan, H. H., Bennison, S. J. and Lawn, B. R. (1988), ‘Temperature dependence of hardness of alumina based ceramics’, Communications of the American Ceramic Society 71 (8), C371C373.Google Scholar
Atkins, A. G. (1973), ‘High temperature hardness and creep’, in The science of hardness testing and its research applications, ASM, Metals Park, Ohio, 223240, edited by Westbrook, J. H. and Conrad, H..Google Scholar
Atkins, A. G. and Tabor, D. (1966), ‘Hardness and deformation properties of solids at very high temperatures’, Proceedings of the Royal Society of London, Series A: Mathematical and Physical Sciences 292, 441459.Google Scholar
Aucote, J. and Foster, S. R. (1986), ‘Performance of sialon cutting tools when machining nickel-base aerospace alloys’, Materials Science & Technology 2 (2) 700708.CrossRefGoogle Scholar
Aucote, J. and Grearson, A. N. (2000), ‘A hard look at cemented carbide’, PC FAB 23, 3846.Google Scholar
Aucote, J. and Grearson, A. N. (2003), ‘The performance of cemented carbide in machining PCBs’, European Electronics Engineer, 3540.Google Scholar
Barry, J. and Byrne, G. (2001), ‘Cutting tool wear in the machining of hardened steels, Part I: Alumina/TiC cutting tool wearWear 247, 139151.CrossRefGoogle Scholar
Beake, B. D. and Fox-Rabinovich, G. S. (2014), ‘Progress in high temperature nanomechanical testing of coatings for optimising their performance in high speed machining’, Surface & Coatings Technology 255, 102111.CrossRefGoogle Scholar
Bejjani, R., Collin, M., Thersleff, T., and Odelros, S. (2016), ‘Multi-scale study of initial tool wear on textured alumina coating, and the effect of inclusions in low-alloyed steel’, Tribology International 2016, http://dx.doi.org/10.1016/j.triboint.2016.01.021Google Scholar
Brandt, G., Mikus, M., Senesan, Z. and Hogmark, S. (1987), ‘Wear mechanisms when machining grey cast-iron with ceramic tools’, Surface Engineering 3 (3), 211225.CrossRefGoogle Scholar
Childs, T. H. C., Maekawa, K., Obikawa, T., Yamane, Y. (2000), ‘Metal machining: Theory and applications’, Arnold, London, 351362.Google Scholar
Childs, T. H. C. and Rahmad, R. (2010), ‘Modifying strain-hardening of carbon steels for improved finite element simulation of orthogonal machining’, Proceedings of the Institution of Mechanical Engineers, Journal of Engineering Manufacture 224B, 721732.CrossRefGoogle Scholar
Cottrell, A. H. (1971), An introduction to metallurgy, Edward Arnold, London, 146152.Google Scholar
Dai, M., Zhou, K., Yuan, Z., Ding, Q. and Fu, Z. (2000), ‘The cutting performance of diamond and DLC coated cutting tools’, Diamond and Related Materials 9, 17531757.CrossRefGoogle Scholar
Dasch, J. M., Ang, C. C., Wong, C. A., Cheng, Y. T., Winer, A. M., Lev, L. C. and Konca, E. (2006), ‘A comparison of five categories of carbon based tool coatings for dry drilling of aluminium’, Surface & Coatings Technology 200, 29702977.CrossRefGoogle Scholar
Dearnley, P. A. (1980), ‘Wear mechanisms of coated cemented carbide cutting tools’, PhD thesis, University of Birmingham, UK.Google Scholar
Dearnley, P. A. (1983), ‘New technique for determining temperature distribution in cemented carbide cutting tools’, Metals Technology 10, 205214.CrossRefGoogle Scholar
Dearnley, P. A. (1985a), ‘A metallurgical evaluation of tool wear and chip formation when machining pearlitic cast-irons with dissimilar graphite morphologies’, Wear 101, 3368.CrossRefGoogle Scholar
Dearnley, P. A. (1985b), ‘Rake and flank wear mechanisms of coated cemented carbides’, Surface Engineering 1, 4358.CrossRefGoogle Scholar
Dearnley, P. A. (1986), ‘A preliminary investigation of the effect of tool geometry on tool temperatures when turning steel at high speed’, International Journal of Machine Tool Design and Research 26 (1), 1520.CrossRefGoogle Scholar
Dearnley, P. A. (2004), UK Patent GB 2378187.Google Scholar
Dearnley, P. A., Fowle, R. F., Corbett, N. M. and Doyle., D. (1993), ‘Wear mechanisms of physical and chemical vapour deposited ceramic coatings used in metal cutting applications’, Surface Engineering 9 (4) 312318.CrossRefGoogle Scholar
Dearnley, P. A. and Grearson, A. N. (1986), ‘Evaluation of principal wear mechanisms of cemented carbides and ceramics used for machining titanium alloy IMI 318’, Materials Science and Technology 2 (1), 4758.CrossRefGoogle Scholar
Dearnley, P. A., Neville, A., Turner, S., Scheibe, H.-J., Tietema, R., Tap, R., Stüber, M., Hovsepian, P., Layyous, A. and Stenborn, B. (2010), ‘Coating tribology drivers for high density plasma technologies’, Surface Engineering 26, 8096.CrossRefGoogle Scholar
Dearnley, P. A., Schellewald, M. and Dahm, K. L. (2005), ‘Characterisation and wear response of metal boride coated WC-Co’, Wear 259, 861869.CrossRefGoogle Scholar
Dearnley, P. A. and Thompson, V. (1986), ‘Evaluation of failure mechanisms of ceramics and coated carbides used for machining stainless steels’, Surface Engineering 2, 191202.CrossRefGoogle Scholar
Dearnley, P. A. and Trent, E. M. (1982), ‘Wear mechanisms of coated carbide tools’, Metals Technology 9, 6075.CrossRefGoogle Scholar
dos Santos, G. R., da Costa, D. D., Amorim, F. L. and Torres, R. D. (2007), ‘Characterization of DLC thin film and evaluation of machining forces using coated inserts in turning Al-Si alloys’, Surface and Coatings Technology 202, 10291033.CrossRefGoogle Scholar
Edwards, R. (1993), Cutting tools, Institute of Materials, London.Google Scholar
Ernst, H. (1938), Physics of metal cutting, American Society of Metals, 24.Google Scholar
Garcia, J. (2010), ‘Design and characterization of novel wear resistant multilayer CVD coatings with improved adhesion between Al2O3 and Ti(C,N)’, Advanced Engineering Materials 12 (9), 929934.CrossRefGoogle Scholar
Goh, G. K. L., Lim, L. C., Rahman, M. and Lim, S. C. (1996), ‘Transition in wear mechanisms of alumina cutting tools’, Wear 201, 199208.CrossRefGoogle Scholar
Goldschmidt, H. J. (1967), Interstitial alloys, Butterworths, London, 187.CrossRefGoogle Scholar
Hau-Bracamonte, J. L. (1981), ‘Partial austenitization within flow zones when cutting low carbon steels’, Metals Technology 8, 447450.CrossRefGoogle Scholar
Haubner, R. and Kalss, W. (2010), ‘Diamond deposition on hardened substrates – Comparison of substrate pre-treatments and industrial applications’, International Journal of Refractory Metals and Hard Materials 28, 475483.CrossRefGoogle Scholar
Holmberg, K. and Matthews, A. (1994), Coatings tribology, Elsevier Science, Amsterdam, 367.Google Scholar
Holzschuch, H. (2002), ‘Chemical vapor deposition of wear resistant hard coatings in the Ti-B-C-N system: Properties and metal cutting tests’, International Journal of Refractory Metals and Hard Materials 20, 143149.CrossRefGoogle Scholar
Hoyle, G. (1988), High speed steels, Butterworths, London.Google Scholar
Inspektor, A. and Salvador, P. A. (2014), ‘Architecture of PVD coatings for metal cutting applications: A review’, Surface and Coatings Technology 257, 138153.CrossRefGoogle Scholar
Irvine, K. J., Pickering, F. B. and Gladman, T. (1967), ‘Grain refined Cr Mn steels’, Journal of the Iron and Steel Institute 205, 161182.Google Scholar
Jindal, P. C., Santhanam, A. T., Schleinkofer, U. and Shuster, A. F. (1999), ‘Performance of PVD TiN, TiCN, and TiAlN coated cemented carbide tools in turning’, International Journal of Refractory Metals & Hard Materials 17, 163170.CrossRefGoogle Scholar
Kieffer, R., Reiter, N. and Fister, D. (1970), ‘New Developments in the field of cemented carbide and ceramic cutting tools’, in Materials for metal cutting, ISI Publication 126, Iron and Steel Institute, London, 157161.Google Scholar
Kiessling, R. and Lange, N. (1978), Non-metallic inclusions in steels, Metals Society, London.Google Scholar
Kim, C. H., Smith, W. C., Hassleman, D. P. H. and Kane, G. E. (1973), ‘Evidence for dislocation controlled crater wear of polycrystalline aluminium oxide cutting tools’, Journal of Applied Physics 44 (11), 51755176.CrossRefGoogle Scholar
King, A. G. and Wheildon, W. M. (1966), Ceramics in machining processes, Academic Press, New York, 118125.Google Scholar
Knotek, O., Bohmer, M., Leyendecker, T. and Jungblut, F. (1988), ‘The structure and composition of Ti-Zr-N, Ti-Al-Zr-N and Ti-Al-V-N coatings’, Materials Science and Engineering A105 /106, 481488.CrossRefGoogle Scholar
Kohlstedt, K. L. (1973), ‘The temperature dependence of micro-hardness of the transition metal carbides’, Journal of Materials Science 8, 777786.CrossRefGoogle Scholar
Kramer, B. M. and Suh, N. (1980), ‘Tool wear by solution’, ASME Journal of Engineering for Industry 102 (3), 303309.CrossRefGoogle Scholar
Kunze, J. (1982), ‘Solubility product of titanium nitride in γ-iron’, Metal Science 16, 217218.Google Scholar
Kwon, P. (2000), ‘Predictive models for flank wear on coated inserts’, ASME Journal of Tribology 122, 340347.CrossRefGoogle Scholar
Lane, C. (1992), ‘The effect of different reinforcements on PCD tool life for aluminium composites’, Proceedings of the machining of composite materials symposium, ASM Materials Week, Chicago, Illinois, 1–5 November, 1992, ASM International, USA, 1728, edited by Srivatsan, T. S. and Bowden, D. M..Google Scholar
Lankford, J. (1983), ‘Comparative study of the temperature dependence of hardness and compressive strength in ceramics’, Journal of Materials Science 18, 16661674.CrossRefGoogle Scholar
Lim, C. Y. H., Lim, S. C. and Lee, K. S. (1999), ‘Wear of TiC coated carbide tools in dry turning’, Wear 225229, 354367.CrossRefGoogle Scholar
Loladze, T. N. (1967), ‘Requirements of tool materials’, Proceedings of the 8th machine tool design and research conference 2, 821843.Google Scholar
Loladze, T. N, Bokuchava, G. V. and Davidova, G. E. (1973), ‘Temperature dependencies of the microhardness of common abrasive materials in the range of 20 to 1300°C’, in The science of hardness testing and its research applications, ASM, Metals Park, Ohio, 251257, edited by Westbrook, J. H. and Conrad, H..Google Scholar
Mehrotra, P. K. and Qunito, D. T. (1985), ‘High temperature microhardness profiles of hard CVD coatings’, Proceedings of the 11th International Plansee Seminar ’85, Vol. 1, 639657ansee, Reute, Austria, 639657, edited by Bildstein, H. and Ortner, H. M..Google Scholar
Milovic, R., Smart, E. F. and Wise, M. L. H. (1986), ‘Comparison between use of TiN coated and uncoated high speed steel and fine grained cemented carbide tools in cutting of resulphurized 0.08wt%-C free cutting steel’, Materials Science and Technology 2 (1), 5968.CrossRefGoogle Scholar
Naerheim, Y. and Trent, E. M. (1977), ‘Diffusion wear of cemented carbide tools when machining steels’, Metals Technology 4, 548556.CrossRefGoogle Scholar
Ogwu, A. A., Lamberton, R. W. and Morley, S. (1999), ‘Characterisation of thermally annealed diamond like carbon (DLC) films by Raman spectroscopy’, Physica B 269, 335344.CrossRefGoogle Scholar
Oxley, P. L. B. (1989), Mechanics of machining, Ellis Horwood, Chichester, 1921, 7496, 191197.Google Scholar
PalDey, S. and Deevi, S. C. (2003), ‘Single layer and muti-layer wear resistant coatings of (Ti, Al)N: A review’, Materials Science and Engineering A342, 5879.CrossRefGoogle Scholar
Peng, X. L. and Clyne, T. W. (1998a), ‘Residual stress and debonding of DLC films on metallic substrates’, Diamond and Related Materials (Switzerland) 7 (7), 944950.CrossRefGoogle Scholar
Peng, X. L. and Clyne, T. W. (1998b), ‘Mechanical stability of DLC films on metallic substrates Part II – Interfacial toughness, debonding and blistering’, Thins Solid Films 312, 219227.CrossRefGoogle Scholar
Pollard, F. H. and Woodward, P. (1950), ‘The stability and chemical reactivity of titanium nitride and titanium carbide’, Transactions of the Faraday Society 46, 190199.CrossRefGoogle Scholar
Quinto, D. T. (1996), ‘Technology perspectives on CVD and PVD coated metal cutting tools’, International Journal of Refractory Metals & Hard Materials 14, 720.CrossRefGoogle Scholar
Quinto, D. T. (2007), ‘Twenty-five years of PVD coatings at the cutting edge’, 50th Annual Technical Conference Proceedings, ISSN 0737–5921, Society of Vacuum Coaters, 511.Google Scholar
Quinto, D. T., Santhanam, A. T. and Jindal, P. C. (1988), ‘Mechanical properties, structure and performance of chemically vapour deposited and physically vapour deposited coated carbide tools’, Materials Science and Engineering A105 /106, 443452.CrossRefGoogle Scholar
Reineck, I., Sjöstrand, M. E., Karner, J., Pedrazzini, M. (1996), ‘HCDCA diamond coated cutting tools’, Diamond & Related Materials 5, 819824.CrossRefGoogle Scholar
Ruppi, S. (2005), ‘Deposition, microstructure and properties of texture controlled CVD Al2O3 coatings’, International Journal of Refractory Metals & Hard Materials 23, 306316.CrossRefGoogle Scholar
Ruppi, S. (2008), ‘Enhanced performance of α-Al2O3 coatings by control of crystal orientation’, Surface and Coatings Technology 202, 42574269.CrossRefGoogle Scholar
Russell, W. C. and Standberg, C. (1996), ‘Wear characteristics and performance of composite alumina-zirconia CVD coatings’, International Journal of Refractory Metals & Hard Materials 14, 5158.CrossRefGoogle Scholar
Santhanam, A. T., Quinto, D. T. and Grab, G. P. (1996), ‘Comparison of the steel milling performance of carbide inserts with MTCVD and PVD TiCN coatings’, International Journal of Refractory Metals & Hard Materials 14, 3140.CrossRefGoogle Scholar
Selinder, T. I., Sjöstrand, M. E., Östlund, Å., Larsson, M., Hogmark, S. and Hedenqvist, P. (1997), ‘Machining tests on PVD Ti/TiN and Tin/NbN multilayer coated cemented carbide cutting tools’, Proceedings of the 14th International Plansee Seminar, Vol. 2, Plansee AG, Reutter, 4453, edited by Kneringer, G..Google Scholar
Shaw, M. C. (1984), Metal cutting principles, Clarendon Press, Oxford, 393395.Google Scholar
Spur, G., Byrne, G. and Biena, B. (1990), ‘The performance of high speed steel indexible inserts coated by physical vapour deposition in the milling of ductile materials’, Surface and Coatings Technology 43 /44, 10741085.CrossRefGoogle Scholar
Trent, E. M. (1963), ‘Cutting steel and iron with cemented carbide tools’, Journal of the Iron and Steel Institute 201, 847855.Google Scholar
Trent, E. M. (1965), ‘Conditions of seizure at the tool/work interface’, Iron and Steel Institute Special Report 94, 1118, Iron and Steel Institute, London.Google Scholar
Trent, E. M. (1969), ‘The wear rate of carbide cutting tools’, Powder metallurgy 12 (24), 566581.CrossRefGoogle Scholar
Trent, E. M. and Wright, P. K. (2000), Metal cutting, 4th edn, Butterworth-Heinemann, Woburn, USA, 920, 2425, 7984, 114126, 149163, 215217, 254258.CrossRefGoogle Scholar
Ueng, H. Y., Guo, C. T. and Dittrich, K.-H. (2006), ‘Development of a hybrid coating process for deposition of diamond-like carbon films on microdrills’, Surface and Coatings Technology 200, 29002908.CrossRefGoogle Scholar
Ugarte, A., M’Saoubi, , Garay, A. and Arrazola, P. J. (2012), ‘Machnining behaviour of Ti-6Al-4V and Ti-5553 alloys in interrupted cutting with PVD coated cemented carbide’, Proceedia CIRP 1, 202207.CrossRefGoogle Scholar
Ullram, S. and Haubner, R. (2006), ‘Temperature pre-treatments of hardmetal substrates to reduce the cobalt content and improve diamond deposition’, Diamond and Related Materials 15, 994999.CrossRefGoogle Scholar
Veprek, S. and Reiprich, S. (1995), ‘A concept for the design of novel superhard coatings’, Thin Solid Films 268, 6471.CrossRefGoogle Scholar
Voitovich, R. F. and Golovko, E. I. (1978), ‘Oxidation of titanium carbide at various oxygen pressures’, Soviet Powder Metallurgy and Metal Ceramics 17 (3), 211216.CrossRefGoogle Scholar
Wallbank, J. (1979), ‘Structure of built-up-edge formed in metal cutting’, Metals Technology 6, 145153.CrossRefGoogle Scholar
Williams, J. E. and Rollason, E. C. (1970), ‘Metallurgical and practical machining parameters affecting built-up-edge formation in metal cutting’, Journal of the Institute of Metals 98, 144153.Google Scholar
Williams, J. E., Smart, E. F. and Milner, D. R. (1970a), ‘The metallurgy of machining. Part 1Metallurgia 81, 310.Google Scholar
Williams, J. E., Smart, E. F. and Milner, D. R. (1970b), ‘The metallurgy of machining. Part 2Metallurgia 81, 5159.Google Scholar
Williams, J. E., Smart, E. F. and Milner, D. R. (1970c), ‘The metallurgy of machining. Part 3Metallurgia 81, 8993.Google Scholar
Wright, P. K. (1971) PhD thesis, University of Birmingham, UK.Google Scholar
Wright, P. K. and Trent, E. M. (1973), ‘Metallographic method for determining temperature gradients in cutting tools’, Journal of the Iron and Steel Institute 211, 364368.Google Scholar
Wright, P. K. and Trent), E. M. (1974), ‘Metallurgical appraisal of wear mechanisms and processes on high speed steel cutting tools’, Metals Technology 1, 1323.CrossRefGoogle Scholar
Zhou, M., Makino, Y., Nose, M. and Nogi, K. (1999), ‘Phase transition and properties of Ti-Al-N thin films prepared by rf-plasma assisted magnetron sputtering’, Thin Solid Film 339, 203108.CrossRefGoogle Scholar
Zorev, N. N. (1963), ‘Interrelationship between shear processes occurring along the tool face and on the shear plane in metal cutting’, International Research in Production Engineering Conference, ASME, 4249.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×